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Abstract

A connected graph G = (V, E), a vertex in V and a non-negative weight function
defined on E can be used to induce Chinese postman and traveling salesman (cooper-
ative) games. A graph G = (V, E) is said to be locally (respectively, globally) Chinese
postman balanced (respectively, totally balanced, submodular) if for at least one vertex
(respectively, for all vertices) in V' and any non-negative weight function defined on E,
the corresponding Chinese postman game is balanced (respectively, totally balanced,
submodular). Local and global traveling salesman balanced (respectively, totally bal-
anced, submodular) graphs are similarly defined.

In this paper we study the equivalence between local and global Chinese postman
balanced (respectively, totally balanced, submodular) graphs, and between local and

global traveling salesman submodular graphs.

KEYWORDS: Cooperative game, Chinese postman, traveling salesman, core, submod-

ularity.
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1 Introduction

We study in this paper two classes of cooperative combinatorial games: Chinese postman
games (cf. Hamers et al. (1999)) and traveling salesman games (cf. Tamir (1989) and
Potters et al. (1992)). For both these games, balancedness, totally balancedness and sub-
modularity were characterized in terms of some specific classes of graphs. To present these
characterizations, we first need to recall some game theoretical notions.

A cooperative game is an ordered pair (N,c), where N = {1,2,..,n} is a finite set of
players and ¢ : 2V — IR is a map that assigns to each coalition S C N a real number ¢(S),
called the cost of S, such that ¢(()) = 0. In this paper we will think of (V,¢) as a cost game,
in which case ¢(.S) is the cost incurred to members of S when they create their own coaltion.
One of the most prominent solution concepts in cooperative game theory is the core of a
game. It consists of all vectors which distribute the cost incurred to N, ¢(N), among the
players in such way that no subset of players can be better off by seceding from the rest of
the players and act on their own behalf. That is, a vector z is in the core of a game (N, ¢) if!
Z(N) = ¢(N) and z(S) < ¢(S) for all S C N. A cooperative game whose core is not empty
is said to be balanced, and if the core of any subgame of it is nonempty, it is said to be totally
balanced. A well-known class of (totally) balanced games is the class of submodular games.
A game (N, ¢) is called submodularif ¢c(SUT) +c¢(SNT) < ¢(S)+ ¢(T) for any S, T C N.

Submodular games are known to have nice properties, in the sense that some solutions
concepts for these games coincide and others have intuitive description. For example, for
submodular games the core is equal to the convex hull of all marginal vectors (cf. Shapley
(1971) and Ichiishi (1981)), and , as a consequence, Shapley value is the barycentre of the core
(Shapley (1971)). Further, the bargaining set and the core coincide and the kernel coincides
with the nucleolus (Maschler et al. (1972)). Moreover, some of these solution concepts can
be computed more efficiently for submodular games. For example, each marginal vector,
which is an extreme point in the core, can be computed in linear time, the nucleolus can
be computed in a strongly polynomial time (Kuipers (1996)) and the 7-value can be easily
calculated (Tijs (1981)).

Next, we recall the definitions of the Chinese postman and the traveling salesman games.

Let G = (V(G), E(G)) be a connected undirected (resp., strongly connected directed) graph

'For a vector x € RN and T C N we let (T) = Y ;cr ;-



in which V(G) denotes the set of vertices and E(G) denotes the set of edges (arcs). Further,
let vy € V(@) be a fixed vertex, which will be referred to as the warehouse. Let t : E — [0, 00)
be a non-negative weight function defined on the edges (arcs) of E.

Chinese postman (CP) games® arise from situations Top = (E(G), (G, v0),t) in which
the players are identified with the edges (arcs). A (directed) S-tour in G of a non-empty
coalition S C E(G) is a closed walk that starts at the warehouse vy and visits each edge
(arc) that is included in S at least once. Then, the cost incurred to a non-empty coalition
S in the CP game is defined as the cost of a (directed) minimum weight S-tour. Note that
determining the cost of the grand coalition N is equivalent to solving the Chinese postman
problem on G (cf. Edmonds and Johnson (1973)).

Traveling salesman (TS) games arise from situations I'rg = (V~(G), (G, v), t) in which
the players are identified with the vertices, except vy (i.e. V—(G) = V(G)\{v}). A (directed)
S-Steiner tour in G of a non-empty coalition S C V~(G) is a (directed) cycle, not necessarily
simple, that includes all vertices of SU{vp}. Then, the cost incurred to a non-empty coalition
S in the T'S game is defined as the cost of a minimum weight (directed) S-Steiner tour. Note,
that determining the cost incurred to a coalition S is equivalent to solving a Steiner TSP
problem (cf. Lawler et al. (1985)).

Next, we will briefly introduce some classes of graphs related to Chinese postman and
traveling salesman games. An undirected (resp., directed) graph G = (V(G), E(Q)) is said
to be globally Chinese postman (CP) balanced (resp., totally balanced, submodular) if the
induced CP game is balanced (resp., totally balanced, submodular) for any location of the
warehouse (i.e. for any vy € V(G)) and any non-negative weight function defined on the edges
(arcs). Globally traveling salesman (TS) submodular undirected (resp., directed) graphs are
similarly defined. Characterizations of globally CP balanced (resp., totally balanced, sub-
modular) graphs and globally TS submodular graphs have already been established. Explic-
itly, Granot et al. (1999) have shown that an undirected graph is globally CP submodular if
and only if it is globally CP totally balanced, which holds if and only if it is weakly® cyclic.
They have further shown that an undirected graph G is globally CP balanced if and only

if it is weakly! Eulerian. In contrast with the undirected case, Granot et al. (1999) have

?Hamers et al. (1999) introduced these games and refer to them as delivery games.
3A graph G is weakly cyclic if each biconnected component thereof is a circuit.
4A graph is weakly Eulerian if each biconnected component thereof is Eulerian.



shown that a directed graph is globally CP submodular if and only if it is weakly cyclic?,
and that any strongly connected directed graph is globally CP balanced.

Herer and Penn (1995) proved that an undirected graph G is globally TS submodular if and
only if G' can be obtained by 1-sums of copies of K, and outerplanar graphs. Finally, Granot
et al. (2000) showed that a directed graph G is globally T'S submodular if and only if G is a
1-sum of harmonic digraphs® each of which is outerplanar with a directed cycle on its outer
boundary.

Requiring graphs to satisfy the various properties of balancedness, totally balancedness
and submodularity globally, for all vertices in the graph GG, may be unnecessarily restrictive.
Indeed, to the extent that the location of the warehouse in G can be chosen, it would suffice
to find a single vertex in G for which the induced CP and TS games have the desired
properties. For this reason, we study in this paper the relationship between graphs that
satisfy the various properties locally and globally. An undirected (resp., directed) graph G' =
(V(G), E(G)) is said to be locally Chinese postman (CP) balanced (resp., totally balanced,
submodular) if the induced CP game is balanced (resp., totally balanced, submodular) for
at least one location of the warehouse and any non-negative weight function defined on the
edges (arcs). Undirected (resp., directed) locally traveling salesman (TS) submodular graphs
are similarly defined.

In this paper we show that the local and global requirements are equivalent for undirected
CP balanced, totally balanced and submodular graphs, for directed CP balanced graphs and
for undirected TS submodular graphs. For the directed CP and TS cases, it is shown that
the class of locally CP (resp., T'S) submodular graphs properly contains the class of globally
CP (resp., TS) submodular graphs.

2 The undirected CP case

In this section we show that an undirected connected graph is locally CP balanced if and

only if it is a weakly Eulerian graph. Moreover, it is shown that an undirected connected

®A directed weakly cyclic graph is a 1-sum of directed circuits, where a 1-sum of a graph G and H is

defined as the graph derived from G and H by coalescing one vertex in G with another vertex in H.
6A digraph is said to be harmonic if each pair of directed circuits therein visit their common vertices in

the same order.



graph is locally CP submodular if and only if it is locally CP totally balanced, which holds

only if it is weakly cyclic.

Theorem 2.1 The class of undirected locally CP balanced graphs coincides with the class of
undirected globally CP balanced graphs.

PrROOF: From Granot et al. (1999), an undirected globally CP balanced graph is weakly
Eulerian. Clearly, a globally CP balanced graph is locally CP balanced. So, let G =
(V(G), E(G)) be a locally CP balanced graph and assume, on the contrary, that G is not
weakly Eulerian. Then G contains a biconnected component, say C, that is not Eulerian.
Thus, there exists a vertex w in C' whose degree, k, in C' is odd and larger than 3. Let F(w)
be the edge set that is incident to w in C. The removal of E(w) divides G to two connected
components, say G; = (V(E), E1) and Gy, = (V(Es), E,), where V(Ej),j = 1,2 are the
vertices spanned by the edge set Ej,j = 1,2, respectively. Without loss of generality, we
assume that (E(C)\E(w)) C E; (see Figure 2.1). Observe that V' (E;) could possibly consist

of the single vertex w.

Figure 2.1: A non-Eulerian component C' of G.

Consider the edge weight function ¢ in which the costs of all edges in E(w) are 1 and the
costs of all other edges are zero. Let vy € V(E;),i € {1,2}. Then, we claim that the Chinese
postman game (E(G),c¢) corresponding to (E(G), (G, vy),t) has an empty core. Indeed, if

the core is not empty, then there exists a vector x, x € IRV, such that



z(E(G)) = (B(G) =k+1

r({er,e0, Bj}) < c({er,e0, Ej} =2, je{l,2}, j#i

f({enes B)) < cllenen B} =2, je{l2), j#i

x(ej, €j41) < c({ej,ej41)}) =2, forall j=3,4,...k—1 (1)
x(ey, ex) < c({er,ex}) =2

x(E;) < ¢(E;) =0

Summing the inequalities in (1) we obtain that
20(E(GQ)) <2k <2(k+1) =2c¢(E(G)).

We have obtained a contradiction, since it was assumed that z(E(G)) = ¢(E(G)), and we
conclude that (E(G),c) has an empty core. Since this result is independent of the choice of

vg, we can conclude that G is not locally CP balanced. O

Theorem 2.2 Let G be a connected undirected graph. Then the following statements are
equivalent:

(i) G is globally CP submodular.

(ii) G is locally CP submodular.

(7i) G is globally CP totally balanced.

(iv) G is locally CP totally balanced.

PROOF:

By Granot et al. (1999), (i) and (iii) are equivalent, and by definition we have that (i) implies
(ii). From Shapley (1971) it follows that (ii) implies (iv). Thus, it remains to show that (iv)
implies (iii). By Granot et al. (1999), a globally CP totally balanced graph is weakly cyclic.
So, let G be a locally CP totally balanced graph and assume, on the contrary, that G is not
weakly cyclic. Then, G contains a connected subgraph G* = (V(G*), E(G*)) of the form

shown in Figure 2.2.



Figure 2.2: The graph G* which is not weakly cyclic.

Let E(G*) = E1yUE,UE3, where Ey, Ey and E3 are the edges as depicted in Figure 2.2, and let
w1, ws, as indicated in Figure 2.2, be the vertices in G* of degree 3. Let vy be somewhere lo-
cated in G, and let (E(G), ¢) be the CP game that arises from the situation (E(G), (G, vo), t).
Since G is connected, there exists a path P; from vy to some vertex v € V(G*) such that no
other vertex of V(G*) is contained in P;. Note, that P, consists only of vy, if vy € V(G*).
If v # wy,ws, let P, be a path from v to w; that only consists of edges in E; for some
j €{1,2,3}. Consider the weight function ¢, where t(e) = 0 for all edges e € E(P,)U E(F2),
t(E;\E(P,)) =1 for all j = 1,2,3 and t(e) = 100 for all other edges, where E(P;) is the
edge set of P;,j € {1,2}. We claim that the core of the subgame (E(G*), cg(c+)) is empty.

Indeed, if the core is not empty, then there exists a vector z, x € IRY, such that

o(BE(G")) = c(E(G")) =
2(ByUE) < o(EyUE,) =2
2(BLUEs) < (B UE;) =2 2)
2(B,UBs) < o(ByUE;) =2.

Summing the inequalities in (2) we obtain that 2z(E(G*)) < 6 < 8 = 2(E(G*)), which
is a contradiction, since it was assumed that z(E(G*)) = ¢(E(G*)), and we conclude that
(E(G*),c) has an empty core. Hence, (E(G),c) is not totally balanced. Since this result is
independent of the choice of vy, we have reached a contradiction since it was assumed that

G is locally CP totally balanced, and the proof of Theorem 2.2 is complete. a



3 The directed CP case

In this section we show that any strongly connected directed graph is locally CP balanced,
and that the class of directed globally CP submodular graphs is properly contained in the
class of directed locally CP submodular graphs.

The first result of this section follows immediately from Granot et al. (1999), since they
showed that any strongly connected directed graph is globally CP balanced.

Proposition 3.1 A strongly connected directed graph is locally CP balanced.

Granot et al. (1999) proved that a strongly connected directed graph is globally CP
submodular if and only if it is directed weakly cyclic. The next proposition shows that this

statement does not hold for directed locally CP submodular graphs.

Proposition 3.2 The class of directed globally CP submodular graphs is properly contained
in the class of directed locally CP submodular graphs.

PrOOF: It is sufficient to provide an example of a directed locally CP submodular graph that
is not directed weakly cyclic. Granot et al. (1999) showed that a strongly connected graph
that is not weakly cyclic contains vertices wy, we and three internally vertex-disjoint directed
paths P : w; — wo, Py : wy — wy and P : wy — w;. Let G consist of these three paths.
Let vg # w1, wy be a vertex in Py, and let F1, Fs, E3 and E, be the sets of arcs contained in,
respectively, the subpath of P, from w; to vy, the subpath of P, from vy to wsy, P, and P;.
Let (E(G), ¢) be the CP game corresponding to (E(G), (G, vp),t). Then, ¢(S) = ¢(E(G)) if
SNE;#0 and ¢(S) = ¢(E(G)) — t(E3) if SN E3 = (. Now, it is straightforward to check
that (E(G), ¢) is a submodular game. Hence, G is a directed locally CP submodular graph. O

4 The undirected TS case

In this section we show that an undirected locally TS submodular graph can be obtained
by 1-sums of copies of K, and outerplanar graphs. Before we state the main result of this
section, we recall the notion of a vertex-cutset. If v, and v; are two vertices in a graph G,
then an s —t vertex-cutset is a set of vertices whose removal from G, together with the edge

(vs,vy), if such an edge exists, results with a disconnected graph where v; and v; are not



contained in the same component. A minimal s — t vertex-cutset does not contain a proper
subset which is an s — ¢ vertex-cutset. The cut condition, as introduced by Here and Penn
(1995), can be stated as follows: for all pairs of vertices v, and v, in G, every minimal s — ¢
vertex-cutset has a cardinality of at most two. Herer and Penn (1995) proved that a graph

G is globally TS submodular if and only if G satisfies the cut condition.

Theorem 4.1 An undirected graph is locally TS submodular if and only if it is globally TS

submodular.

ProOF: Clearly, a globally TS submodular graph is locally TS submodular. From Herer
and Penn (1995) it follows that it is sufficient to show that a locally TS submodular graph
satisfies the cut condition. So, let G be a locally TS submodular graph and assume, on the
contrary, that it does not satisfy the cut condition. Hence, G has a minimal s — ¢ vertex-
cutset K of cardinality greater or equal to three. Fix K, v and v, and let (V~(G),c) be
the TS game corresponding to (V~(G), (G, vy),t) . We need to consider the following four

exhaustive cases.

Case 1: 19 € K.
Let vg, v1, vo be three distinct vertices in K. Define the weight function ¢ as follows: all edges
not incident to any vertex in K have weight zero, all edges incident to precisely one vertex
in K have weight one, and all edges incident to two vertices in K have weight 2. The edge

(vs, v¢), if such an edge exists, has weight two (see Figure 4.1).
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K
P
0 0

Figure 4.1: The graph G and the cutset K.

Let S = {vs,v}, L = {v;} and M = {w,}. Then, by definition of ¢, it is easy to verify
that ¢(S U LU M) > 6. Further, the minimality of K guarantees that for every vertex
in K there exists an s — t path that traverses that vertex and not any other vertex in
K, and that every non-trivial” s — ¢ path traverses some vertex in K. This implies that

c(S)=c(SUL)=c¢(SUM)=4. Thus, c(SULUM) —c(SUL) > c(SUM) —¢(S). Hence,
(V=(G), ¢) is not submodular.

Case 2: vy ¢ K and any path from vy to vs or from v to v; contains a vertex of K.
Let v1, v9, v3 be three distinct vertices in K. Let P be a path from vy to v3, which does not
contain any other vertex of K. Define the weight function, ¢, as it is done in Case 1, except
that t(e(vs)) = 0, where e(v3) is that edge in P that is incident to vs, and let the sets S, L
and M be defined as in Case 1. As a consequence of our assumption on vy in this case, and
since the cost of the path P is zero, one can easily verify that the values of the coalitions

S, SUL, SUM and SULUM are the same as in Case 1. Hence, (V" (G), ¢) is not submodular.

Case 3: vy € K and there exists a path from vy to v; that is vertex-disjoint from K.
Let vy, v9, v3 be three distinct vertices in K. Let the weight function be as defined in Case 1,
and let S = {vs, v}, L = {v;} and M = {v3}. Similarly, as it was in Case 1 we find that
(V=(G),¢) is not submodular.

"A non-trivial path has two or more edges.
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Case 4: vy ¢ K and there exists a path from vy to vs that is vertex-disjoint from K.
Let vy, v9, v3 be three distinct vertices in K. Let the weight function be as defined in Case 1,
and let S = {v;, v}, L = {v1} and M = {vs}. Similarly, as it was done in Case 1, we find
that (V~(G), ¢) is not submodular.

Thus, for all possible locations of vy, the associated game (V~(G), ¢) is not TS submod-
ular, contradicting our assumption that G is locally TS submodular. Therefore, we can

conclude that G satisfies the cut condition. O

Clearly, since a globally T'S submodular graph can be constructed by 1-sums of copies of K,
and outerplanar graphs (Herer and Penn (1995)), it follows from Theorem 4.1, that a locally

TS submodular graph can be similarly constructed.

5 The directed TS case

In this section we show that the class of directed globally TS submodular graphs is properly
contained in the class of directed locally TS submodular graphs.

First, we define two simple directed graphs F; and F5, as shown in Figure 5.1 below.

Figure 5.1: The graphs F} and F5.

The following Theorem, due to Granot et al. (2000), characterizes directed globally TS

submodular graphs.
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Theorem 5.1 Let G be a strongly connected directed graph. Then the following are equiva-
lent:

(i) G is globally TS submodular.

(i) G does not contain a subdivision of F\ and F,.

(i1i) G is 1-sum of harmonic digraphs, each of which is outerplanar with a directed cycle on

its outer boundary.

The next proposition shows that this statement does not hold for directed locally TS

submodular graphs.

Proposition 5.2 The class of directed globally TS submodular graphs is properly contained
in the class of directed locally TS submodular graphs.

PrROOF: From Theorem 5.1 it follows that it is sufficient to show that the directed graph
F; is locally T'S submodular. Let (V~(G),c) be the TS game that arises from the situation
(V=(G),(G,w),t). Then, for any weight function we have ¢(S) = ¢(V~(Q)) if v, € S and
c(S) < e(V-(G)) if vy & S. Tt is straightforward to verify that (V~(G),c) is submodular.

Hence F; is locally T'S submodular. O
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