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Assortment Variety: Attribute- versus Product-Based

Abstract

Retailers need to decide on the content and structure of their product assortments, and

thereby on the degree of variety that they offer to their customers. This paper compares

measures of assortment variety and relates them to underlying variety components. We

conceptualize assortment variety from a product and an attribute perspective, compare extant

measures of assortment variety, and examine the appropriateness of these measures in

capturing assortment variety as perceived by consumers.

Recently, Hoch, Bradlow and Wansink (1999) introduced a general model of assortment

variety based on product dissimilarities. The current study takes an alternative approach and

proposes variety measures based on attributes, specifically the dispersion across attribute

levels and the association between the attributes of the products in an assortment. Attribute

dispersion refers to the diversity of attribute levels in an assortment (e.g. the relative

proportion of red, green, blue products), while association between attributes refers to

systematic links between attributes (e.g. all red products are large).

We show that product-based and attribute-based approaches to assortment variety lead to

substantially different measures with different effects on consumers’ perceptions of variety.

A first, synthetic, data set, shows that measures of attribute dispersion, attribute association

and assortment size reflect specific components of assortment variety. The product-based

measure proposed by Hoch et al. is sensitive to the size of the assortment, while the attribute-

based measures respond only to specific changes in the content of an assortment.

A second, consumer, data set shows that the attribute-based approach accounts best for

consumers’ perceptions of variety, and offers diagnostic power to retailers by explicating
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variety components. Attribute-based measures of variety significantly add to the prediction of

consumers’ perceptions of variety, over and above the product-based variety measures, while

the reverse is not the case.

In the final section we discuss how attribute-based measures can be used in assortment

management, e.g. when assortments of different size are compared, when the impact of

adding or dropping products on assortment variety is to be determined, and when diagnostic

information about assortment variety is important.

JEL CODES: m31, c52 and c91
KEY WORDS: product assortment, variety measurement, variety perception, retailing
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1. Introduction

Determining the degree of assortment variety that should be offered, has been a critical

decision that retailers face since long (Elton and Mercer 1969). It is only gaining in

importance with today’s increasing number of product offerings (Kahn & McAlister 1997). A

department store may carry over hundreds of thousands of different products, while an

average supermarkets carries about 25,000 products (Ghosh 1994, p.10). In light of this

development, there is a growing need for assortment and variety management in the retailing

sector (Raftery 1993).

Also from a consumer perspective, assortment variety is important. The likelihood that a

store carries the product that a consumer desires increases with the variety that is offered

(Kahn 1998). In addition there are many situations where consumers do not have well-

developed preferences and the choice process is constructive (Bettman, Luce & Payne 1998).

In such cases, stores with a highly varied assortment offer more opportunity for consumers to

discover their preferences and find a suitable product. Increased assortment variety can also

decrease the cost of searching, by minimizing the number of store visits needed to find a

desirable product (Ratchford 1982). When a store offers much variety, more information can

be gathered in a single store visit. Of course, the effects of increasing variety will not all be

positive, and at some point increasing variety further will lead to confusion and choice

difficulty for the consumer (Kahn & McAlister 1997).

To examine the effects of assortment variety on consumer perceptions and to aid retailers

assortment decisions, appropriate measures of assortment variety are required. Despite the

importance of assortment decisions for retailers, research about assortment variety is of

recent origin, and no single measure of assortment variety has been used consistently. Our

objectives are to further explicate the concept of variety, to examine and compare proposed

measures of assortment variety, and to determine how well they are able to capture the
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perceived variety by consumers. To this end, we draw on the literature concerning product

similarity and variety seeking behavior by consumers, the literature concerning concentration

and inequality in economics, and the literature concerning statistical association. These

literatures provide established and widely used measures of similarity, concentration, and

association, which can be potentially useful in the context of assortment variety.

Our focus is on the variety that is due to the product assortment itself, irrespective of the

format in which the products are presented. Following previous research (e.g. Hoch, Bradlow

& Wansink 1999), the variety measures are applied to categorical product attributes, but

extensions to continuous attributes are relatively straightforward. Our conceptualization of

assortment variety departs from previous variety models based on product dissimilarities (e.g.

Hoch et al. 1999), and focuses on variety measures based on attribute differences. In two data

sets we show the advantage of the attribute-based approach to assortment variety. The ability

of attribute-based measures to distinguish between specific components of assortment variety

is another advantage which is emphasized. The results of the consumer study indicate that the

attribute-based approach captures consumers’ perceptions of assortment variety better than

the product-based approach does, and that it offers new insights into assortment variety.

The next sections introduce assortment variety, and product- and attribute-based

approaches to measure it. The measures are compared with respect to their pattern of

correlations in a synthetic data set (section 4), and with respect to their ability to predict the

variety as perceived by consumers (section 5). In the final section we offer suggestions for

the application of the proposed variety measures in assortment management.

2. Variety offered by stores

Variety is “the quality or state of being different or diverse; the absence of uniformity,

sameness, or monotony” (Pearsall 1998). There are important differences in the way

assortment variety is conceptualized and measured in research. Broniarczyk, Hoyer and
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McAlister (1998) focus on consumer heuristics for variety, such as the availability of the

favorite brand, and the space devoted to the category. When involvement with a product

category is low, consumers tend to use these heuristics rather than forming a detailed variety

perception. In other situations, consumers will pay closer attention to the product assortment,

and form a more detailed impression of assortment variety. These are the situations that we

focus on here. Even when heuristic processing is not assumed, different measures of

assortment variety have been used. For instance, some researchers argue that the sheer

number of different products in an assortment captures assortment variety (Hoch & Banerji

1993; Chiang & Wilcox 1997). This measure has been criticized on the ground that it does

not incorporate product dissimilarities, which are important for a good understanding of the

variety concept (e.g. Pessemier 1985; Kahn & Lehmann 1991; Hoch et al. 1999). In retailing

handbooks (e.g. Levy & Weitz 1998), the breadth or depth of an assortment are often taken as

constituents of variety. This relates assortment variety to the number of different product

groups and the number of product variants in each group. Although breath and depth offer

more detail than the sheer number of products in an assortment, they also do not take the

degree of similarity between the individual products into consideration.

Hoch et al. (1999) go beyond previous work by providing a general mathematical model

of assortment variety. They improve existing knowledge of the variety concept and

measurement, and provide additional insight into the process of variety perception. Their

model is based on the dissimilarity between products in an assortment, which we term the

product-based approach. An attribute-based approach, focusing on the degree to which

attribute levels are available, may complement the product-based approach and offer

additional insight (Boatwright & Nunes 2000). We propose two specific attribute-based

measures of assortment variety, compare these measures to the product-based measure of

Hoch et al. (1999), and examine the extent to which attribute- and product-based measures
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account for consumers’ perceptions of assortment variety. The next section discusses the two

approaches, and introduces specific variety measures that derive from them.

3. Two approaches to assess assortment variety

As products are bundles of attributes, the variety of an assortment of products can be

determined based on a products-across-attributes and on an attributes-across-products

examination of the assortment (Bettman, Luce & Payne 1998). To appreciate the distinction

between product-based and attribute-based measures of assortment variety, consider the

hypothetical product assortment in Table 1. A product-based approach would examine and

compare the products that are offered, product-by-product. Based on the number of different

attributes, neckties 1 and 2 are more similar to each other than neckties 2 and 3 are. The

degree of variety in the assortment is reflected in this similarity between products: if all

products differ greatly from each other, variety is high. But the variety concept has a meaning

at the attribute level as well. The attribute-based approach examines and compares the

attributes that are offered, attribute-by-attribute. For instance, if all neckties would be blue,

the variety of color in the assortment would be low.

_______________________

Insert Table 1 about here
_______________________

Product- and attribute-based approaches differ conceptually. Note e.g. that not all entries

in Table 1 can be compared. For instance, the color ‘blue’ can not be compared to the

material ‘cotton’. This implies that product-based measures, which compare products with

each other by their attributes, can not be applied at the attribute level, and visa versa. The

question is if product-based and attribute-based conceptualizations of assortment variety yield

the same results, and, if they diverge, which approach is better able to capture consumers’

perceptions of assortment variety.
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3.1 Product-based approach to assortment variety

Product (dis)similarity

The product-based approach to assortment variety focuses on the (dis)similarity between

products. A specific measure of product dissimilarity is the Hamming measure, which is

based on a count of the number of different attributes between products (cf. Hoch et al.

1999). It ranges between 0 (when the two products are identical) and the number of attributes

M (when the two products differ on all attributes), and is given by:

HMij = ∑
=

M

m
ijmd

1

(1)

where: dijm = score for attribute m; equals 1 when attribute levels differ for products i and j, and
0 when the attribute levels for products i and j are identical

M = total number of attributes

The Hamming measure can be determined for each pair of products in an assortment. For

instance, products 1 and 2 in the assortment of Table 1 have a Hamming measure of 1 (they

differ on 1 attribute). An often-used measure of product similarity is the similarity coefficient

for categorical data, which computes the relative number of identical attribute levels (Everitt

1993, p. 43). When the number of attributes M is constant over the assortments, the Hamming

measure and this similarity coefficient are perfectly negatively correlated. This type of

measure has been applied in the marketing literature, for instance to examine similarity

judgments (Bijmolt, Wedel, Pieters & DeSarbo 1998), and related (dis)similarity measures

can be found in overviews of cluster analysis and other areas (e.g. Everitt 1993, Sarker 1996).

Integration of product (dis)similarities

The (dis)similarity measures compare two products to each other. An assortment consists

of N products, leading to 2)1( −⋅ NN product pair (dis)similarities that need to be integrated

into an overall variety measure. Two potential rules to integrate the product dissimilarities

into a single measure are the mean and the sum (Tversky 1977; pp. 348-349). Variety in an
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assortment can be conceptualized as the summed dissimilarities between the products in the

assortment, or as the average dissimilarity. The basic model of Hoch et al. (1999), which can

be extended with covariates, applies a summed measure:

Variety = ∑+
u

unu)(ψα (2)

where: " = intercept, reflecting baseline variety perceptions
Q = generalized distance function
nu = number of product pairs with distinction pattern u

The variety of an assortment depends on the number of product pairs with specific distinction

patterns. So, the total sum of product pair dissimilarities is divided into groups of product

pairs with equal dissimilarity. A distinction pattern is given by one of the possible outcomes

of the Hamming measure, e.g. product pair (1-2) in Table 1 has a HM of 1, while both

product pairs (1-3) and (2-3) have a HM of 2. In other words, n1 equals the number of product

pairs that differ on 1 attribute, which is 1 in the table, n2 the number of product pairs that

differ on 2 attributes, which is 2 here, and so on. When the distance function Q is

unrestricted, a model with fitted regression weights can be estimated to account for

consumers’ variety perceptions. Alternatively, several models for Q can be considered. Hoch

et al. prefer a model with diminishing returns to multiple distinctions, where Q(m) = m½.

This means that a product pair which differs on m attributes, i.e. with a Hamming measure of

m, is converted into a distance of m . This conversion is common in other applications as

well (see e.g. Gower 1971). Hoch et al. (1999) show that the product-based measure captures

a significant portion of the variance in consumers’ perceptions of variety. While other

product-based measures of assortment variety are feasible, we focus on this one in the sequel

because of its proven validity.
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3.2 Attribute-based approach to assortment variety

Our attribute-based approach to assortment variety takes a different perspective, and

focuses on the presence and patterns of the attributes in an assortment. We argue that an

assortment is varied when the levels of the attributes are highly dispersed, and when the

association between the attributes is low. For instance, an assortment with white, blue, and

green shirts will be more varied than an assortment with only white shirts. In addition, an

assortment in which all white shirts have long sleeves will be less varied than an assortment

in which both short sleeved white shirts and long sleeved white shirts are present. First,

measures of attribute dispersion and association are introduced. Next, differences between

attribute-based measures and product-based measures are examined.

Attribute dispersion

Measures of concentration as used in industrial economics are inverse measures of

attribute dispersion. The more concentrated attributes are on certain levels, the less the

attributes are dispersed. While various concentration measures have been proposed (Theil

1967; Jacquemin & Berry 1979; Waterson 1984; Van Trijp & Steenkamp 1990), the Entropy

measure is predominantly used, especially in variety seeking literature (Mitchell, Kahn &

Knasko 1995):

Entropym = ( )∑
=

−
L

l
ll pp

1

)ln( (3) and (4)

where: pl = relative number of products with attribute level l for attribute m
L = number of different attribute levels for attribute m

Entropy increases with increasing attribute dispersion, and ranges between 0 and a

maximum value of 













− ∑

=
*

1
*

1
ln

1

LL

L

l

 (Van Trijp & Steenkamp 1990), where: L* = the lesser

of L and N, with L being the number of attribute levels, and N being the number of products.

In most practical applications the number of attribute levels will be smaller than the number
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of products.1 The dispersion can be determined for each product attribute separately. For

instance, the assortment in Table 1 contains one green product and two blue products.

Therefore, the dispersion across colors is given by an Entropy of: -a(lna) - b(lnb) = 0.64.

Association between attributes

A second type of attribute-based variety measures concerns the association between

attributes. Whereas attribute dispersion considers the attribute levels of one particular

attribute, association considers systematic links between pairs of attributes. Previous research

has indicated that consumers can be sensitive to such systematic links, and may have intuitive

beliefs of such links between for instance price and quality / warranty (Johnson & Levin

1985; Broniarczyk & Alba 1994). Lambda is a general measure of the association between

nominal variables, with a simple probabilistic interpretation (Goodman & Kruskal 1954). It

focuses on the mutual predictability between two variables, and results from dividing the

amount of reduction in error in both variables by the amount of original error in these

variables. Lambda lies between 0, when there is no predictive association, and 1, when there

is perfect mutual predictability:

Lambdamf = 
)(max)(max2

)(max)(max)(max)(max
11

⋅⋅

=
⋅⋅

=

−−

−−+∑∑
lloo

O

o
lloolol

L

l
loo

nnN

nnnn
(5)

where: N = number of products in the assortment
nlo = the number of products with attribute levels l and o for attributes m and f,

respectively
nlq = the number of products with attribute level l for attribute m (marginal count)
nqo = the number of products with attribute level o for attribute f (marginal count)

The assortment of Table 1 contains 2 blue cotton neckties, 0 green cotton neckties, 0 blue

silk neckties, and 1 green silk necktie. Therefore, the association between color and material

as given by Lambda is ( ) ( ) 1223*222)12()12( =−−−−+++ . Color and material have

perfect predictive association. Alternative association measures have been proposed, but

Lambda is frequently preferred for its interpretability (e.g. Bishop, Fienberg & Holland 1975;
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Leach 1979). A high level of attribute association means that the variety offered by the

assortment is low. To ease its interpretation in comparison with other variety measures, we

use (1 – Lambda) as a measure of disassociation, which increases when variety increases.

Integration of attribute-based measures

The attribute-based measures need to be integrated across the attributes to obtain a

measure at the assortment level. The dispersion measures can be summed or averaged over

the attributes, while the disassociation measure can be summed or averaged over the attribute

pairs. In most practical implications, assortments of comparable products will be examined,

and the number of attributes will be constant. Hence, using the sum or the mean has no

implications for the results. In the sequel we consider averaged attribute-based measures of

variety for convenience. We present the results of two data sets in which product-based and

attribute-based measures are compared. In the first, synthetic data set we examine the

correlation between the various measures to establish to which extent they overlap or differ

from each other in a well-behaved environment. In the second, consumer, data set we

examine the predictive validity of product-based and attribute-based measures for consumers’

perceptions of variety.

4. Relationships between the measures of assortment variety

The product-based approach leads to a single, overall, measure of assortment variety, and

it does not consider variety components and their intercorrelations. In the area of consumers’

variety seeking over time, the use of multiple measures for different aspects of variety is

common (e.g. Pessemier & Handelsman 1984; Meulenberg 1989; Menon & Kahn 1995). The

attribute-based approach identifies two aspects of variety that theoretically differ from each

other. By providing information about these variety components, the attribute-based approach

may complement the product-based approach to assortment variety. But it is not obvious
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whether and to what extent the product- and attribute-based variety measures overlap and

capture the same variety concept, or whether they capture different aspects of assortment

variety. To examine this issue we use synthetically constructed data. We investigate the

pattern of correlation between the diverse measures in a well-behaved environment, across a

large number of assortments.

Four product-based measures can be distinguished, based on the distance function (either

Q(m) = m or Q(m) = m½) and on the integration rule (sum or average): (1) the sum of the

Hamming measures (SumHM), (2) the average Hamming measure (MeanHM), (3) the sum of

the square roots of the Hamming measures (SumSRHM), and (4) the average of the square

roots of the Hamming measures (MeanSRHM). The fitted regression weights model of Hoch

et al. (1999) will be used in the consumer data set, where a dependent variable is available to

estimate the weights. Here, we use the preferred function by Hoch et al. (1999), the distance

function Q(m) = m½, to obtain variety measures. In addition to the four product-based

measures, we consider average Entropy and average (1 – Lambda) as attribute-based

measures. Finally, we consider the number of products in the assortment as a general measure

of assortment variety (Size), since it has been used in previous assortment research, and to

examine the extent to which product- and attribute-based measures capture different

information than is contained in the size of the assortment.

When variety is a multidimensional construct, SumSRHM, the overall measure of variety,

should correlate with the variety components (attribute dispersion and attribute association),

and with assortment size, but only to a moderate extent. In addition, the intercorrelation of the

measures of the variety components should be relatively low to support that they are separate

components. If the correlation between assortment size and the product- and attribute-based

measures would be very high, the unique contribution of the latter measures would be

reduced.
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Assortments were constructed that consisted of products with three attributes. Each

attribute could have four different levels, which in total led to 64 different products. With

these products, 64N possible assortments of size N can be constructed. Assortments with 8, 12

or 16 products were considered to allow sufficient size variation. A random sample of 3000

product assortments was drawn from the population of 648 + 6412 + 6416 = 7.9 ⋅ 1028 possible

assortments, allowing for duplication of products and assortments. Of these, 1000 consisted

of 8 products, 1000 of 12 products, and 1000 of 16 products.

4.1 Results

Table 2 presents the correlations between the measures, and shows clear differences in the

size of the correlations. The product-based measures that employ an average as integration

rule do not relate well with the other variety measures. They correlate only little with the

summed product-based measures (between .04 and .07) and not at all with assortment size. In

addition, the averaged product-based measures correlate negatively with (1 – Lambda), which

measures the variety that is revealed by the disassociation between attributes.

_______________________

Insert Table 2 about here
_______________________

The summed product-based measures have a moderately high correlation with the

attribute-based measures (between .45 and .59), but they have an almost perfect correlation

with assortment size (.99). In addition SumHM and SumSRHM themselves are also almost

perfectly correlated (.9997)2. The near perfect correlation of the two product-based measures

with assortment size is a serious concern as it suggests limited unique contribution of the

product-based measures over and above the assortment size. Also, evaluating the variety of

assortments with different sizes may be cumbersome with summed product-based measures.
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Using averaged product-based measures instead does not alleviate this, in view of the

potential problems associated with these measures3.

One might conjecture that the near perfect correlation between the product-based

measures and assortment size was perhaps due to the relatively large steps in which

assortment size was increased in this data set. Follow-up analyses with assortments differing

less in size (8, 9 and 10) showed that this was not the case (correlation of .98 between

SumSRHM and Size). The high correlation between the summed product-dissimilarities and

assortment size is due to the fact that adding one additional product to an assortment of N

products leads to the addition of N  product pairs in the summed measure. Especially when

assortment size is large, this effect may dominate changes in assortment content.

With respect to the measures of the variety components, Table 2 indicates that the two

attribute-based measures, Entropy and (1 – Lambda) have a low intercorrelation (.06), which

suggests that they tap different aspects of assortment variety. Correlations with assortment

size are substantial (.55 and .48), but much lower than between the summed product-based

measures and size. The attribute-based approach leads to moderately correlated measures of

variety components that respond to specific changes in product assortments.

But does it really matter how assortment variety is measured, i.e., which measures capture

consumers’ perceptions of assortment variety best? This is explored in the next section.

5. Consumers’ perception of assortment variety

This consumer study compares product-based and attribute-based measures of assortment

variety, and examines how well these measures capture consumers’ perceptions of variety.

5.1 Method

Participants and design. Participants were 62 undergraduate students from a university in

the Netherlands. Each participant made judgments about twelve product assortments, which
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differed with respect to size, attribute dispersion and attribute association. The basic setup of

the assortments was a 2 (assortment size: 8 versus 16) x 2 (dispersion level: low versus high)

x 3 (association level: low, medium and high) within-subjects design, to ensure that the

assortments differed to a large extent.

Stimuli. Stimuli were comparable to those used by Hoch et al (1999).4 Non-existing

products were used for the following reasons: (1) to provide a clear example of variety

perceptions, without the potentially distorting effects of prior experiences, product

preferences, and expertise, and (2) to allow comparison with previous research in this area, in

particular with the Hoch et al. (1999) study. Using non-existing products ensures that

participants of the study are not influenced by characteristics of the product category, or by

their preferences, and make variety judgements based on all the products in an assortment.

The products were characterized by three attributes, with four different levels each:

- color (red, blue, yellow, green)
- shape (square, rectangle, circle, triangle)
- name (CAM, NUX, ZOL, VIK)

In total, 64 different products can be constructed from these attributes. Each assortment

contained 8 or 16 products arrayed in two or four rows with four products each. The products

were presented in an organized manner, to simulate a store shelf. Products were grouped by

color and within color by form, following attribute importances. Presentation format was not

manipulated, since we focus on content variety only. Since similar products and attributes

were in close proximity, both the product-based and the attribute-based approach are

relatively easy to use for the participants.

Procedure. The study was administered on personal computers using the program

Authorware (Macromedia 1997). Participants were told that the purpose of the experiment

was to investigate variety perceptions. The instruction mentioned a visit to a number (not

specified) of different stores, and asked participants to answer questions about assortments of
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an imaginary product called ‘jinko’. The instruction explained that jinkos are comparable to

other product categories, where products can differ on characteristics such as name, taste,

size, color, and so on. Next, participants were shown all possible types of jinkos (64), which

each appeared sequentially on the computer screen for 2 seconds. After training, participants

were exposed to the assortments of jinkos in random order, and were asked the following

questions (each with a ten point scale, with endpoints labeled ‘not at all’ and ‘very much’):

- Does this assortment of jinkos offer a lot of variety?
- Does this store offer a monotonous assortment of jinkos?
- Does this store offer a diverse assortment of jinkos?

Cronbach’s alpha, calculated across participants for each of the assortments, lies between .70

and .89, with an average of .77. Scores across the three items were averaged after reverse

coding the negatively worded item. The overall mean across participants and assortments was

5.78. Participants proceeded at a self-determined pace, and product assortments remained

visible during the task. Participants took about 20 minutes to complete the study, and

received the equivalent of $5 for their participation.

5.2 Product assortments

An overview of the product assortments and variety measures is presented in Table 3, and

examples of the computer screen are provided in Appendix 1. The specific attribute levels

(e.g. whether the first product is red, blue, yellow or green) were randomized. Assortments

consisted of either 8 or 16 products. Attributes were either equally dispersed (all levels

occurred in equal proportions), or two of the levels dominated the other two (in proportion 3

to 1). When all attributes had perfect association, the assortment contained replicas. Attribute

association was manipulated in three levels: (1) low association, (2) high association, which

introduced replicas, and (3) partial association, in which all but one assortment (number 12)

had no replicas. In the third case, color and form were perfectly associated, while brand name

was not associated with color or form. By this manipulation, the effects of attribute
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association and the introduction of replicas can be assessed independently. The last column of

Table 3 provides the mean variety perception of each assortment.

_______________________

Insert Table 3 about here
_______________________

5.3 Results

The main question of the study is whether the product-based and attribute-based measures

differ in the extent to which they capture consumers’ perceptions of variety. Multilevel linear

regression models (Bryk & Raudenbush 1992; Goldstein 1995), using MLwiN (Rasbash,

Healy, Browne & Cameron 1998), were estimated to account for the fact that each participant

in the study judged multiple assortments. The models predict variety perceptions, while

accounting for individual differences, by treating assortments as nested within participants.

The following regression was estimated:

akkakakakaaaak euAssocDispSizennnPVAR 006543322110 ++++++++= βββββββ (6)

where: nu = number of product pairs with u different attributes
PVARak = variety of assortment a as perceived by individual k
Sizeak = size of assortment a for individual k
Dispak = attribute dispersion of assortment a for indivi     dual k (Entropy)
Assocak = attribute association of assortment a for individual k (1-Lambda)
$0 = overall mean
$q = regression weights
u0k = participant level residual
e0ak = assortment level residual

Restricted versions of the model were compared through nested model testing, to

determine the incremental contribution of attribute-based variety measures, product-based

variety measures, and assortment size. The general model of Hoch et al. with fitted regression

weights was used as comparison, since this should provide a stronger test than the SumSRHM

variety measure, which is based on a predefined distance function Q. Table 4 provides an

overview of model estimations.
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_______________________

Insert Table 4 about here
_______________________

Product-based variety model. Model 1 in Table 4 is the fitted regression weights model of

Hoch et al. (1999), and it accounts for 43.1 % of the variance in perceived assortment variety.

The negative coefficient for n3 is unexpected and differs from the (positive) coefficients

reported by Hoch et al. The explanation lies in the impact of assortment size. If we consider

only assortments of equal sizes, the coefficients become 0.49, 0.73 and 0.76 (n1, n2, and n3)

for assortments with 8 products, and 0.13, 0.18 and 0.19 for assortments with 16 products,

which is more in line with previous findings. When assortment size increases, the number of

product pairs increases even more rapidly. This will affect the product-based measures. By

including Size (model 3) we adjust for the inflation of the measures due to differences in

assortment size, hence its negative coefficient of –1.99.5

Assortment size. Model 2 is the model with only Size as an explanatory variable. By

itself, Size accounts for only 3.4 percent of the total variance in perceived variety. Assortment

size does not appear to be a good overall proxy for assortment variety in this study.

Product-based and assortment size variety model. Model 3 contains both the product-

based measures and assortment size. Despite the large correlation between the two in the

previous, synthetic, data-set, the results show that the product-based measures when

empirically weighted in the regression analysis capture a sizeable portion of variance in

consumers’ variety perceptions over and above the variance accounted for by assortment size.

Each of the three product-based measures, n1 to n3, is significant at p < .001, and hence the

difference between model 3 and 2 is significant as well (p < .001).

Attribute-based variety model. Model 4 is the attribute-based model of assortment

variety. The results are as expected: both an increase in attribute dispersion (coefficient =
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8.437; t-ratio = 10.155) and an increase in attribute disassociation (coefficient = 4.715; t-ratio

= 32.575) lead to higher perceived variety. Model 4 is also the best overall model.

The model comparisons in the lower part of Table 4 show that the attribute-based variety

model can not be significantly improved by adding the product-based measures or even

assortment size (comparison of models 4 and 6: L2 = 4.1, df = 4, p = .393). But, the reverse is

not the case: attribute-based measures account for consumers’ variety perceptions in addition

to the product-based measures (model 3 versus 6: L2 = 189.7, df = 2, p < .001). Hence, when

the focus is on predicting consumers’ perception of variety the two attribute-based measures

of assortment variety suffice.

6. Conclusion

We compared measures of assortment variety, both conceptually and in two data sets. The

attribute- and product-based approaches reflect basic conceptualizations of assortment

variety: assortment variety as a single dimension based on the sum of product dissimilarities,

and assortment variety as a multi-dimensional construct based on the dispersion and

association of product attributes. The synthetic data set showed that product-based measures

of assortment variety are highly influenced by assortment size, and appear to offer little

additional insights beyond the size of an assortment. Given the large size of typical store

assortments, which greatly exceeds the sizes used in both this paper and previously published

data sets, our results indicate that care is needed when using the summed product-based

measures to compare assortments of even marginally different sizes. The consumer data set

showed that this potential problem is alleviated by using empirical weights in the analysis.

With these weights, the product-based measures significantly add to the prediction of

consumers’ variety perceptions over and above the sheer size of an assortment. In spite of this

additional contribution, the attribute-based measures were capable of significantly adding to

the product-based measures.
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The two proposed attribute-based measures of assortment variety capture specific

components of variety: attribute dispersion (Entropy), and disassociation between attributes

(1 – Lambda). The two measures are only moderately correlated with assortment size. The

number of products in an assortment (Size) did not significantly add to a model with attribute-

based measures in this research. But since it is possible to change assortment size without

changing the dispersion across attribute levels and the association between attributes, future

research might include assortment size, in addition to the attribute-based measures to

examine assortment variety.

Despite its limitations, the product-based approach has important merits as well. By

carefully examining the pattern of product dissimilarities, it offers opportunities to find

influential products, as Hoch et al. (1999) show. It is good to note that the attribute-based

approach can accomplish this as well for specific attributes. Attributes with a low level of

dispersion may require additional attention. Low dispersion may be a sign that specific

attribute levels are not well represented in the products contained in the assortment. A

particularly low level of disassociation between two specific attributes is an indication that

some of the possible combinations between the attributes are not well represented by the

products in the assortment.

Implications for retailers and manufacturers. The attribute-based approach to assortment

variety is useful in retail management for several reasons. First, it is important for retailers to

apply measures of assortment variety that have a systematic empirical relationship with the

variety perceptions of consumers in which the final interests lies. Since the perception

process itself was not examined, we can not be sure that consumers formed their variety

perceptions through the attributes. However, the literature on information search shows that

consumers emphasize attribute information when they are exposed to product sets through

information boards (Bettman et al. 1998). Also intuitively, it is not unlikely that consumers
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focus on the attributes when they form a variety judgment. Imagine walking into a clothing

store to discover the latest fashion. One of the first things that may stand out is the color of

the clothes, and maybe the cut or material: looking around one easily forms a perception of

variety based on these attributes, and perhaps not by comparing every single clothing item

with the other items. Comparing each of the available products may be beyond the cognitive

capacity of most consumers.

Second, the attribute-based approach allows retailers to examine if the variety in an

assortment is high because it has many different attribute levels, or because it has a clever

combination of far less attribute levels. An analysis into why, e.g., low disassociation

between product attributes exists, may provide opportunities for introducing combinations of

attribute levels that increase disassociation and thereby increase perceived variety. A more

detailed analysis of attributes with low levels of dispersion can point out attribute levels that

occur in relatively low numbers. This can offer directions for category management.

Third, an attribute-based approach can lead to different managerial decisions than a

product-based approach, as the latter tend to assign a systematically higher variety to larger

assortments, while attribute-based measures are less prone to do so. Retailers seeking to

increase the variety offered by a product assortment will find that an overall measure, such as

SumSRHM, increases most when products are added to the assortment. By using our

measures of variety components, alternative routes to increase assortment variety may open

up.

Insights from the store assortment literature can also be applied to manufacturers who

market a range of products. The development of an optimal product line and the management

of a product portfolio are challenges for manufacturers (Zenor 1994), and an attribute-based

approach can support this.
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Limitations and future research. There are several important limitations of our research

and several points of discussion. First, assortment size and attribute dispersion were only

presented to the participants at two different levels, which is not a natural situation. We do

not believe, however, that the limited range explains the advantage of attribute-based

measures over product-based measures. Rather, the analyses of the synthetic data indicated

that the product-based approach is sensitive to assortment size. Manipulating assortment size

further in the consumer study by including larger assortments would likely strengthen our

results, as assortment size would dominate even more. In addition, we conjecture that

consumers’ perception of large assortments will be based even more on the attributes, as

suggested by information processing research (Stone & Schkade 1991). We expect that larger

differences in assortment size will favor the attribute-based measures even more, a conjecture

which future research may examine.

Second, the synthetic data set showed that the attribute-based measures were correlated,

albeit not very high. This correlation may complicate the distinction between the variety

components and the identification of their influence. Still, the consumer study showed that

distinguishing the variety components offers insights into assortments that can not be

obtained otherwise.

Although we closely followed the procedures in previous research, an additional point of

discussion is our use of laboratory settings and hypothetical products in a relatively high

involvement context. Follow-up research in real market situations is desirable. The

perception of variety and assortment evaluation in situations where motivation and/or ability

to process all assortment information is low is needed. In real life consumers have prior

knowledge, product preferences, and experience with different store formats. All these could

potentially influence the evaluation process, but were not considered in this research.
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A specific avenue for future research is the effect of differences in experience between

consumers. For instance, novice consumers may easily infer variety from the size of an

assortment, while expert consumers may incorporate attribute dispersion and attribute

association in their variety judgment. Future research could also investigate consumer search

behavior in different types of assortments. Depending on the content and variety of an

assortment, search processing may be different. For instance, when stores carry large

assortments, the costs of information acquisition for an additional product is lower on

average, since less stores need to be visited. Larger assortments also enable more direct

product comparisons. On the other hand, if attribute dispersion is low, while association

between attributes is high, a store offers very similar products, and the marginal gains from

searching additional products in such as store are low. The costs and benefits of information

acquisition in a store depend on the structure and content of the product assortment that is

offered. As a consequence, differences in the information acquisition process and outcomes

may result.

Another avenue for future research is consumers’ preference for specific assortments.

One question is, e.g., in which situations consumers prefer assortments with high or low

variety. When variety is high, consumers may perceive a higher likelihood that the

assortment contains a desired product, but the potential confusion resulting from such an

assortment can also increase. The assortment that is preferred may depend on the specific

search and purchase goals (e.g. under time pressure, the ease with which a product can be

chosen from an assortment may be more important), and consumer characteristics (e.g.

experts may be better able to deal with high-variety assortments). It seems worthwhile to link

the attribute-based conceptualization of variety to consumers’ preference for different

assortments.
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Appendix 1 Examples of product assortments used in the empirical study

Assortment 2:

Assortment 4:

Assortment 6:

Assortment 9:
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Endnotes

                                               
1 Relative Entropy (Entropy divided by Entropymax) can also be used as a measure of attribute

dispersion. In the two data sets in this paper, Entropymax is constant, and results for Entropy

and Relative Entropy are identical.

2 When no distance conversion is applied to a product-based measure, as with SumHM, the

resulting measure does not respond to changes in the association between attributes (cf.

Hoch et al. 1999, p.534). The measure responds to the dispersion of the attribute levels, but

not to permutations of the levels within an attribute. Using the square root as a distance

function, resulting in MeanSRHM or SumSRHM, ensures that the measure increases when

attribute association decreases, which is desirable.

3 Note that Table 2 shows a negative correlation between averaged product-based measures

and the measure for disassociation between attributes. In addition, averaged product-based

measures can decrease when products are added to an assortment, which is undesirable. For

instance, consider an assortment with a blue cotton shirt and a green woolen shirt, giving an

average Hamming measure of 2 for this assortment. Adding a blue woolen shirt would

increase assortment variety, but it decreases the average Hamming to (1+1+2)/3 = 1.33.

4 We thank the authors for access to the stimuli used in their studies. Two of the original

product names were changed, as one refers to a meaningful object and the other is a slang

word in Dutch.

5 Based on this finding, one may argue that the product-based measures can be adjusted by

dividing each of the measures n1 to n3 by Size. However, this does not improve their

predictive power. A model of n1/size, n2/size, and n3/size (-2 LL = 3006.2; #par = 6) still has

a negative coefficient for the latter variable, and adding Size significantly improves it (L2 =

134.3, p <.005). Other results are similar to Table 6 as well.
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Table 1 Content of a hypothetical product assortment of neckties

Attributes Necktie 1 Necktie 2 Necktie 3

Color Blue Blue Green
Material Cotton Cotton Silk
Pattern Stripes Dots Dots

Table 2 Correlations between the variety measures

MeanHM MeanSRHM SumHM SumSRHM Entropy (1 – Lambda)

MeanSRHM .97
SumHM .07 .06
SumSRHM .04 .04 1.00
Entropy .79 .77 .59 .57
(1 – Lambda) -.28 -.10 .45 .47 .06
Size .00 (n.s.) .00 (n.s.) .99 .99 .55 .48

n=3000; correlations higher than .06 are significant at p < .001
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Table 3 Description of the product assortments used in the consumer study

Differences between product assortments Measures of assortment variety 1Assortment
number

Number of
different products

Attribute
dispersion

Attribute
association

Size Sum
SRHM

n1 n2 n3 Entropy (1-Lambda)

Mean variety
perception

1 4 1:1:1:1 All high 8 41.57 0 0 24 1.39 0.00 3.85
2 8 1:1:1:1 All low 8 44.68 0 12 16 1.39 0.67 7.18
3 4 1:1:3:3 All high 8 38.11 0 0 22 1.26 0.00 3.01
4 8 1:1:3:3 All low 8 42.78 0 18 10 1.26 0.80 6.51
5 4 1:1:1:1 All high 16 166.28 0 0 96 1.39 0.00 3.51
6 16 1:1:1:1 All low 16 184.96 0 72 48 1.39 1.00 8.90
7 4 1:1:3:3 All high 16 152.42 0 0 88 1.26 0.00 3.48
8 16 1:1:3:3 All low 16 176.18 12 72 36 1.26 1.00 7.46
9 8 1:1:1:1 1 high, 2 low 8 44.30 4 4 20 1.39 0.44 6.19

10 8 1:1:3:3 1 high, 2 low 8 42.20 6 6 16 1.26 0.53 5.37
11 16 1:1:1:1 1 high, 2 low 16 182.65 24 24 72 1.39 0.67 7.81
12 12 1:1:3:3 1 high, 2 low 16 171.52 28 28 60 1.26 0.67 6.06

1 nu provides the number of products with u different attributes, as used in Hoch et al. (1999) and in equation 2 here
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Table 4 Multilevel model estimates and comparisons

Model Coefficient t-ratio p-value1 -2LL #par. Variance accounted
for (assortment level)

0. constant 5.777 53.365 <.001 3452.2 3 -

1. constant
n1

n2

n3

5.171
0.043
0.052

-0.016

33.247
5.695

18.755
6.667

<.001
<.001
<.001
<.001

3068.2 6 43.1

2. constant
size

4.499
0.107

15.900
4.864

<.001
<.001

3428.8 4 3.4

3. constant
n1

n2

n3

size

15.908
0.139
0.205
0.210

-1.991

15.191
11.952
13.686
9.567

10.360

<.001
<.001
<.001
<.001
<.001

2968.5 7 50.8

4. constant
entropy
(1 – Lambda)

-2.918
8.449
4.756

2.646
10.155
32.575

.010
<.001
<.001

2782.9 5 62.5

5. constant
size
entropy
(1 – lambda)

-3.153
0.019
8.437
4.715

2.829
1.387

10.154
31.749

.006

.171
<.001
<.001

2781.0 6 62.6

6. constant
n1

n2

n3

size
entropy
(1 – lambda)

-3.780
0.004

-0.008
-0.006
0.074
8.774
4.893

1.024
0.221
0.316
0.159
0.230
5.418

14.262

.310

.826

.753

.874

.819
<.001
<.001

2778.8 9 62.7

Model comparisons L2 df. p-value

1 – 3 adding size to product-based measures 99.7 1 <.001
2 – 3 adding product-based measures to size 460.3 3 <.001
2 – 5 adding attribute-based measures to size 647.8 1 <.001
4 – 5 adding size to attribute-based measures 1.9 1 .168
3 – 6 adding attribute-based measures to product-based measures & size 189.7 2 <.001
4 – 6 adding product-based measures & size to attribute-based measures 4.1 4 .393

1 p-values are based on approximate standard errors provided by MLwiN


