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1 Introduction

In this paper we introduce and study three solution concepts for cooperative games with random

payoffs. An example of a cooperative situation with uncertain payoffs is the following. Two firms

will be temporarily working together in an R&D project. Although the profit of this project is yet

uncertain, the firms sign a contract beforehand in which their profit shares are written down.

Cooperative games with random payoffs are introduced in Timmer, Borm and Tijs (2000). In

these games the payoff to a coalition is not known with certainty and is modelled as a random variable.

Further, the preferences of the players and the possible allocations of the payoffs are of a specific type.

Another model of games where the payoffs to the coalitions are random variables is the model of

stochastic cooperative games as discussed in Suijs (2000). The difference between these games and

cooperative games with random payoffs lies in the assumptions on the preferences and the structure

of the set of possible allocations of the payoffs (see Timmer et al. (2000)).

The Shapley value (Shapley (1953)) is a solution concept for cooperative TU games for which

several equivalent formulations exist. One of these formulations is that the Shapley value equals the

average of the marginal vectors. Suijs (2000) considered this formulation of the Shapley value but was

not able to extend it to his model of stochastic cooperative games because, among others, a marginal

vector of a stochastic cooperative game need not be uniquely defined. Nevertheless, the nucleolus,

a solution concept for TU games that we do not discuss here, has been successfully extended to

stochastic cooperative games (cf. Suijs (1996, 2000)).

Inspired by the equivalent formulations of the Shapley value for TU games we define three

solution concepts for cooperative games with random payoffs. These are the marginal value, the

dividend value and the selector value. We study properties of these solution concepts and give two

characterizations on subclasses of games. The first one is on the class of games where all players

have identical preferences of a specific ‘linear’ type. On this class of games with random payoffs the

three solution concepts coincide. The second one is a characterization on the class of one-person and

two-person games, where again the three solutions coincide. These two characterizations are based on

characterizations of the Shapley value for cooperative TU games by Young (1985), and by Myerson

(1980), Hart and Mas-Colell (1989) and Ortmann (1998), respectively. Further, an example shows

that the solutions may all be different for three-person games.

This paper is organized in four sections. In section 2 we briefly recall the main basic features of

cooperative games with random payoffs. The three solution concepts are introduced in section 3. In

section 4 properties of the solution concepts are studied and the two characterizations are provided.

Finally, an appendix contains the proofs that are omitted in the text.

2 Cooperative games with random payoffs

A cooperative game with random payoffs is a tuple (N, (R(S))S∈S,A, (αi)i∈N). N is the finite

player set. A coalition is a nonempty subset of N . The nonnegative random payoff to coalition S is
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denoted by R(S) and S is the set of coalitions with a nonzero payoff. The setA contains all possible

individual payoffs that a player may receive from the coalitional payoffs and αi is a function that

describes how player i compares two random payoffs. Below we explain these ingredients in more

detail.

Let N = {1, . . . , n}. Denote by |S| the cardinality of coalition S. Let L+ be the set of all

nonnegative random variables with finite expectation. The payoff zero for sure is denoted by 0.

Notice that 0 ∈ L+.

The payoffR(S) to coalition S is assumed to be an element of L+. S is the set of coalitions with

a nonzero payoff, S = {S ⊂ N |R(S) 6= 0, S 6= ∅}. We assume the following about the payoffs.

The reason for this assumption is explained in section 3.

Assumption 2.1 If R(T ) = 0 for some coalition T then R(S) = 0 for all coalitions S such that

S ⊂ T .

An allocation of the payoff R(S) to the members of S is a multiple pR(S) with p ∈ IRS and

where player i ∈ S receives piR(S). Such an allocation is efficient if
∑
i∈S pi = 1. For ease of

notation define ∆∗(S) = {p ∈ IRS|
∑
i∈S pi = 1}. The set A = {pR(S)|S ∈ S, p ∈ IR} contains

all the payoffs that a player may receive from an allocation of the coalitional payoffs with respect to

S. All nonzero payoffs inA are denoted byA−0 = {pR(S) ∈ A|p 6= 0}.

The preference relation of player i is denoted by %i and it has the following interpretation. If

X %i Y then agent iweakly prefersX to Y . If he is indifferent between them,X ∼i Y , then Y %i X

and X %i Y , and if he strictly prefers X to Y , X �i Y then X %i Y and not X ∼i Y . We assume

the following about this preference relation.

Assumption 2.2 For all i ∈ N there exists a surjective, coordinatewise strictly increasing and

continuous function f i : IR→ IRS such that

1. f iS(t)R(S) %i f
i
T (t′)R(T ) if and only if t ≥ t′, for all S, T ∈ S; t, t′ ∈ IR.

2. f iS(0) = 0 for all S ∈ S.

Some examples of preference relations that satisfy this assumption are the following. Let E(X)

denote the expectation of X . If X %i Y if and only if E(X) ≥ E(Y ), X, Y ∈ A, then f iS(t) =

t/E(R(S)) for all S ∈ S, i ∈ N , t ∈ IR, represents this preference relation. This type of preferences

is called ‘expectation preferences’.

A second example involves quantiles of random variables. The βi-quantile of the random variable

X is uXβi = sup{t ∈ IR|Pr{X ≤ t} ≤ βi} with 0 < βi < 1 such that uR(S)
βi

> 0 for all S ∈ S.

Define the (utility) function Ui : A → IR by Ui(X) = uXβi if X ≥ 0 and Ui(X) = uX1−βi otherwise.

If X %i Y if and only if Ui(X) ≥ Ui(Y ), X, Y ∈ A, then the functions f iS(t) = t/u
R(S)
βi

describe

these so-called ‘quantile preferences’. Notice that both expectation and quantile preferences have

linear functions f iS for all S ∈ S, that is, f iS(t) = tf iS(1) for all t ∈ IR.
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Define the function αi : A × A−0 → IR by αi(pR(S), qR(T )) = f iT ((f iS)−1(p))/q. It is the

unique number αi ∈ IR such that pR(S) ∼i αiqR(T ), for all i ∈ N , pR(S) ∈ A and qR(T ) ∈ A−0.

Further, defineαi(0, 0) = 1. We do not define αi(pR(S), 0),pR(S) ∈ A−0, because it can be derived

from assumption 2.2 that we have piR(S) �i 0 if pi > 0 and 0 �i piR(S) if pi < 0. Hence, there

exists no αi ∈ IR such that pR(S) ∼i αi · 0 = 0.

Some interesting and often used properties of the functions αi, i ∈ N , are given in the following

lemma.

Lemma 2.3 For all players i ∈ N it holds that αi(hX,X) = h for any h ∈ IR, X ∈ A−0.

If for player i ∈ N the functions f iS , S ∈ S, are linear then

1. αi(pR(S), qR(T )) = pf iT (1)/(qf iS(1)) for all pR(S) ∈ A and qR(T ) ∈ A−0,

2. pR(S) %i qR(T ) if and only if p/f iS(1) ≥ q/f iT (1) for all pR(S), qR(T ) ∈ A.

Proof. Let i ∈ N , h ∈ IR and X ∈ A−0. By definition of αi it holds that hX ∼i αi(hX,X)X .

From assumption 2.2 we derive that the preference relation%i is monotone increasing and this implies

that h = αi(hX,X).

Secondly, let player i have linear functions f iS , S ∈ S. For pR(S) ∈ A and qR(T ) ∈ A−0 we get

αi(pR(S), qR(T )) = f iT ((f iS)−1(p))/q = f iT (p/f iS(1))/q = pf iT (1)/(qf iS(1))

where the first equality is by definition of αi and the other equalities follow from the linearity of f iS ,

S ∈ S. For pR(S), qR(T ) ∈ A we obtain

pR(S) %i qR(T )⇔ t ≥ t′ with f iS(t) = p and f iT (t′) = q⇔ p/f iS(1) ≥ q/f iT (1)

where the first equivalence comes from assumption 2.2 and the second one from the linearity of the

functions f iS , S ∈ S. 2

3 The marginal, dividend and selector values

The Shapley value for cooperative TU games is a solution for which several equivalent formulations

exist. Based on these formulations, we define three solutions for cooperative games with random

payoffs.

We start with some definitions. A cooperative TU game is a pair (N, v) where N = {1, . . . , n}

is the finite set of players, v(∅) = 0 and v(S) ∈ IR is the worth of coalition S. Let Π(N ) be the

set of all bijections σ : {1, . . . , n} → N of N , Sσi = {σ(1), . . . , σ(i)}, i = 1, . . . , n, and Sσ0 = ∅.

The marginal vector mσ(v) is a vector in IRN where player σ(i) receives his marginal contribution to

coalition Sσi−1,

mσ
σ(i)(v) = v(Sσi )− v(Sσi−1),
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for i = 1, . . . , n. The Shapley value φ(v) is equal to the average of the marginal vectors:

φi(v) = (n!)−1
∑

σ∈Π(N)

mσ
i (v), (3.1)

for all i ∈ N . For cooperative games with random payoffs we define marginal vectors as follows. Let

σ ∈ Π(N ) and G = (N, (R(S))S∈S,A, (αi)i∈N). Define Y σ
σ(1) = R({σ(1)}), player σ(1) receives

his individual payoff. Further,

Y σ
σ(i) =

[
1−

i−1∑
k=1

ασ(k)(Y
σ
σ(k), R(Sσi ))

]
R(Sσi )

for i = 2, . . . , n. Y σσ(i) is the marginal contribution of player σ(i) to coalitionSσi−1. This contribution

is the remainder of R(Sσi ) after the players in Sσi−1 received parts that they find equivalent to their

marginal contributions. Assumption 2.1 is necessary to avoid situations where ασ(k)(Y
σ
σ(k), R(Sσi ))

is not defined, that is, where Y σσ(k) 6= 0 and R(Sσi ) = 0. The marginal vector Mσ corresponding to

permutation σ ∈ Π(N ) is that allocation of R(N ) where player i receives a multiple of R(N ) that is

equivalent for him to Y σ
i : Mσ

i (G) = mσ
i (G)R(N ) with

mσ
i (G) = αi(Y

σ
i , R(N )),

for all i ∈ N . Let GN be the class of games (N, (R(S))S∈S,A, (αi)i∈N) with random payoffs and

with player setN . A solution for cooperative games with random payoffs is a function Ψ on GN such

that Ψ(G) is an allocation pR(N ) for the game G ∈ GN .

In a straightforward way we define the marginal value3 Φm for cooperative games with random

payoffs as the average of the marginal vectors.

Φm
i (G) =

(n!)−1
∑

σ∈Π(N)

mσ
i (G)

R(N )

A second formulation ofφ(v) uses the dividends per capita dS(v) of the coalitionsS, as introduced

by Harsanyi (1959). These numbers are calculated in a recursive way:

dS(v) =

 v(S), |S| = 1,

|S|−1
(
v(S)−

∑
T(S |T |dT (v)

)
, |S| > 1.

Now the Shapley value of (N, v) can be written as

φi(v) =
∑
S:i∈S

dS(v) (3.2)

for all i ∈ N . For a cooperative game with random payoffsGwe define the dividend per capita dS(G)

of coalition S as follows:

dS(G) =

 R(S), |S| = 1,

|S|−1
[
1−

∑
T(S

∑
j∈T αj(dT (G), R(S))

]
R(S), |S| > 1.

3In Timmer et al. (2000) this value is called the Shapley value. Here, we consider three values based on the Shapley

value for cooperative TU games. To avoid confusion, we have renamed this value as the marginal value.
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The dividend per capita of a one-person coalition is equal to its payoff. If S contains more than one

player then we start with its payoff R(S). Given a subset T of S, T 6= S, we give each player j ∈ T

the dividend per capita dT (G) expressed as a multiple of R(S). After we have done so for all sets

T ⊂ S, T 6= S, we divide the remainder of R(S) by |S| to obtain the dividend per capita. The

dividend value Φd is an extension of (3.2) and is defined by

Φd
i (G) =

[ ∑
S:i∈S

αi(dS(G), R(N ))

]
R(N )

for all i ∈ N . Player i receives the dividends per capita, expressed in multiples of R(N ), of all the

coalitions to which he belongs.

A third formulation is given by Derks, Haller and Peters (2000) who show that the Shapley value

is the average of the so-called selector vectors. Define 2N = {S|S ⊂ N} and ∆S(v) = |S|dS(v), the

dividend of coalition S. The function γ : 2N \ {∅} → N with γ(S) ∈ S for all coalitions S is called

a selector function. The family of selector functions for games with player set N is denoted by Γ(N )

and |Γ(N )| =
∏n
k=2 k

(nk). The selector vector mγ(v) corresponding to γ ∈ Γ(N ) is defined by

mγ
i (v) =

∑
S:γ(S)=i

∆S(v)

for all i ∈ N , player i receives the dividends of those coalitions S for which γ(S) = i, and we have

for all i ∈ N

φi(v) = |Γ(N )|−1
∑

γ∈Γ(N)

m
γ
i (v).

For a cooperative game with random payoffsG define the dividend of coalition S, ∆S(G), by

∆S(G) =

 R(S), |S| = 1,[
1−

∑
T(S

∑
j∈T αj(∆T (G)/|T |, R(S))

]
R(S), |S| > 1.

The dividend ∆S(G) of a one-person coalition S is equal to its dividend per capita, namely R(S).

For coalitions S with more than one player we take a subset T of S. The dividend ∆T (G) is divided

equally among the players in T . Player j ∈ T receives the amount αj(∆T (G)/|T |, R(S))R(S),

which is equivalent for him to ∆T (G)/|T |. The dividend of coalition S is all that remains of R(S)

after the dividends of the subcoalitions T have been divided. The following lemma shows that the

dividend ∆S(G) is closely related to the dividend per capita dS(G).

Lemma 3.1 ∆S(G) = |S|dS(G) for all games G = (N, (R(S))S∈S,A, (αi)i∈N) and any coalition

S.

Proof. Let G = (N, (R(S))S∈S,A, (αi)i∈N) be a cooperative game with random payoffs and let S

be a coalition. We show by induction that ∆S(G) = |S|dS(G).
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If |S| = 1 then ∆S(G) = R(S) = dS(G) = |S|dS(G). Now assume that ∆T (G) = |T |dT (G)

for all coalitions T with 1 ≤ |T | ≤ k, k < |N |. Let S be a coalition with |S| = k + 1. We obtain

∆S(G) =

1−
∑
T(S

∑
j∈T

αj(∆T (G)/|T |, R(S))

R(S)

=

1−
∑
T(S

∑
j∈T

αj(dT (G), R(S))

R(S)

= |S|dS(G)

where the second equality follows from induction and the third equality from the definition of the

dividend per capita dS(G). 2

The selector vector Mγ(G) is defined by Mγ
i (G) = m

γ
i (G)R(N ), i ∈ N , γ ∈ Γ(N ), where

mγ
i (G) =

∑
S:γ(S)=i

αi(∆S(G), R(N )).

The selector value Φs is the average of these selector vectors,

Φs
i (G) =

|Γ(N )|−1
∑

γ∈Γ(N)

mγ
i (G)

R(N ),

for all i ∈ N .

A first remark on these definitions is that a marginal vector need not be a selector vector, as

opposed to the case for cooperative TU games. Secondly, notice thatMγ(G) need not be an efficient

allocation of R(N ) even if G is a game where all the functions f i are linear. The example below

illustrates this.

Example 3.2 Consider the game G = (N, (R(S))S∈S,A, (αi)i∈N) where N = {1, 2, 3} and the

payoffs are R({1}) = R({2}) = 0, R({3}) = 1, R({1, 2}) = 2, R({1, 3}) = 3, R({2, 3}) = 1

and R(N ) ∼ U([3, 7]), that is, R(N ) is uniformly distributed over the interval [3, 7]. We see that

S = {{3}, {1, 2}, {1, 3}, {2, 3},N} and A = {pR(S)|S ∈ S, p ∈ IR} by definition.

Let β1 = β3 = 1/2 and β2 = 1/4. Recall from section 2 thatuXβi = sup{t ∈ IR|Pr{X ≤ t} ≤ βi}

is the βi-quantile of the random variable X . All the players i ∈ N have quantile preferences, thus

f iS(t) = t/u
R(S)
βi

for all i ∈ N , S ∈ S, t ∈ IR. From this we obtain the maps αi for all i ∈ N .

The dividends of the various coalitions are ∆{1}(G) = ∆{2}(G) = 0, ∆{3}(G) = 1, ∆{1,2}(G) =

2, ∆{1,3}(G) = 2, ∆{2,3}(G) = 0 and ∆N(G) = −R(N )/20. Consider the selector function γ

defined by γ({i}) = i, i ∈ N , γ({1, 2}) = γ({1, 3}) = γ(N ) = 1 and γ({2, 3}) = 2. Then

mγ
1(G) = α1(∆{1}(G), R(N )) + α1(∆{1,2}(G), R(N )) + α1(∆{1,3}(G), R(N ))

+ α1(∆N(G), R(N ))

= 0 + 2/5 + 2/5− 1/20 = 3/4,

mγ
2(G) = α2(∆{2}(G), R(N )) + α2(∆{2,3}(G), R(N )) = 0 + 0 = 0 and for player 3 mγ

3(G) =

α3(∆{3}(G), R(N )) = 1/5. The corresponding selector vector Mγ(G) = (3/4, 0, 1/5)R(N) is not

7



an efficient allocation of R(N ). In fact, all the selector vectors in this example are not efficient but

the selector value is an efficient allocation of R(N ) (this is a corollary of theorem 4.4). 3

4 Properties and characterizations on subclasses of games

In this section we present properties of the solution concepts that we introduced in the previous section.

For two subclasses of games where the three solution concepts coincide we provide characterizations

of these solutions.

Let GN be a set of games (N, (R(S))S∈S,A, (αi)i∈N) with player set N . A solution concept Ψ

on GN

(i) is called efficient if for all G ∈ GN , Ψ(G) = pR(N ) for some p ∈ ∆∗(N ).

(ii) is called symmetric if for all G ∈ GN , for all i, j ∈ N such that αi = αj and R(S ∪ {i}) =

R(S ∪ {j}) for all S ⊂ N \ {i, j}we have Ψi(G) = Ψj(G).

(iii) satisfies anonymity if for all G ∈ GN and for all σ ∈ Π(N ) we have Ψ(Gσ) = σ∗(Ψ(G))

where Gσ = (N, (Rσ(S))S∈Sσ ,A
σ, (ασi )i∈N), Rσ(σ(U)) = R(U), Sσ = {σ(S)|S ∈ S},

Aσ = {pRσ(S)|p ∈ IR, S ∈ Sσ}, ασσ(i) = αi and (σ∗(pR(N )))σ(i) = piR(N ) for i ∈ N and

p ∈ IRN .

(iv) satisfies the null player property if for all G ∈ GN , for all i ∈ N such that R({i}) = 0 and

R(S) = R(S \ {i}) for all coalitions S 6= {i} we have Ψi(G) = 0.

The three solution concept satisfy most of these properties.

Lemma 4.1 The marginal value Φm and the dividend value Φd are efficient, symmetric, and they

satisfy anonymity and the null player property. The selector value Φs is symmetric and satisfies

anonymity and the null player property.

Proof. We only show the efficiency of Φd. The remainder of the proof is left to the reader.

Let G = (N, (R(S))S∈S,A, (αi)i∈N) be a game with random payoffs. The dividend per capita

of coalitionN is by definition

dN (G) = |N |−1

1−
∑
T(N

∑
j∈T

αj(dT (G), R(N ))

R(N ).

By lemma 2.3 we have

αi(dN(G), R(N )) = |N |−1

1−
∑
T(N

∑
j∈T

αj(dT (G), R(N ))


for all i ∈ N . Summing both sides over N gives∑

j∈N

αj(dN(G), R(N )) = 1−
∑
T(N

∑
j∈T

αj(dT (G), R(N )).
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Rearranging terms leads to∑
T⊂N

∑
j∈T

αj(dT (G), R(N )) = 1. (4.3)

Hence,∑
i∈N

∑
S:i∈S

αi(dS(G), R(N )) =
∑
S⊂N

∑
i∈S

αi(dS(G), R(N )) = 1

where the last equality follows from (4.3). We conclude that Φd is an efficient allocation ofR(N ). 2

We introduce another property based on its counterpart for TU games as in Young (1985).

(v) A solution concept Ψ on GN satisfies strong monotonicity if for all i ∈ N and for all games

G,G′ ∈ GN such that4 Mσ
i (G) %i M

σ
i (G′) for all σ ∈ Π(N ) we have Ψi(G) %i Ψi(G

′).

Now we have the following result.

Lemma 4.2 The marginal value Φm satisfies strong monotonicity on the class of all games G where

f i is a linear function for all i ∈ N .

Proof. Let G = (N, (R(S))S∈S,A, (αi)i∈N) and G′ = (N, (Q(S))S∈S′,A
′, (αi)i∈N) be games

where all the functions f i are linear. Let i ∈ N be such that

Mσ
i (G) %i M

σ
i (G′) (4.4)

for all permutations σ. If R(N ) = Q(N ) = 0 then Φm
i (G) = Φm

i (G′) = 0 because Φm is an

allocation of the payoff for the grand coalition, which equals zero. Obviously, Φm
i (G) %i Φm

i (G′)

because 0 %i 0.

Next, consider the situation where R(N ) 6= 0 and Q(N ) 6= 0. By definition (4.4) equals

αi(Y
σ
i , R(N ))R(N )%i αi(Y

′σ
i , Q(N ))Q(N )

for all permutations σ where variables without (with) an accent refer to the game G (G′). Applying

statement 2 of lemma 2.3 gives

αi(Y
σ
i , R(N ))/f iN(1) ≥ αi(Y

′σ
i , Q(N ))/f ′iN(1)

for all σ ∈ Π(N ). This implies that

(n!)−1
∑

σ∈Π(N)

αi(Y
σ
i , R(N ))/f iN(1) ≥ (n!)−1

∑
σ∈Π(N)

αi(Y
′σ
i , Q(N ))/f ′iN(1)

and once again by statement 2 of lemma 2.3 we get

Φm
i (G) =

(n!)−1
∑

σ∈Π(N)

αi(Y
σ
i , R(N ))

R(N )

%i

(n!)−1
∑

σ∈Π(N)

αi(Y
′σ
i , Q(N ))

Q(N ) = Φm
i (G′).

4We assume w.l.o.g. that the domains of the preference relations %i and of the functions αi, i ∈ N , can be extended to

include all possible individual payoffs in both games.
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Similar reasoning shows that this result also holds if R(N ) = 0 and Q(N ) 6= 0 or if R(N ) 6= 0 and

Q(N ) = 0. 2

The following example shows that this result need not hold if one of the functions f i is not linear.

Example 4.3 LetG = (N, (R(S))S∈S,A, (αi)i∈N) andG′ = (N, (Q(S))S∈S′,A
′, (αi)i∈N) be two

games with N = {1, 2}. Variables with accents refer to the game G′. The payoffs are such that

R({1}) ∼1 1/10R(N ), R({2}) ∼1 4/5R(N ), Q({1}) ∼1 1/10Q(N ) and Q({2}) ∼1 4/5Q(N ).

Let σi denote the permutation with σi(1) = i and σi(2) = 3 − i, i = 1, 2. The marginal vectors

are Mσ1(G) = (1/10, 9/10)R(N ), Mσ2(G) = (1/5, 4/5)R(N), Mσ1(G′) = (1/10, 9/10)Q(N )

and Mσ2(G′) = (1/5, 4/5)Q(N ). Then the marginal values are Φm(G) = (3/20, 17/20)R(N) and

Φm(G′) = (3/20, 17/20)Q(N).

We concentrate on player 1. Let f1
N and f ′1N be surjective, continuous and strictly increasing

functions such that

f1
N (0) = 0, f1

N(9) = 1/10, f1
N(11) = 3/20, f1

N(20) = 1/5,

f ′1N (t) = t/80, t ∈ IR

From item 1 of assumption 2.2 and from f1
N (9) = 1/10, f ′1N (8) = 1/10 and 9 > 8 it follows that

Mσ1
1 (G) = 1/10R(N )�1 1/10Q(N ) = Mσ1

1 (G′).

Similarly we obtainMσ2
1 (G) �1 M

σ2
1 (G′). Hence, for player 1 we have Mσ

1 (G) �1 M
σ
1 (G′) for all

permutations σ. Once again by assumption 2.2 and by f ′1N (12) = 3/20, f1
N(11) = 3/20 and 12 > 11

we get

Φm
1 (G′) = 3/20Q(N )�1 3/20R(N ) = Φm

1 (G).

We conclude that the marginal value does not satisfy strong monotonicity. 3

The selector value and the dividend value are equal for games where all the players i ∈ N have

linear functions f i.

Theorem 4.4 If G is a game where all the players have linear functions f i then the selector value

and the dividend value coincide.

Proof. Let G = (N, (R(S))S∈S,A, (αi)i∈N) be a game where f i is a linear function for all i ∈ N .

From lemma 3.1 we know that ∆S(G) = |S|dS(G) for all coalitions S. By the linearity of f i and by

statement 1 of lemma 2.3 we have αi(∆S(G), R(N )) = |S|αi(dS(G), R(N )). We conclude that

Φs
i (G) =

|Γ(N )|−1
∑

γ∈Γ(N)

∑
S:γ(S)=i

αi(∆S(G), R(N ))

R(N )

=

|Γ(N )|−1
∑

γ∈Γ(N)

∑
S:γ(S)=i

|S|αi(dS(G), R(N ))

R(N )
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=

[
|Γ(N )|−1

∑
S⊂N

|S|αi(dS(G), R(N )) · |{γ ∈ Γ(N ) : γ(S) = i}|

]
R(N )

=

[
|Γ(N )|−1

∑
S:i∈S

|S|αi(dS(G), R(N )) · |Γ(N )|/|S|

]
R(N )

=

[ ∑
S:i∈S

αi(dS(G), R(N ))

]
R(N ) = Φd

i (G),

where the fourth equality follows from γ(S) ∈ S. 2

A corollary of this theorem is that Φs is an efficient solution for any gameGwhere all the functions

f i are linear.

Denote by GLIN the set of gamesG with player set N where all the players have identical linear

functions f i. The marginal, dividend and selector value coincide on this class of games.

Theorem 4.5 For all G ∈ GLIN we have Φm(G) = Φd(G) = Φs(G).

Proof. Let G = (N, (R(S))S∈S,A, (αi)i∈N) ∈ GLIN . From theorem 4.4 we know that Φd(G) =

Φs(G). It remains to show that Φm(G) = Φd(G).

If R(N ) = 0 then Φm
i (G) = Φd

i (G) = 0 for all i ∈ N because these values are multiples of

R(N ) = 0.

If R(N ) 6= 0 then define f = f i, i ∈ N . Also, define a corresponding cooperative TU game

(N, v) by v(S) = 0 if R(S) = 0, v(S) = 1/fS(1) if R(S) 6= 0 for all coalitions S and v(∅) = 0.

Let σ ∈ Π(N ) be a permutation of N . We show by induction that mσ(G) = mσ(v)/v(N ). For

R({σ(1)}) 6= 0 it holds that

mσ
σ(1)(G) = ασ(1)(R({σ(1)}), R(N ))

= fN (1)/f{σ(1)}(1)

= v({σ(1)})/v(N )

= mσ
{σ(1)}(v)/v(N )

where the second equality follows from statement 1 of lemma 2.3. ForR({σ(1)}) = 0 this result also

holds because ασ(1)(0, R(N )) = 0 = mσ
{σ(1)}(v)/v(N ). Further,

Y σ
σ(2) =

[
1− ασ(1)(R({σ(1)}), R(Sσ2))

]
R(Sσ2 ))

=
[
1− fSσ2 )(1)/fSσ1 )(1)

]
R(Sσ2 ))

and so,

mσ
σ(2)(G) = ασ(2)(Y

σ
σ(2), R(N ))

=
[
1− fSσ2 (1)/fSσ1 (1)

]
fN (1)/fSσ2 )(1)

= fN (1)
[
1/fSσ2 (1)− 1/fSσ1 (1)

]
= (v(Sσ2 )− v(Sσ1 )) /v(N )

= mσ
σ(2)(v)/v(N )
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forR(Sσ2 )) 6= 0. If R(Sσ2 ) = 0 then alsoR(Sσ1 ) = 0 andmσ
σ(2)(G) = 0 = mσ

σ(2)(v)/v(N ) holds for

the same reason as above.

Now assume that Y σσ(i) =
[
1− fSσi (1)/fSσi−1

(1)
]
R(Sσi ) for i = 2, . . . , k, k < n. Using induction

we obtain for R(Sσk+1) 6= 0

Y σ
σ(k+1)

=

[
1−

k∑
i=1

ασ(i)(Y
σ
σ(i), R(Sσk+1))

]
R(Sσk+1)

=

[
1− ασ(1)(Y

σ
σ(1), R(Sσk+1))−

k∑
i=2

ασ(i)(Y
σ
σ(i), R(Sσk+1))

]
R(Sσk+1)

=

[
1− fSσk+1

(1)/fSσ1 (1)−
k∑
i=2

[1− fSσi (1)/fSσi−1
(1)]fSσk+1

(1)/fSσi (1)

]
R(Sσk+1)

=

[
1− fSσ

k+1
(1)/fSσ1 (1)−

k∑
i=2

[fSσ
k+1

(1)/fSσi (1)− fSσ
k+1

(1)/fSσi−1
(1)]

]
R(Sσk+1)

=
[
1− fSσk+1

(1)/fSσk (1)
]
R(Sσk+1),

and so,

mσ
σ(k+1)(G) = ασ(k+1)(Y

σ
σ(k+1), R(N ))

=
[
1− fSσk+1

(1)/fSσk (1)
]
fN(1)/fSσ

k+1
)(1)

= fN (1)
[
1/fSσ

k+1
(1)− 1/fSσ

k
(1)
]

=
(
v(Sσk+1)− v(Sσk )

)
/v(N )

= mσ
σ(k+1)(v)/v(N ).

If R(Sσk+1) = 0 then Y σσ(k+1) = 0 because it is a multiple of R(Sσk+1). Also, R(Sσj ) = 0 for all

j ≤ k + 1 by assumption 2.1 and so mσ
σ(k+1)(G) = 0 = mσ

σ(k+1)(v)/v(N ). We have shown by

induction that mσ(G) = mσ(v)/v(N ).

Similar reasoning as for the marginal vectors shows that αi(dS(G), R(N )) = dS(v)/v(N ) for all

coalitions S and i ∈ N . Thus we have

Φm
i (G) =

(n!)−1
∑

σ∈Π(N)

mσ
i (G)

R(N )

=

(n!)−1
∑

σ∈Π(N)

mσ
i (v)/v(N )

R(N ),

and by (3.1) and (3.2)

Φm
i (G) = φi(v)/v(N )R(N)

=

[ ∑
S:i∈S

dS(v)/v(N )

]
R(N )

=

[ ∑
S:i∈S

αi(dS(G), R(N ))

]
R(N )
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= Φd
i (G)

for all players i ∈ N . 2

Furthermore, there exists a characterization of these solution concepts on the class of games

GLIN . This characterization is based on a characterization of the Shapley value for cooperative TU

games by Young (1985).

Theorem 4.6 The marginal value Φm is the unique solution concept on GLIN that satisfies efficiency,

symmetry and strong monotonicity.

Proof. From the lemmas 4.1 and 4.2 it follows that Φm satisfies efficiency, symmetry and strong

monotonicity on GLIN .

To show the uniqueness, let Ψ be a solution concept on GLIN that satisfies efficiency, symmetry

and strong monotonicity. Let G = (N, (R(S))S∈S,A, (αi)i∈N) ∈ GLIN and let (N, v) be the

corresponding TU game as in the proof of lemma 4.5. By efficiency there is a p ∈ ∆∗(N ) such

that Ψ(G) = pR(N ). Define ψ(v) = piv(N ) for all i ∈ N . This ψ is a solution concept on the

class of TU games SGN = {(N, v)|v ≥ 0, v(T ) = 0 ⇒ v(S) = 0 for all S ⊂ T}. Further,

ψ satisfies efficiency, symmetry and strong monotonicity as defined for cooperative TU games by

Young (1985). In theorem A.1 of the appendix we show that the Shapley value φ is the unique

solution on SGN that satisfies efficiency, symmetry and strong monotonicity. Hence, ψ(v) = φ(v)

and Ψ(G) = φ(v)/v(N ) ·R(N ) = Φm(G) if v(N ) 6= 0. If v(N ) = 0 then we have R(N ) = 0. By

efficiency and symmetry we have Ψi(G) = 0 = Φm
i (G) for all i ∈ N . 2

We will now turn our attention to games with random payoffs that need not have linear functions

f i, i ∈ N . The subgame of G = (N, (R(S))S∈S,A, (αi)i∈N) restricted to coalition T is denoted by

GT = (T, (R(S))S∈ST ,AT , (αi)i∈T ) with ST = {S ∈ S|S ⊂ T}, AT = {pR(S) ∈ A|S ⊂ T}.

Let ḠN = ∪M∈2N\{∅}G
M be the class of cooperative games with random payoffs and player set

N , and all of its subgames. A sixth property for solution concepts on ḠN is based on the balanced

contributions property for cooperative TU games by Myerson (1980).

(vi) A solution concept Ψ on ḠN is said to have balanced contributions if for all games G ∈ GN ,

for all coalitions T ⊂ N and for all i, j ∈ T , i 6= j, we have

αi(Ψi(GT ), R(T ))− αi(Ψi(GT \{j}), R(T ))

= αj(Ψj(GT ), R(T ))− αj(Ψj(GT \{i}), R(T )).

We have the following results concerning two-person games.

Lemma 4.7 If G is a two-person game then Φm(G) = Φd(G) = Φs(G), the three solution concepts

coincide. These solutions have balanced contributions on ḠN with |N | = 2.
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Proof. Let G = (N, (R(S))S∈S,A, (αi)i∈N) be a two-person game withN = {1, 2}. If R(N ) = 0

thenR({1}) = R({2}) = 0 by assumption 2.1. For any of the two permutations σ we have

Mσ
σ(1) = ασ(1)(R({σ(1)}), R(N))R(N) = ασ(1)(0, 0)R(N ) = 1 ·R(N )(= 0)

Mσ
σ(2) = (1− ασ(1)(0, 0))R(N ) = 0 ·R(N )(= 0)

and the average of these marginal vectors is Φm(G) = (1/2, 1/2)R(N ) = (0, 0). In a similar way

we can show that Φd(G) = Φs(G) = (0, 0) because these are also multiples of R(N ) = 0.

Now assume that R(N ) 6= 0. Let σ1(1) = 1, σ1(2) = 2, σ2(1) = 2 and σ2(2) = 1. The

corresponding marginal vectors are

Mσ1(G) = (α1(R({1}), R(N)), 1− α1(R({1}), R(N )))R(N)

Mσ2(G) = (1− α2(R({2}), R(N)), α2(R({2}), R(N )))R(N)

and the marginal value equals

Φm(G) =
1

2
(1 + α1(R({1}), R(N ))− α2(R({2}), R(N )),

1− α1(R({1}), R(N)) + α2(R({2}), R(N)))R(N).

The dividends per capita are d{i}(G) = R({i}), i = 1, 2, for the one-person coalitions and for the

grand coalition dN(G) = 1
2(1− α1(R({1}), R(N ))− α2(R({2}), R(N )))R(N ). Therefore

Φd
1(G) =

(
α1(d{1}(G), R(N ))+ α1(dN(G), R(N ))

)
R(N )

=

(
α1(R({1}), R(N)) +

1

2
(1− α1(R({1}), R(N ))− α2(R({2}), R(N )))

)
R(N )

=
1

2
(1 + α1(R({1}), R(N))− α2(R({2}), R(N)))R(N ) = Φm

1 (G)

and similarly Φd
2(G) = Φm

2 (G).

There are only two selector functions, namely γ1 and γ2 defined by γ1({i}) = γ2({i}) = i,

i ∈ N , γ1(N ) = 1 and γ2(N ) = 2. The dividends are ∆{i}(G) = R({i}), i = 1, 2, and

∆N(G) = (1− α1(R({1}), R(N ))− α2(R({2}), R(N )))R(N ). This leads to

mγ1
1 (G) = α1(∆{1}(G), R(N ))+ α1(∆N(G), R(N ))

= α1(R({1}), R(N)) + 1− α1(R({1}), R(N ))− α2(R({2}), R(N ))

= 1− α2(R({2}), R(N )),

mγ1
2 = α2(∆{2}(G), R(N )) = α2(R({2}), R(N )) and so, Mγ1(G) = Mσ2(G). Analogously, for

selector function γ2 we have Mγ2(G) = Mσ1(G). We conclude that the selector value Φs(G), the

average of the selector vectors, coincides with the marginal value Φm(G), the average of the marginal

vectors.

Finally, we check balanced contributions for the grand coalition N . By efficiency Φm
i (G{i}) =

R({i}) for i = 1, 2. We have

α1(Φm
1 (G), R(N ))− α1(Φm

1 (G{1}), R(N ))

= (1 + α1(R({1}), R(N))− α2(R({2}), R(N)))/2− α1(R({1}), R(N))

= (1− α1(R({1}), R(N))− α2(R({2}), R(N)))/2

= α2(Φm
2 (G), R(N ))− α2(Φm

2 (G{2}), R(N )).

14



We conclude that Φm has balanced contributions. 2

Moreover, we have the following characterization, which is inspired by Hart and Mas-Colell

(1989) and Ortmann (1998).

Theorem 4.8 The marginal value Φm is the unique solution concept on ḠN with |N | = 2 that is

efficient and has balanced contributions.

Proof. Let |N | = 2. By definition, Φm is efficient and from lemma 4.7 it follows that Φm has

balanced contributions on ḠN .

To show the uniqueness, let Ψ be a solution concept on ḠN that is efficient and has balanced

contributions. If G ∈ ḠN is a one-person game then Ψ(G) = Φm(G) because of efficiency.

Let G = (N, (R(S))S∈S,A, (αi)i∈N) be a two-person game. By efficiency there exists a vector

p = (p1, p2) ∈ ∆∗(N ) such that Ψ(G) = (p1, p2)R(N ). Next to this, Ψ has balanced contributions:

α1(Ψ1(G), R(N ))− α1(Ψ1(G{1}), R(N ))

= α2(Ψ2(G), R(N ))− α2(Ψ2(G{2}), R(N )).

By efficiency we have Ψi(G{i}) = R({i}) for i ∈ N . Together with Ψ(G) = (p1, p2)R(N ) this

gives

p1 − α1(R({1}), R(N)) = p2 − α2(R({2}), R(N )).

Using p1 + p2 = 1 leads to

2p1 = 1 + α1(R({1}), R(N ))− α2(R({2}), R(N ))

from which we conclude that Ψ = Φm. 2

Of course, this characterization also holds for the dividend value and the selector value, as

lemma 4.7 indicates. For three-person games, the three solution concepts can all be different, as the

following example shows.

Example 4.9 Let G = (N, (R(S))S∈S,A, (αi)i∈N) be the three-person game with N = {1, 2, 3},

R({i}) = 0 for all i ∈ N , R(S) = 1 if |S| = 2 and R(N ) is uniformly distributed over the closed

interval [3,7]. The players 1 and 3 have expectation preferences and for player 2 we have

f2
S(t) =


t, |S| = 2,

2t/5, S = N, t ≤ 0,

t1/6/2, S = N, t > 0.

For this game the four solution concepts are

Φm(G) = (19/60, 11/30, 19/60)R(N ),

Φd(G) = (7/15− (1/2)1/6/3, 1/15 + 2(1/2)1/6/3, 7/15− (1/2)1/6/3)R(N ),

Φs(G) = (7/15− (1/2)1/6/3, 17/30− (1/2)1/6/3, 7/15− (1/2)1/6/3)R(N ).
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Notice that the selector value is not efficient. Further, Φs
i (G) = Φd

i (G) for i = 1, 3. This is due to

the fact that both the players 1 and 3 have expectation preferences and so, linear functions f i. The

inequality Φs
2(G) 6= Φd

2(G) comes from the preferences of player 2: ∆{1,2}(G) = 1 ∼2 1/2 ·R(N )

and d{1,2}(G) = 1/2 ∼2 (1/2)7/6R(N ). Therefore,

α2(∆{1,2}(G), R(N )) = 1/2 < 2(1/2)7/6 = 2α2(d{1,2}(G), R(N ))

although ∆{1,2}(G) = 2d{1,2}(G). 3

A Appendix

In this appendix we provide a characterization of the Shapley value on the class of TU games

SGN = {(N, v)|v ≥ 0, v(T ) = 0 ⇒ v(S) = 0 for all S ⊂ T}. This characterization is inspired by

the characterization of the Shapley value on the class of superadditive games by Young (1985) and we

use it in the proof of theorem 4.6.

Let CN be a set of TU games with player set N and let ψ be a solution concept on CN , that is,

ψ(v) ∈ IRN for all v ∈ CN . Then ψ satisfies

(a) efficiency if
∑
i∈N ψ(v) = v(N ) for all v ∈ CN .

(b) symmetry if for all i, j ∈ N such that v(S ∪ {i}) = v(S ∪ {j}) for all S ⊂ N \ {i, j} (i and j

are symmetric players) we have ψi(v) = ψj(v) for all v ∈ CN .

(c) strong monotonicity if for all i ∈ N and for all games v, w ∈ CN such that v(S∪{i})−v(S) ≥

w(S ∪ {i})−w(S) for all S ⊂ N , i /∈ S, we have ψi(v) ≥ ψi(w).

Theorem A.1 The Shapley value φ is the unique solution on SGN that satisfies efficiency, symmetry

and strong monotonicity.

In the proof of this theorem we need a lemma that we present below. First, we introduce some

definitions. Let the game (N, uT ) be the so-called unanimity game defined by

uT (S) =

 1, S ⊃ T,

0, otherwise,

for all S ⊂ N . The unanimity games {(N, uT )|T ∈ 2N \ {∅}} form a basis of the class of all TU

games with player set N and the unique linear expansion of v with respect to unanimity games is

given by

v =
∑
T 6=∅

∆T (v)uT .

For t ∈ {1, . . . , n} define ∆t(v) = maxT :|T |=t∆T (v). Let v1 =
∑
T 6=∅∆|T |(v)uT . Clearly, v1 is

symmetric, that is, v1(S1) = v1(S2) for all coalitions S1, S2 such that |S1| = |S2|.
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Let δT (v) = ∆|T |(v)−∆T (v) (≥ 0). Now we can write

v = v1 −
∑
T 6=∅

δT (v)uT .

Define the index k(v) = |{T |δT (v) > 0}|. Suppose player i ∈ N is such that

i /∈ ∩T :δT (v)>0T

and define the game wi = v +
∑
T 6=∅,i/∈T δT (v)uT . The following lemma shows that v ∈ SGN

implies wi ∈ SGN and that k(v)− 1 is an upper bound of k(wi).

Lemma A.2

1. v ∈ SGN ⇒ wi ∈ SGN

2. k(wi) ≤ k(v)− 1

Proof. Let v ∈ SGN . Clearly, wi ≥ 0. It remains to show that

wi(Q) = 0⇒ wi(S) = 0 for all S ⊂ Q. (A.5)

Let Q be a coalition such that

wi(Q) = v(Q) +
∑

T 6=∅,i/∈T

δT (v)uT (Q) = 0.

Because v(Q), δT (v) and uT (Q) are all nonnegative numbers we have v(Q) = 0 and uT (Q) = 0 for

all coalitions T with i /∈ T . From v ∈ SGN we get v(S) = 0 for all S ⊂ Q. Also, uT (Q) = 0

implies that Q 6⊃ T . But then S 6⊃ T for all S ⊂ Q and so, uT (S) = 0. We conclude that (A.5) is

satisfied.

To show the second item, notice that

wi = v +
∑

T 6=∅,i/∈T

δT (v)uT

=
∑
T 6=∅

∆T (v)uT +
∑

T 6=∅,i/∈T

(
∆|T |(v)−∆T (v)

)
uT

=
∑

T 6=∅,i∈T

∆T (v)uT +
∑

T 6=∅,i/∈T

∆|T |(v)uT .

Hence, for all coalitions T

∆T (wi) =

 ∆T (v), i ∈ T,

∆|T |(v), i /∈ T.

It readily follows that

∆t(w
i) = max

T :|T |=t
∆T (wi) = ∆t(v)
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for all t ∈ {1, . . . , n}. Furthermore,

δT (wi) = ∆|T |(w
i)−∆T (wi) = ∆|T |(v)−∆T (wi) =

 δT (v), i ∈ T,

0, i /∈ T.

Now we get

k(wi) = |{T |δT (wi) > 0}|

= |{T |δT (v) > 0, i ∈ T}|

≤ |{T |δT (v) > 0}| − 1

= k(v)− 1

where the inequality follows from i /∈ T for at least one coalition T with δT (v) > 0. 2

Now we can prove the characterization of the Shapley value on the class SGN .

Proof of theorem A.1. It is obvious that the Shapley value φ satisfies efficiency, symmetry and

strong monotonicity on SGN .

Let v ∈ SGN , then v =
∑
T 6=∅∆T (v)uT . Define for t = 1, . . . , n

∆t(v) = max
T :|T |=t

∆T (v), and δT (v) = ∆|T |(v)−∆T (v) (≥ 0).

Let v1 =
∑
T 6=∅∆|T |(v)uT . Now we can write

v = v1 −
∑
T 6=∅

δT (v)uT . (A.6)

Define the index k(v) = |{T |δT (v) > 0}|. Let g be a solution on SGN that is efficient, symmetric

and strongly monotonic. We show by induction on k(v) that g(v) = φ(v).

If k(v) = 0 then v = v1. Because v1 is a symmetric game, all the players in N are symmetric.

From efficiency and symmetry we obtain gi(v) = v(N )/n = φi(v) for all i ∈ N .

Now assume that g(v) = φ(v) for all games v ∈ SGN with k(v) ≤ k − 1, for some positive

integer k. Let v ∈ SGN be a game with k(v) = k. Define D = ∩T 6=∅,δT (v)>0T .

First, let i ∈ N \D. Define the game (N,wi) by

wi = v1 −
∑

T 6=∅,i∈T

δT (v)uT .

According to (A.6) we can rewrite this to

wi = v +
∑

T 6=∅,i/∈T

δT (v)uT .

By lemma A.2 wi ∈ SGN and k(wi) ≤ k(v)− 1 = k − 1. Then

g(wi) = φ(wi) (A.7)

by induction.
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Let coalition S be such that i /∈ S. Then

v(S ∪ {i})− v(S) = v1(S ∪ {i})−
∑
T 6=∅

δTuT (S ∪ {i})−

v1(S)−
∑
T 6=∅

δTuT (S)


= v1(S ∪ {i})− v1(S)−

∑
T 6=∅

δT (v) (uT (S ∪ {i})− uT (S))

= v1(S ∪ {i})− v1(S)−
∑

T 6=∅,i∈T

δT (v) (uT (S ∪ {i})− uT (S))

= wi(S ∪ {i})− wi(S).

From strong monotonicity we obtain gi(v) = gi(w
i) and φi(v) = φi(w

i). Together with (A.7) this

gives gi(v) = φi(v).

Second, let i, j ∈ D be two players and let S ⊂ N \ {i, j}. Then by definition

v(S ∪ {i}) = v1(S ∪ {i})−
∑
T 6=∅

δT (v)uT (S ∪ {i}).

Because uT (S ∪ {i}) = uT (S ∪ {j}) = 0 for all coalitions T with δT (v) > 0 and because

v1(S ∪ {i}) = v1(S ∪ {j}), the game v1 is symmetric, we get

v(S ∪ {i}) = v1(S ∪ {j})−
∑
T 6=∅

δT (v)uT (S ∪ {j}) = v(S ∪ {j}).

Any two players in D are symmetric players in v. By symmetry gi(v) = gj(v) and φi(v) = φj(v)

for all i, j ∈ D. Together with efficiency and with gk(v) = φk(v) for all k ∈ N \ D this implies

gi(v) = φi(v) for all i ∈ D. 2
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