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Abstract

We consider functions on binary vector spaces which are far from linear functions in di�er-
ent senses. We compare three existing notions: almost perfect nonlinear (APN) functions,
almost bent (AB) functions, and crooked (CR) functions. Such functions are of importance
in cryptography because of their resistance to linear and di�erential attacks on certain cryp-
tosystems. We give a new combinatorial characterization of almost bent functions in terms
of the number of solutions to a certain system of equations, and a characterization of crooked
functions in terms of the Fourier transform. We also show how these functions can be used
to construct several combinatorial structures; such as semi-biplanes, di�erence sets, distance
regular graphs, symmetric association schemes, and uniformly packed (BCH and Preparata)
codes.

1 Almost perfect nonlinear, almost bent, and crooked functions

We consider functions on binary vector spaces which are far from linear functions in di�erent
senses. We compare three existing notions: almost perfect nonlinear (APN) functions, almost
bent (AB) functions, and crooked (CR) functions. Such functions are of importance in cryp-
tography because of their resistance to linear and di�erential attacks on certain cryptosystems
(cf. [8], [9], [10, p. 1037]). Furthermore they are of interest in the study of linear feedback shift
register sequences with low crosscorrelation (cf. [17, pp. 1795-1810]). Also in the construction
of certain combinatorial structures they have proven to be useful; we will give an overview and
update on this in Section 2. Furthermore we give a new combinatorial characterization of almost
bent functions in terms of the number of solutions to a certain system of equations (similar to
such a characterization of APN functions), and a new characterization of crooked functions in
terms of the Fourier transform.

First we introduce some notation which will be used throughout the paper. Let V be an
n-dimensional space over the �eld GF (2); and let N = 2n = jV j. By h�; �i we shall denote the
standard inner product on V . By jX j we denote the size of a �nite set X . Let f : V ! V be
any function. For 0 6= a 2 V , we denote by Ha(f), or simply Ha, the set

Ha = Ha(f) = ff(x) + f(x+ a) j x 2 V g:
The Fourier transform (also called Walsh transform) �f : V � V ! IR of f is de�ned by the
formula

�f (a; b) =
X
x2V

(�1)ha;xi(�1)hb;f(x)i:

�Partly supported by the grant 99-01-00581 of the Russian Foundation for Fundamental Research.
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Now we introduce the three di�erent classes of "extremely non-linear" functions which we shall
consider in this paper.

De�nition 1 A function f : V ! V is called:
(i) APN (almost perfect nonlinear) if jHa(f)j = 1

2N for all 0 6= a 2 V ;

(ii) AB (almost bent) if �f (a; b) = 0; �p2N for all (a; b) 6= (0; 0);
(iii)CR (crooked) if f(0) = 0 and every set Ha(f), a 6= 0, is the complement of a hyperplane.

We shall denote the class of APN (AB, CR) functions by APN (AB, CR).

Note that as a consequence of its de�nition, an AB function can only exist if the dimension n is
odd.

We use here the terminology from the papers [8] and [1]; other authors sometimes use the
terms semiplanar for APN ([11]), and maximally nonlinear for AB functions ([7, 23]). The
de�nition of crooked functions given here is di�erent from, but equivalent to, the one used in
[1, 12]:

De�nition 10 A function f : V ! V is called crooked if it satis�es the following three proper-
ties:

(i) f(0) = 0;
(ii) f(x) + f(y) + f(z) + f(x+ y + z) 6= 0 when x; y; z are distinct;
(iii) f(x) + f(y) + f(z) + f(x+ a) + f(y + a) + f(z + a) 6= 0 when a 6= 0.

It is also shown in [1] that, for a crooked function f , all sets Ha(f) are distinct, that is, every
complement of a hyperplane occurs among them exactly once.

Let us recall some more properties of APN, AB, and CR functions. Most of them are taken
from the papers [1, 8].

A function remains APN, AB, or CR after applying any non-degenerate a�ne transforma-
tions to the argument and/or the value of the function (for a crooked function, it is additionally
required that the resulting function maps 0 to 0).

If a function f is APN or AB, and bijective, then so is its inverse function f�1. In contrast
to this, the inverse of a crooked function need not be crooked. Also, a function remains APN
(AB) after adding any linear function to it. Again, this is not true for crooked functions.

There are proper inclusions between the three classes:

CR � AB � APN :

In the next section we shall prove both inclusions (note that CR � APN follows from the
de�nition).

Not too many constructions of APN, AB, or CR functions are known; all known such func-
tions are equivalent under the above transformations to certain functions f : GF (2n)! GF (2n)
of the form f(x) = xk. In Section 3 we give a complete list of all currently known APN, AB,
and CR functions.

1.1 Alternative descriptions of APN , AB, and CR

As is well-known, the de�nition of APN functions given above can easily be re-formulated in
terms of the number of solutions of a certain system of equations.

Lemma 1 A function f is APN if and only if the system of equations(
x + y = a

f(x) + f(y) = b
(1)

2



has 0 or 2 solutions (x; y) for every (a; b) 6= (0; 0). If so, then the system has 2 solutions precisely
when b 2 Ha(f).

PROOF. For any function f , if the system (1) has a solution then it has at least two of them.
Therefore for every a 6= 0 the set Ha(f) has at most 1

2N elements, and equality is achieved if
and only if the system (1) has 0 or 2 solutions for each b. 2

It turns out that AB functions can be characterized in a similar way.

Theorem 1 A function f is AB if and only if the system of equations(
x+ y + z = a

f(x) + f(y) + f(z) = b
(2)

has N�2 or 3N�2 solutions (x; y; z) for every (a; b). If so, then the system has 3N�2 solutions
if b = f(a), and N � 2 solutions otherwise.

PROOF. The proof presented below is a typical application of the Fourier transform. We
shall present it in the language of matrices.

First we de�ne several N�N matrices with real entries whose rows and columns are indexed
by vectors from V . Let I be the identity matrix, J the all-one matrix, E the matrix with a single
nonzero entry E00 = 1, Eij = 0 for (i; j) 6= (0; 0). The entries of the matrices X;M;M (3); F; S
are as follows:

Xab = (�1)ha;bi; Mab = �f (a; b); M
(3)
ab = �f (a; b)

3;
Sab = jf(x; y; z) j x+ y + z = a; f(x) + f(y) + f(z) = bgj;
Fab = 1 if b = f(a); otherwise Fab = 0.

One can easily check the following equalities:

X2 = NI ; M = XFX ; XJX = N2E: (3)

In particular, it follows that the matrix X is nonsingular.
The condition that the system (2) has N�2 or 3N �2 solutions is equivalent to the identity

S = (N � 2)J + 2NF: (4)

Indeed, when b = f(a), the system (2) has 3N � 2 "trivial" solutions with one variable equal to
a, and the two other variables equal to each other. So, from counting all (x; y; z; a; b) satisfying
(2) in two ways it follows that the system has 3N � 2 solutions when b = f(a), and N � 2
solutions otherwise.

The property that f is AB can also be stated in matrix terms. It is equivalent to the identity

M (3) � 2NM = (N3 � 2N2)E: (5)

Indeed, all values �f (a; b) except �f (0; 0) = N are roots of the cubic equation x3 � 2Nx = 0.
Finally, we have the identity

M (3) = XSX: (6)

Let us prove it. We have

�f (a; b)
3 =

X
x;y;z2V

(�1)ha;x+y+zi(�1)hb;f(x)+f(y)+f(z)i

=
X
p2V

(�1)ha;pi
X

x+y+z=p

(�1)hb;f(x)+f(y)+f(z)i:
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In the inner summation, collect all terms with the same value q = f(x) + f(y) + f(z); for each
q there will be Spq of them. So,

�f (a; b)
3 =

X
p2V

(�1)ha;pi
X
q2V

Spq(�1)hb;qi

=
X

p;q2V

XapSpqXqb = (XSX)ab:

Combining the identities (3) and (6) we get:

X(S � 2NF � (N � 2)J)X = M (3) � 2NM � (N3 � 2N2)E:

As X is nonsingular, it follows that the identities (4) and (5) hold simultaneously, and the
theorem is proved. 2

Remark. The identities M = XFX and M (3) = XSX from the proof represent a special case
of the general fact that the Fourier image of the convolution of several functions is the product
of their Fourier images.

The characterizations of APN and AB functions given in Lemma 1 and Theorem 1 allow us to
give simple proofs of the inclusions CR � AB � APN .

Proposition 1 Any crooked function is almost bent, and any almost bent function is almost
perfect nonlinear.

PROOF. For the second assertion, it is enough to notice that if for some q 6= 0, a 6= p 6= a+ q,
the equality f(p) + f(p+ q) = f(a) + f(a+ q) holds (that is, f is not APN), then the system

(
x+ y + z = a

f(x) + f(y) + f(z) = f(a)
;

apart from trivial solutions, has the solution x = p, y = p+ q, z = a + q, and so f is not AB.
To prove the �rst assertion, take any crooked function f . It is enough to show that, for every

a and every b 6= 0, the system(
x+ y + z = a

f(x) + f(y) + f(z) = f(a) + b

has N � 2 solutions (when b does equal 0, it follows from De�nition 10 that the system only
has (3N � 2) trivial solutions). Obviously, every such solution (x; y; z) satis�es z 6= a. Let
p = z + a = x + y. Then f(x) + f(y) 2 Hp, f(z) + f(a) 2 Hp, and therefore b 2 V nHp, since
Hp is the complement of a hyperplane. Every nonzero vector b belongs to 1

2N � 1 hyperplanes,
which gives 1

2N � 1 choices for p, and hence for z. Once z is determined, the system in x and
y has precisely 2 solutions, because of Lemma 1. Hence we get 2(12N � 1) = N � 2 solutions in
all. 2

In Theorem 1 we characterized AB functions (which are de�ned in terms of the Fourier trans-
form) in terms of the number of solutions of a certain system of equations. Next, we shall give
characterizations of APN functions and CR functions in terms of the Fourier transform. In the
case of APN functions this characterization is due to Chabaud and Vaudenay [9]; in fact they
used it to prove the inclusion AB � APN .
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Theorem 2 Let f be an AB function such that f(0) = 0. Then f is crooked if and only if
the set fa j �f (a; b) = 0g is a hyperplane for every b 6= 0. If so, then all these hyperplanes are
distinct and fa j �f (a; b) = 0g = fa j ha; ci = 0g, where c is such that Hc(f) = fx j hb; xi= 1g.

PROOF. This proof will have a similar avor as the proof of the characterization of AB functions
in Theorem 1. We will make use of the same matrices X and E introduced there. Moreover
we introduce the matrices M (2) and T of which the entries are given by M

(2)
ab = �f (a; b)

2 and
Tab = jf(x; y) j x+ y = a; f(x)+ f(y) = bgj. It follows that M (2) = XTX , which can be proven
just like the identity M (3) = XSX was proven in Theorem 1.

The stated assertion that the set fa j �f (a; b) = 0g is a hyperplane for every b 6= 0 is
equivalent to the existence of a function c : V ! V such that fa j �f (a; b) = 0g = fa j
ha; c(b)i = 0g for every b 6= 0. Without loss of generality we complete the de�nition of c by
taking c(0) = 0.

Since f is an AB function the stated assertion is equivalent to �f (a; b)
2 = N �N(�1)ha;c(b)i

for all a and b 6= 0, hence to M (2) = N(J � XC) + N2E, where C is the matrix given by
Cab = 1 if a = c(b); 0 otherwise. After multiplying both sides of the matrix equation from the
left and right by the nonsingular matrix X it follows that the stated assertion is equivalent to
the equation T = E � CX + J .

Now we use that f is APN: Tax = 2 if x 2 Ha(f), T00 = N , and Tax = 0 otherwise. Finally,
we may conclude that the stated assertion is equivalent to the existence of a function c : V ! V ,
c(0) = 0 such that

X
b:a=c(b)

(�1)hb;xi =
(
�1 if x 2 Ha(f)
1 otherwise

for all a 6= 0.
Now suppose that the stated assertion is true, and the above equations hold. By considering

x = 0 it follows that for every a 6= 0 the number of b such that a = c(b) must be equal to one,
hence c is a bijection. Now the equations reduce to hc�1(a); bi = 1 if and only if b 2 Ha(f) for
all b and a 6= 0. Hence Ha(f) is the complement of a hyperplane for every a 6= 0, and we may
conclude that f is crooked.

On the other hand, if f is crooked then the function given by c(b) = a where a is the unique
vector such that Ha(f) = fx j hb; xi = 1g satis�es the required equations. Note that in this case
c is a bijective function so the sets fa j �f (a; b) = 0g, b 6= 0 comprise all hyperplanes. 2

Proposition 2 [9] Let f : V ! V be any function. ThenX
a;b

�f (a; b)
4 � 3N4 � 2N3

with equality if and only if f is APN.

PROOF. Again, we use the matrix methods (and matrices) of Theorems 1 and 2. For the
function f we have that

X
a;b

�f (a; b)
4 =
X
a;b

(M
(2)
ab )

2 = tr(M (2)M (2)T ) = tr(XTXXTTX) = Ntr(XTTTX) =

Ntr(TTTXX) = N2tr(TTT ) = N2
X
a;b

(Tab)
2 = N4 +N2

X
a6=0

X
b

(Tab)
2:
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As is noticed in the proof of Lemma 1, Tab is equal to zero or at least two. This means thatP
a6=0

P
b(Tab)

2 �Pa6=0

P
b 2Tab with equality if and only if Tab equals 0 or 2 for all b and a 6= 0,

i.e. if and only if f is APN. We �nish our proof by observing that
P

a6=0

P
b 2Tab = 2(N2 �N).

2

To sum things up: APN functions can be de�ned in terms of the number of solutions of a
certain system of equations, in terms of the Fourier transform, or in terms of the sets Ha(f);
AB functions | in terms of the Fourier transform, or in terms of the number of solutions of a
certain system of equations; and CR functions | in terms of Ha(f) or in terms of the Fourier
transform. It would also be interesting to �nd a characterization of AB functions in terms of
the sets Ha(f).

1.2 Algebraic degree

First we recall the de�nition and some standard properties of the algebraic degree of a function.
Consider our space V as the standard vector space of row vectors (x1; : : : ; xn), xi 2 GF (2).
Any function f : V ! V can be represented as a polynomial in the variables x1; : : : ; xn with
coe�cients in V . Further, all monomials of this polynomial can be chosen to have degree at
most 1 in each variable, since the elements of GF (2) satisfy the identity x2 = x. With such a
choice of monomials, the polynomial representation of f becomes unique; and it can be found
by expanding the representation

f(x1; : : : ; xn) =
X

(a1;:::;an)2V

f(a1; : : : ; an) � (x1 + a1 + 1) : : :(xn + an + 1):

The degree of the resulting polynomial is called the algebraic degree of f . The algebraic degree
does not depend on the choice of a basis for V . This follows from the following characterization:

Lemma 2 The algebraic degree of f is equal to the maximum dimension k for which there is
an a�ne k-subspace U of V such that

P
u2U f(u) 6= 0.

This lemma follows from standard properties of Reed{Muller codes (cf. for instance [6, Chapter
12], in particular (12.3) and (12.5)).

It is proved in [8] that the algebraic degree of an AB function does not exceed 1
2(n+ 1). We

shall prove a better bound for crooked functions.

Theorem 3 Let f : V ! V be a crooked function, dimV = n = 2m+1 � 5. Then the algebraic
degree of f is at most m = 1

2(n� 1).

To prove it, we need the following easy combinatorial lemma.

Lemma 3 Let X � V , l < n, k > 0. If for every a�ne l-subspace U of V the number jX \ U j
is divisible by 2k then for every a�ne (l � 1)-subspace W of V the number jX \W j is divisible
by 2k�1.

PROOF. Let W1 be any a�ne (l � 1)-subspace of V . Let W2;W3 be two translates of W1

such that all the Wi are distinct. Let xi = jX \Wij, i = 1; 2; 3.
All setsWi[Wj are a�ne l-subspaces of V . Thus, we have the system of equations x1+x2 =

a, x2 + x3 = b, x3 + x1 = c, where a; b; c are multiples of 2k. Solving this system, we �nd that
every xi is a multiple of 2k�1, and the lemma is proved. 2

6



PROOF of Theorem 3. Instead of f we shall consider Boolean functions fh : V ! GF (2),
fh(v) = h(f(v)), for arbitrary non-zero linear functionals h : V ! GF (2). Let

Xh = fv 2 V j h(f(v)) = 1g:

We only need to show that, for every a�ne (m + 1)-subspace U of V , the number jXh \ U j is
even. Indeed, as h was arbitrary, this would imply that

P
v2U f(v) = 0, and the theorem would

then follow from Lemma 2.
The set fv 2 V j h(v) = 1g is the complement of a hyperplane; therefore it coincides with

the set Ha(f) for some a 2 V . It is proved in [1, Proposition 3] that, for any hyperplane V 0 � V ,
the set Xh \ V 0 = fv 2 V 0 j h(f(v)) = 1g is of size 2n�2 if a 2 V 0, and of size 2n�2 � 2m�1 if
a 62 V 0. Note also that jXhj = 2n�1, since f is a bijection.

Take an arbitrary linear subspace W0 � V of codimension 2; let W1;W2;W3 be the a�ne
subspaces parallel to it.

The sets W0[Wi, i = 1; 2; 3, are the three hyperplanes containing W0. So we can easily �nd
the numbers jXh \Wij: if a 2 W0 then they all are equal to 2n�3; otherwise two of them are
equal to 2n�3, and two others to 2n�3�2m�1. In any case, as n � 5, these numbers are divisible
by 2m�1.

Thus, jXh \W j is divisible by 2m�1 for every a�ne subspace W � V of dimension n � 2.
Now Lemma 3 applied m� 2 times gives the desired result. 2

In the class of functions of algebraic degree 2 (quadratic functions) the three classes APN , AB,
and CR essentially coincide. More precisely, it is proved in [8, Theorem 8] that every quadratic
APN function of odd dimension is AB. Now we shall briey demonstrate that every quadratic
APN function which is bijective, and maps 0 to 0, is crooked. It is convenient to use De�nition
10. The property (ii) there is equivalent to the function being APN. Take any x; y; z 2 V ,
0 6= a 2 V . We need to check that the sum

s = f(x) + f(y) + f(z) + f(x+ a) + f(y + a) + f(z + a)

is not equal to 0. If any two of the six terms coincide, this follows from the bijectivity of f . If
not, then the set

fx; y; z; x+ a; y + a; z + a; x+ y + z; x+ y + z + ag
is an a�ne 3-subspace. As f is quadratic, the sum of its values over this subspace is equal to 0,
and therefore s = f(x+ y + z) + f(x+ y + z + a), and s 6= 0, again by bijectivity.

We note �nally that all known examples of crooked functions have algebraic degree 2.

2 Combinatorial structures

In this section we will construct several combinatorial structures, such as semi-biplanes, di�erence
sets, distance-regular graphs, association schemes, and uniformly packed (BCH and Preparata)
codes, all by using APN, AB, or CR functions. For some background on distance-regular graphs
and association schemes we refer the reader to [2]; for background on codes to [20].

2.1 APN functions and semi-biplanes

A semi-biplane sbp(v; k) is a connected incidence structure of v points and v blocks, each incident
with k points, such that any 2 points are incident with 0 or 2 blocks, and any two blocks are
incident with 0 or 2 points. Coulter and Henderson [11] construct a semi-biplane from an almost
perfect nonlinear function f in the following way.
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Construction 1 Let f be an APN funtion. Then the incidence structure with point set and
block set V �V , where a point (x; a) is incident with a block (y; b) if and only if a+b = f(x+y)
is a semi-biplane sbp(N2; N) if the incidence structure is connected, or else it consists of two
disjoint sbp(12N

2; N).

Coulter and Henderson [11] also construct certain 2-class association schemes from the crooked

(Gold) functions f(x) = x2
k+1; (k; n) = 1 (here V is identi�ed with GF (2n)). These association

schemes are fusions of the schemes constructed in Section 2.3.

2.2 AB functions, Kasami codes, and Kasami graphs

A uniformly packed e-error-correcting code is a code with minimum distance d = 2e+1 and the
property that the number of codewords at distance e+1 from a word which is at distance e from
the code is constant, and the number of codewords at distance e + 1 from a word which is at
distance e+ 1 or more from the code is also constant (cf. [20]). Carlet, Charpin, and Zinoviev
[8] found the following.

Construction 2 Let f be an AB function with f(0) = 0 (and n > 3). Then the code C of
characteristic vectors of all subsets S of V n f0g such that

P
r2S r = 0 and

P
r2S f(r) = 0 is

a double-error-correcting binary linear uniformly packed code of length N � 1 and dimension
N � 1� 2n.

The code C generalizes the double error-correcting BCH codes, and are also called Kasami codes
(note that these codes are extremal in the sense that no linear code of this length and minimum
distance can have more codewords). The essence of the proof of this result given in [8] lies in
the fact that the dual code has 3 nonzero weights, which follows from the de�nition of almost
bent functions in terms of the Fourier transform.

In [12] the present authors gave a combinatorial proof of the above result for crooked func-
tions. Their proof is easily adjusted (and simpli�ed!) for almost bent functions, by using the
combinatorial characterization of almost bent functions in Section 1.1.

Carlet, Charpin, and Zinoviev [8] also show that in order to prove that the above code has
dimension N � 1� 2n and minimum distance 5 (hence that the code is extremal) it su�ces that
f is almost perfect nonlinear (with f(0) = 0).

A distance-regular graph (with parameters fb0; b1; :::; bd; c0; c1; :::; cdg) is a connected regular
graph such that for an arbitrary pair of vertices fx; yg at distance i, the number of vertices
adjacent to x and at distance i�1 (respectively i, and i+1) from y is a constant ci (respectively
ai, and bi) depending only on i (cf. [2]). It follows from the work of Delsarte (cf. [2, Chapter 11])
that the coset graph of the uniformly packed Kasami code as described above is distance-regular
with diameter three. An alternative description of this coset graph, like the one given in [4] is
the following:

Construction 3 Let f be an AB function with f(0) = 0. Then the graph with vertex set V �V ,
where two distinct vertices (x; a) and (y; b) are adjacent if a+ b = f(x+ y) is a distance-regular
graph with parameters fN � 1; N � 2; 12N + 1; 1; 2; 12N � 1g.

A direct proof that this is indeed a distance-regular Kasami graph is given in [12] for crooked
functions. Again, this proof can be adjusted for almost bent functions using the combinatorial
characterization of such functions in Section 1.1.

Note by the way the resemblance between the construction of the distance-regular graph
and the construction of the semi-biplane in Section 2.1. If in the above de�nition of the graph
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we would allow an almost perfect nonlinear function we would obtain an (N � 1)-regular graph
without triangles, such that any two vertices at distance two have two common neighbours, Such
a graph, when connected, is called a rectagraph. Note that a more general connection between
semi-biplanes, binary linear codes of minimum distance at least 5, and rectagraphs has been
observed; cf. [2, Section 1.13].

2.3 AB functions, accomplices, CR functions, Preparata codes and graphs

In [1] crooked functions were introduced to generalize the antipodal distance-regular graphs
constructed by de Caen, Mathon, and Moorhouse [5]. In [12] the present authors used crooked
functions to generalize 5-class association schemes constructed in [4], and Preparata codes. Note
that the above mentioned antipodal distance-regular graphs are strongly related to the 5-class
association schemes and the Preparata codes, hence they will be called Preparata graphs in the
following.

Here we will further generalize the construction of these combinatorial structures by using
an almost bent function f (with f(0) = 0) with a so-called accomplice g, instead of a crooked
function.

De�nition 2 Let f : V ! V be a function. A function g : V ! V is called an accomplice of f
if (Ha(f) +Ha(f))\Ha(g) = ; for all a 6= 0.

A crooked function is an accomplice of itself, since if f is crooked, then Ha(f) is the complement
of a hyperplane, which implies that the sum of any two of its elements lies in the complementary
hyperplane. In fact, any function gc;d given by gc;d(x) = f(x+ c) + d is an accomplice of f .

For AB functions that are not crooked it seems hard to �nd accomplices. In low dimensions
it seems typical that in this case the sets Ha(f) + Ha(f) are equal to the entire space V (at
least for some a). Nevertheless, we challenge the reader to construct such accomplices, or new
crooked functions, since this would give some interesting new codes and graphs by the following
constructions.

A nearly perfect e-error-correcting code is a code with minimum distance d = 2e + 1 such that
each word at distance at least e from the code has distance e or e+1 to exactly b L

e+1c codewords,
where L is the length of the code (clearly such a code is also uniformly packed).

Construction 4 Let f be an AB function with f(0) = 0, and with an accomplice g. Then the
code P consisting of characteristic vectors of pairs (S; T ) with S � V nf0g; T � V , such that jT j
is even,

P
s2S s =

P
t2T t, and

P
s2S f(s) =

P
t2T f(t) + g(

P
t2T t) is a double-error-correcting

nearly perfect code of size 22N�2�2n and length L = 2N � 1, i.e. it has the same parameters as
the Preparata code.

The proof of this result is essentially given in [12].
As was briey mentioned in [12] (end of Section 3) linear accomplices would be of particular

interest since it looked like new Kerdock codes could be constructed from them. However, it
is shown by Brouwer and Tolhuizen [3] that no linear code with the same parameters as the
Preparata code exists. This implies that the accomplice g cannot be linear, since such a function
would give rise to a linear Preparata code by the above construction, as is easily checked.

Corollary 1 An almost bent function does not have a linear accomplice.

A d-class association scheme is a partition of the edge set of the complete graph into regular
spanning subgraphs G1; G2; :::; Gd such that, for any edge fx; yg in Gh, the number of vertices
z such that fx; zg is in Gi and fz; yg is in Gj equals a constant phij depending only on h; i; j.
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Construction 5 Let f be an AB function f with f(0) = 0, and with an accomplice g. Take
as vertex set V � V , and let G1 be the Kasami graph as described in Section 2.2, i.e. distinct
vertices (x; a) and (y; b) are adjacent if a + b = f(x + y). The graph G2 is an isomorphic copy
of G1, and is de�ned by the equation a+ b = f(x+ y) + g(x)+ g(y). The graphs G3 and G4 are
the distance-two graphs of G1 and G2, respectively. The �nal graph G5 is the remainder, and is
given by the equations x = y; a 6= b. Then the graphs G1; G2; :::; G5 form a 5-class association
scheme.

For crooked functions this is proven in [12], and this proof is easily adjusted to almost bent
functions with an accomplice. This association scheme is of particular interest since it has many
fusion schemes (that is, association schemes that are obtained from the original one by uniting
some of the graphs) (cf. [4]). For example, the association scheme fG1; G3; G2[G4[G5g is the
3-class association scheme of the distance 1; 2, and 3 graphs of the distance-regular Kasami graph
of the previous section. Further fusion gives the association scheme fG1[G3; G2[G4[G5g with
the same parameters as the 2-class association scheme mentioned by Coulter and Henderson [11],
see Section 2.1 (note that these two fusion schemes can be obtained for almost bent functions
without an accomplice). Another interesting fusion scheme is fG1 [ G2; G3 [ G4; G5g, since it
is a so-called quotient of the association scheme of an antipodal distance-regular graph with the
same parameters as the Preparata graphs constructed by de Caen, Mathon, and Moorhouse [5].
This means that the following construction generalizes the Preparata graphs.

Construction 6 Let f be an AB function with f(0) = 0, and with an accomplice g. Consider
the graph with vertex set V � V � GF (2), where two distinct vertices (x; a; i) and (y; b; j) are
adjacent if a + b = f(x+ y) + (i+ j)(g(x) + g(y)). This graph is a distance-regular graph with
parameters f2N � 1; 2N � 2; 1; 1; 2; 2N � 1g.

Note that the Preparata graphs just like the Kasami graphs are rectagraphs.
If the code P we constructed earlier were linear, then its coset graph would have the same

parameters as these antipodal distance-regular graphs. Still, it is possible to indicate the relation
between the (nonlinear) code P and the antipodal distance-regular graphs, in the spirit of [5].

2.4 AB functions, CR functions, Hadamard di�erence sets, and bent func-
tions

An elementary Hadamard di�erence set is a (22n; 22n�1 � 2n�1; 22n�2 � 2n�1) di�erence set on
GF (2)2n, i.e. a subset of GF (2)2n of size 22n�1 � 2n�1, such that any nonzero element of
GF (2)2n occurs 22n�2 � 2n�1 times as a di�erence of distinct elements of the subset (note that
the complement of the di�erence set is a di�erence set with parameters (22n; 22n�1+2n�1; 22n�2+
2n�1), and this is also called a Hadamard di�erence set). Xiang [23] constructed an elementary
Hadamard di�erence set as follows.

Construction 7 Let f be an AB function. Then the set f(x; y) j y 2 Hx(f); x 6= 0g =
f(x; f(z) + f(x+ z)) j x; z 2 V; x 6= 0g is an elementary Hadamard di�erence set on V � V .

It is well-known (essentially already by Turyn [22]) that the characteristic function of an ele-
mentary Hadamard di�erence set is another highly nonlinear function called a bent function,
i.e a function from GF (2)2n to GF (2) that is at Hamming distance 22n�1 � 2n�1 to all linear
functions from GF (2)2n to GF (2). The bent functions corresponding to the di�erence set of
Construction 2 have also been constructed by Carlet, Charpin, and Zinoviev [8].

Another class of Hadamard di�erence sets and corresponding bent functions can be con-
structed from crooked functions (cf. [1]).
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Construction 8 Let f be a CR function, U a hyperplane in V , and a =2 U . Then the set
fv 2 U j f(v) 2 Ha(f)g is a Hadamard di�erence set on U with parameters (2n�1; 2n�2 �
2(n�3)=2; 2n�3 � 2(n�3)=2).

3 Known nonlinear functions

We conlude with the list of all, up to equivalence, known APN, AB, an CR functions. As
was mentioned earlier, all known such functions are equivalent to certain power functions
f : GF (2n) ! GF (2n), f(x) = xk . In Table 1 we give the values of exponents k for odd
values of n, n = 2m+ 1, with the indication to which of the three classes the function belongs.
In Table 2 we give those values of k for even n, n = 2m, which give APN functions. Note
that the inverse of an APN (AB) function is also APN (AB), but this need not be so for CR
functions. In particular, the inverses to known CR functions are AB but not CR.

Name Exponent k Type ref.

Gold's functions 2i + 1 with (i; n) = 1; CR [16; 1]
1 � i � m

Kasami's functions 22i � 2i + 1 with (i; n) = 1; AB [19]
2 � i � m

Field inverse 2n � 2 APN [21]

Welch's function 2m + 3 AB [7; 18]

Niho's function 2m + 2m=2 � 1 (even m) AB [18]

2m + 2(3m+1)=2� 1 (odd m)

Dobbertin's function 24i + 23i + 22i + 2i � 1 if n = 5i APN [15]

Table 1: Known APN, AB, and CR functions xk on GF (2n), n = 2m+ 1

Name Exponent k Type ref.

Gold's functions 2i + 1 with (i; n) = 1; APN [16]
1 � i < m

Kasami's functions 22i � 2i + 1 with (i; n) = 1; APN [19]
2 � i < m

Dobbertin's function 24i + 23i + 22i + 2i � 1 if n = 5i APN [15]

Table 2: Known APN functions xk on GF (2n), n = 2m
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