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Convexity in Stochastic Cooper ative Situations®

JUDITH TIMMER!2 PETER BORM! STEF T1Js!

Abstract

This paper introducesanew model concerning cooperative situationsin which the payoffsare
modeled by random variables. First, we study adequate preference relations of the agents. Next,
we define corresponding cooperative games and we introduce and study variousbasic notionslike
an dlocation, the core and margina vectors. Furthermore, we introduce three types of convexity,
namely coalitional-merge, individual-mergeand marginal convexity. The relations between these
definitions are studied and in particular, as opposed to the deterministic counterparts for TU
games, we show that these three types of convexity are not equivalent. However, dl typesimply
that the core of the game is nonempty and the first two types even imply that each subgame has
a nonempty core. In particular, we show that the Shapley value, the average of the margina
vectors, belongsto the core of the convex game for certain types of preferences and for any type
of convexity.

Journal of Economic Literature Classification Number: C71.
1991 Mathematics Subject Classification Number: 90D12.
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1 Introduction

In many real-life situations payoffs to agents are uncertain. For example, consider two musicians, a
pianist and a violinist. Each of them has a contract with a hotel to give small performances. Their
payoffs consist of a small wage and the tips they receive during their performances. At the end of
the month their contracts will end and both their employers offer them a new contract with the same
conditions. Until now these musicians aways performed separately, although recently they started
studying some pieces for violin and piano together. Thisis because they found a (third) hotel that is
willingto contract both of them. Thiscontract saysthat both musiciansonly perform for thishotel and
their individual payoffs consist of a small wage. Ten percent of all the tips they receive during their
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performances will be for the hotel and the remaining 90 percent will be divided among the pianist and
the violinist. Before the end of the month the musicians have to decide whether to cooperate or not.
In both cases their payoffswill be uncertain because they depend on the uncertain amount of tipsto
be received during performances.

Another situationwith uncertain payoffsisthefollowing. Consider afirm that goes bankrupt. An
intermediary is appointed who will settle the remaining financial matters of the firm. All creditors
claim their money while the intermediary finds out that the only money left in the firm is a portfolio
consisting of shares and options. When the creditors agree upon a distribution of thisportfolio among
themselves, then this distribution will be executed. Each of them receives a small portfolio with an
uncertain value because the prices at the shares and options markets change over time. This kind of
situationsare called bankruptcy situationsand we will return to it later in this paper.

In’classical’ cooperative game theory, payoffs to coalitions of agents are known with certainty.
Therefore, situationswith uncertain payoffsin which the agents cannot await the realizations of these
payoffs, cannot be model ed according to thistheory. CHARNES and GRANOT (1973) and Su1JS, BORM,
DE WAEGENAERE and T13s (1999) introduced new model s that can handle uncertain payoffs.

CHARNES and GRANOT (1973) introduced games in stochastic characteristic functionform. These
are games where the payoff to coalition S, V'(S), is dlowed to be a random variable. To allocate
the payoff of the grand coalition to the players, the authors suggest a two-stage procedure. In the
first stage, so called prior-payoffs are promised to the agents. These prior-payoffs are determined
such that there is a relatively high chance that the promises can be realized. In the second stage the
realizations of the payoffs are awaited and, if necessary, the prior-payoff vector has to be adjusted to
thisrealization. Research on this subject was continued in CHARNES and GRANOT (1976, 1977) and
GRANOT (1977).

In SuiJs and BoRM (1999) a different and more extensive model is studied. They consider a set
Ag of actionsthat coalition S can take. The stochastic value of this coalition then depends on which
action a € Ag ischosen and is denoted by Xs(a). This, however, is not the main feature we like
to stress. It is the fact that an alocation of X g(a) to the members of codition S is described as the
sum of two parts. The first part is a monetary transfer between the agents and the second part is an
alocation of fractions of X ¢(a). Work on this model was started in Suiis, BOrRM, DE WAEGENAERE
and T13s (1999) and an application in insurance can be found in SulJs, DE WAEGENAERE and BORM
(1998).

In this paper we introduce a model that, when compared to the previous two models, looks the
most likethemodel of Suiis et al. but there are some major differences. First, inthe model of SulJs et
a., acollection V(.5) of stochastic payoffsisassigned to each codlition S of agents. Each X € V(5)
is a possible stochastic payoff to codition S. In our model, we assign a single random value R(.S)
to each codlition of agents. Thisvalue contains al the information that the coalition knows about its
payoff.

Second, allocations are defined differently. In the mode of Suiss et d. allocations are defined as
follows. Let S be a codition of agentsand let X € V(.S) be a stochastic payoff for this codlition.



An allocation of X to the agentsin S isrepresented by apair (d,r) € R® x R® with Y, s d; <0,
Yiesri = Landr; > 0 for al agentsi € S. Given such a pair (d,r), agent i € S receives the
stochastic payoff d; + r;X. The second part, r; X, describes the fraction of X that is allocated to
agent 1. Thefirst part, d;, describes the deterministic transfer payments between the agents. When
d; > 0 then agent 7 receives money while d; < 0 means that this agent pays money. The purpose
of these transfer paymentsis that the agents compensate among themselves for transfers of random
payoffs. For example, a risk-averse agent (that is an agent who ‘hates’ uncertainty) who receives a
large fraction of X can be compensated by the other agents if they give him an adequate positive
amount d;. The set of alocations that codition S can obtain, contains all such alocations for all
X e V(9).

In our model, allocations are defined as follows. Let S be a codlition of agents. An alocation
of the single random value R(S) to the agentsin S isadivision of this stochastic payoff where each
agent receives amultipleof R(S). Given avector p € R, pR(S) isan alocation (in terms) of R(S)
where agent i € S receives the (possibly negative) multiple p; R(S). Such an alocation is efficient if
> ics pi = 1. Thus, we seethat the model of Suiis et al. only allocates fractions of stochastic payoffs
while our model allocates multiples of such payoffs. Furthermore, the model of Suiss et al. alows
for deterministic transfer payments while our model does not alow for this. In specific applications
these payments do not always seem very redlistic. If you recall the second example at the beginning
of thissection about creditors claiming their money from afirm that went bankrupt, then it seemsvery
unlikely that the creditors will decide upon deterministic transfer payments among themselves once
the portfolio will be distributed.

First, we set up aframework that defines how each agent compares any two stochastic payoffs that
may be allocated to him. In thisframework we introduce a so-called embedding map «; for agent 4
that ‘embeds’ one stochastic payoff in the other as follows. For specific pairs of stochastic payoffs X
andY whereY # 0, o; (X, Y) isthereal number « such that agent ¢ isindifferent between receiving
X or Y. Our assumptions on the preferences imply that this number « is uniquely determined and
so, we have for each agent a unique embedding of X intoY".

Specia attention will be paid to convexity in cooperative situations with uncertain payoffs. We
define three types of convexity for games corresponding to these situations. The three types are
coalitional-merge convex, individual-merge convex and marginal convex. The first two are based on
the marginal contributions of a coalition of agents and a single agent, respectively, while the third
type, marginal convexity, isbased on whether or not al the marginal vectors belong to the core of the
game. We show that coalitiona-merge convexity implies individual-merge convexity, which in turn
implies marginal convexity. Examples show that reverse relations need not hold. In particular, each
marginal convex game has a nonempty core as well as each subgame of an individual-merge convex
game. Besides, we extend the definition of the Shapley value for TU games as the average of the
marginal vectors to our class of stochastic cooperative games. We show that the Shapley valueis an
element of the core of amarginal convex game for certain types of preferences.

The remainder of this paper is organized as follows. Allocations of random variables and the



preference relations of the agents over these allocations are defined in section 2. After this, we givea
formal description of our model in section 3 and we extend several basic notions from deterministic
TU games, like alocations, imputations, superadditivity, the core and marginal vectors, to our model.
We end this section with an explicit example of a bankruptcy game to illustrate the new notions. In
section 4 we introduce and study the three types of convexity as discussed above. As opposed to
deterministic TU games, we show that thesetypes are not equivalent. However, they al imply that the
core of the game isnonempty and for certain types of preferences thiscore containsthe Shapley value.
Furthermore, while deterministic bankruptcy games are convex, an exampleindicatesthat bankruptcy
games with an uncertain estate may or may not satisfy any of the introduced convexity types.

2 Preferencerelations

A complete preference relation of an agent describes which one of two aternatives this agent weakly
prefers to the other, for any two aternatives. Here, the alternatives are random variables alocated to
thisagent. For this, we have to define allocations of random variables before we can turn our attention
to the preference relations. But we will start with the probability space.

Let (Q2, F, P) be aprobability space, where 2 isthe outcome space, F isac-algebrain 2 and P
is a probability measure on F. A stochastic variable X € R.F is ameasurable function that assigns
to each outcome w € Q areal number X (w). The set of all stochastic variables X with a finite
expectation is denoted by £ and £ isthe set of all nonnegative stochastic variablesin £. By 0 we
denote the stochastic variable that takes the value zero for sure. Notethat 0 € L.

A deterministic cooperative game with transferable utility, or TU game, is described by a pair
(N,v) where N isthe set of agentsand v : 2V — IR isthe characteristic function assigning to each
codlition S ¢ N avauev(S) and v(@) = 0. If we introduce uncertainty into this model, such
that coalitions of agents may not know for sure what payoff they will receive, then the payoffs will
be random variables. Denote by R(.S) the stochastic payoff (reward) in £ to codition S. For a
nonempty codition S of agents, an allocation (interms) of R(.S) isadistributionof multiplesof R(S).
If p € R® then pR(S) isan alocationin terms of R(S) where agent i € S receives p; R(S). Such an
allocationis efficient if 3, ¢ p; = 1. For ease of notation define A*(S) = {p € R¥| Y;cqpi = 1}.

Now that we know how the payoffs of the coalitionscan be distributed, it istimeto see how agents
compare two stochastic payoffs. First we restrict ourselves to nonzero random payoffs and after that
we include the zero payoffs. Let A = {R(S)| S C N, S # 0, R(S) # 0} bethe set of al nonzero
payoffsto codlitions of agents. Rename them such that A = {R(S1), R(S2), ..., R(Sm)} for some
integer number m. Because alocations are multiples of payoffs, the set of all possible stochastic
payoffs restricted to the random valuesin A equals B = {pR(Sk)|p € R, R(Sk) € A}. By =; we
denote the preference relation of agent i € IV over B. If for some stochastic payoffs X, Y it holds
that X =, Y then the agent weakly prefers receiving the stochastic payoff X to receiving Y while
X »; Y meansthat theagent strictly prefers X toY. If X ~—; YandY —; X thenwewrite X ~; Y,
the agent isindifferent between receiving X or Y. We make the following assumption about how an



agent compares two payoffsin B.

Assumption 2.1 For each agenti € N there exists a function f? : R — RR™, which is surjective,
continuous and monotoneincreasing, such that

1. fi(t)R(Sk) & Fi(#)R(S)) ifand onlyift > ¢/,

2. fi(0)=0

forany k,l € {1,2,...,m}.

Thiskind of preferencesis particularly suitablefor our model, which will be presented in the next
section. So, when agent ¢ compares the payoffs pR(Sk) and ¢R(S;) then pR(Sk) =; ¢R(S;) if and
onlyift = (fi)~t(p) > ¢ = (f{)~*(g). The assumptionson f? imply that these inverse functions
exist and the condition f (0) = 0 isanormalization condition. One may interpret thefunction (f;)~*
as somekind of utility function with respect to multiples of R(.Sj) only.

We say that a preference relation -, is reflexive if X ~—; X istruefor al X € B. Secondly,
itistransitiveif X =—; Y andY ; Z impliesthat X =, Z forany X,Y, Z € B and thirdly, it is
monotone increasing when pR(S) =, ¢R(Sk) if and only if p > ¢. The following theorem shows
that these properties hold.

Theorem 2.2 If a preference relation -, satisfies assumption 2.1 then it is reflexive, transitive and
monotoneincreasing.

The proof is |eft to the reader. Another implication of assumption 2.1 isthat R(Sy) >; 0 for all
R(Sy) € A because 1R(Sy) = R(Sk) =i OR(Sg) = 0if and only if t > ¢’ where 1 = f}(¢) and
0= fi(t') & t' = 0. Thisistrue because f? is monotoneincreasing. Similarly it follows that

pR(Sk) =0 < p>0
pR(S;) ~0 <& p=0
pR(Sk) <0 < p<O.

The following example presents two preference relations that satisfy assumption 2.1.

Example 2.3 The first type of preferences we discuss here concerns expected values of random
variables. Suppose that the preferences of agent ¢ are such that X —; Y if and only if E(X) > E(Y')
forany X,Y € B, where E(X) isthe expectation of X . Wecdll thistype of preferences expectation-
preferences. Then fi(t) = t/E(R(Sk)) for al k € {1,2,...,m} makes sure that ; satisfies
assumption 2.1.

A second type of preferences involves quantiles of random variables. Let ug = sup{t €
R|Pr{X <t} < f3;} bethe 5;-quantile of X, where 0 < 3; < 1 issuch that ugi(s’“) > 0 for all
R(S) € A. Déefine the utility function U; by Uy(X) = uj if E(X) > 0 and U;(X) = uy g,
otherwise. Supposethat X =; Y if andonly if U;(X) > U;(Y) forany X, Y € B. We call thistype
of preferences quantile-preferences. The functions f{(t) = t/ugi(sk) foral k € {1,2,...,m} will

dothejob. O



Note that for both expectation- and quantile-preferences al the functions f{ are linear, that is,
fit) = fi(Otfordlie N,k € {1,...,m}. Wewill returnto thistype of preference relations|ater
in this section.

An important consequence of assumption 2.1 is given in the next theorem, where B_y =

{pR(Sk) € B|p # 0}.

Theorem 24 Forall X € B,Y € B_gandi € N there exists a unique number o € IR such that
X ~i aY.

Proof. Let X € B,Y € B_gandi € N, then X = pR(S) forsomep € R, k € {1,2,...,m}
andY = ¢qR(S;) forsomeq # 0,1 € {1,2,...,m}. By assumption 2.1 there existsanumber ¢t € R
suchthat fi(t) = p. By definitionof f% it holdsthat f](t)R(S;) ~; fi(t)R(Sk) = X. We know that
t = (f)"(p) and thisgives
X~ I )RS = (D)) /g aR(S)
= D ®)/a-Y.

We concludethat o = £ ((f})~!(p))/q. Thefunction f? ismonotoneincreasing and thisimpliesthat
this number o isunique. O

To be able to keep track of which « is connected to which variables X', Y, and ¢ we define for all
agentsi € N the embedding function«; : B x B_g — R by a;(X,Y) = fi((f{)"*(p))/q, and so,
X ~; a;(X,Y)Y,where X = pR(Sg) andY = qR(S)), ¢ # 0. Thus, the embedding function «;
gives a complete description of the preference relation of agent i.

What happensif R(S) = 0 for some coalition S of agents? For all X € B_ it holdsthat either
X =;00r X <; 0. Because aR(S) = 0 forany o € R it followsthat for @l i € N there exists no
a € Rsuchthat X ~; aR(S). Theonly thingwewill definein thiskind of situationis«;(0,0) = 1.
The following example shows what the embedding functions look like for the preferences in the
previous example.

Example2.5 Consider the preference relations in the previous example and take X € B, X =
pR(Sk),andY € B_y, Y = qR(S;). For the expectation-preferencesit holds that

ai(X,Y) = fi((fi) " (p))/a = PE(R(SK))/(¢E(R(S1))) = E(X) /E(Y)
and for the quantile-preferencesit follows that
ai(X,Y) = puf ™ /(qui ™)

where0 < 3; < 1 issuchthatugi(sl) >0foralle{1,2,...,m}. O

The next theorem states some nice properties of the function «;.

Theorem 2.6 Forall i €¢ N



1. o;(hZ,Z)=hforanyh € R, Z € B_y,
2. 0i(i(X, Y)Y, Z) =a;(X, Z)forany X € BandY, Z € B_y,

3. ai(pR(Sk), ¢R(S1)) = pai(R(Sk), R(S1))/q for any pR(Sk) € B and ¢R(S;) € B if the
functions f{, k € {1,...,m}, arelinear.

Proof. For thefirstitem,leth € Rand Z € B_y,thenhZ ~; a;(hZ, Z)Z by definition of «;. From

theorem 2.2 we know that »-; is monotoneincreasing and thisimpliesthat h = o;(hZ, Z).
Toprovetheseconditem,let X € BandY, Z € B_y. ThenX ~; (X, Y)Y ando; (X, Y)Y ~;

a; (o (X, Y)Y, Z)Z by definition of «;. According to theorem 2.2, -, is transitive, and so, X ~;

ai(0(X, Y)Y, Z)Z. Hence, (i (X, Y)Y, Z) = a;(X, Z) because -; isalso monotoneincreasing.
Finally, let pR(Sk) € B and ¢R(S)) € B_y. If thefunctions f; arelinear then

ai(pR(Sk), qR(S)) = fI((fF) " )/ a=pfi((fH)7(1)/q
= pai(R(Sk), R(S))) /4,

which concludes the proof. O

3 Themodd

In this section we will describe our model in more detail. We define the corresponding games where
coalitionsof playersreceive randomvalues. After thiswe extend some basi ¢ definitionsin cooperative
game theory to our model and illustrate these concepts with an example of a bankruptcy game.

Given aset of agents N = {1,...,n}, variables R(S) € L, and preference relations -, for all
i € N,agame (N, R, o) isacooperative game where N denotesthe set of players, themap R assigns
to each nonempty codlition in N arandom valuein £, and a = («;);en With «; the previously
defined function that describes what multiple of one stochastic variable player i finds equivaent to
another stochastic variable.

We will now extend various notions from deterministic TU games to cooperative games with
stochastic payoffs. Recall from the previous section that if p € R then pR(S) is an alocation (in
terms) of R(S) and such an alocation is efficient if p € A*(S) = {p € R¥| X;copi = 1}. An
alocation pR(S) for codlition S isindividual rational if p; R(S) =; R({:}) forali € S. We will
denote the set of dl efficient individual rational alocationsof R(.S) for codlition S by IR(S).

An dlocation of R(N) is called an imputation if it is individual rational and efficient. The
imputationset I(N, R, ) isthe set of all imputations.

I(N, R,a) = {{piR(N)}iew |p € A*(N); piR(N) x; R({i}) forall i € N}

Notethat I(NV, R, o) = IR(N). Depending upon the random values of the various coalitionswe can
say something more about the structure of the imputation set.



Lemma3.l I(N,R,a) C {pR(N)|pc A*(N), p; > 0foralli c N}if R(N) #0. If R(N) =0
and R({i}) = 0 for all i € N then I(N,R,a) = {pR(N)|p € A*(N)}. If R(N) = 0 and
R({i}) # 0 for somei € N then I(N, R, o) = ().

Proof. Let R(N) # 0. If I(N, R, ) = () then we are done. Otherwise take an imputation pR(N).
Then p;,R(N) =, R({i}), which is equivaent to p; > «o;(R({i}), R(N)) > 0 where the first
inequality follows from monotonicity of the preferences and the second one from R(N) # 0 and
R({i}) € L. Thetwo remaining statements are trivial. 0

The game (N, R, «) issuperadditiveif forall S, 7 Cc NwithSNT =0, S # @ and T # 0, for
alpR(S) € IR(S) andfordl gR(T) € IR(T) thereexistsan alocationrR(SUT), r € A*(SUT),
such that all players are weakly better off:

TZR(S U T) ,>\:z sz(S) foralli € S,
riR(SUT) 7; ¢R(T) forallieT.

Noticethat rR(SUT) € IR(SUT). We aso could have formulated superadditivity in the following
way: foral 171,15, ..., T, C N,k > 2,suchthat T; # () and T; N T; = @ for al ¢ # j, and for all
P'R(T;) € IR(T;),i = 1,2, ..., kthereexistsan dlocation rR(UE_, T;), » € A*(UF_ T;), such that

riR(UTy) 2o piR(Ty) fordl j € Ty, i = 1,2, k, (1)

al players are weakly better off. Obvioudly, this alternative definition implies superadditivity. The
other way around isalso true, as is shown hereafter.

Lemma3.2 If agame (NN, R, ) issuperadditive then it satisfiesthe alternative definition (1).

Proof. Assume that the game (N, R, «) is superadditive. Then condition (1) is satisfied for k£ = 2.
We will use induction on the number & of coalitions to show that this game satisfies condition (1).
So, supposethat (1) is satisfied for & codlitions, 2 < k < n with n the total number of players. Take
coditionsTy, T, ..., Tr+1 C N suchthat T; # @ and T;NT; = O fori # j andlet p' R(T;) € IR(T;)
fori =1,2,...,k+ 1. By induction there exists an allocation rR(U¥_, T;), r € A*(UF_,T;), such
that

riR(U Ty) 2o piR(Ty) forall j € Ty, i = 1,2, k. )

Notethat p’ R(T;) € IR(T;) impliesthat r R(US_, T;) € IR(UE_,T;). It follows from superadditivity
and p* 1 R(Ty,41) € IR(Ty11) that thereexistsan alocation sR(UF!T;), s € A*(UM]T;) suchthat

SjR(UfillTi) ?\:j TjR(UleTi) for aII] S UleTi
s;R(UZIT) =5 ph T R(Thyr) fordl j € Tip

~

Transitivity of the preference relations and (2) imply that

s;R(USHT) & piR(Ty) fordl j € Ty, i = 1,2, k+ 1.

8



Hence, (1) issatisfied for & + 1 coalitions. O

This result implies the following relation between superadditive games and the sets IR(.S) of
individual rational alocations.

Lemma3.3 If agame (V, R, «) issuperadditive then IR(S) # () for all nonempty coalitions S.

Proof. Let the game (N, R, ) be superadditive and take a codlition S C N, S # (). According to
lemma 3.2 the aternative definition (1) is satisfied. Let s be the number of playersin S and define
T, ={i}fori=1,...,s. Then IR(T;) = IR({i}) = {R({i})} and U;_, T; = S. By (1) thereexists
an dlocationrR(S), r € A*(S), suchthat r;R(S) =; R({i}) foral i € S. ThusrR(S) € IR(S).
0

Foral S ¢ N, S # (), the set dom(.S) contains the allocations of R(V) restricted to coalition S
that are dominated by this codition, i.e., there existsan allocation gR(S), ¢ € A*(.S), that is strictly
preferred by al members of S.

dom(S) = {pR(N) |p € R®, Ig € A*(S) : GiR(S) =i p:R(N)foralli € S}

The set of dlocationsthat are not dominated by some coalition can take many forms, depending upon
the random values. Let D be a set of alocations of R(V) that satisfy some restrictions. We say
that D is a convex set of allocationsif and only if the set {p| pR(N) € D} isaconvex set in RY.
Furthermore let ps = {p; }ics betherestriction of p € RY to codition S.

Lemma3.4 Let S C N beanonempty set of players. Then

peRY if R(S) =0and R(N) =0,

psR(N) ¢ dom(S) < { p; > 0forsomei € S if R(S)=0and R(N) # 0.

If R(S) # 0 and R(N) = 0 then psR(N) € dom(S) for all p € RY. Furthermore, if all the
functions f{ are linear, R(S) # 0 and R(N) # 0 then the set {pR(N)|psR(N) ¢ dom(S)} is
CONnvex.

Proof. We only prove the last statement. The remaining parts of the lemma are trivial.

Let (N, R, o) be acooperative game with stochastic payoffsand let S C N be anonempty set of
players. Assumethat R(S) # 0 and R(N) # 0. ThenpsR(N) ¢ dom(S) if and only if there exists
no vector ¢ € A*(S) suchthat ¢;R(S) >; p;R(N) for al i € S. By monotonicity of the preferences
we have

Aq e A*(S) : a;(¢R(S), R(N)) > p;fordlieS.
By property 3 in theorem 2.6 thisis equivalent to

Aq € A*(S) : gia;(R(S),R(N)) > p; forali € S,



Aq € A*(S) L q; >pi/ai(R(S),R(N))fOI’ dlies§.
Hence,

Zpi/ai(R(S), R(N)) Z 1.

ics
Defineh € R® by h; = 1/a5(R(S), R(N)). Then h; > 0 foral i € S and psR(N) ¢ dom(S) if
andonly if >°,cq hip; > 1. We conclude that the set {pR(N )| psR(N) ¢ dom(S)}isconvex. O

The core of (N, R, a), denoted by C'(N, R, «), consists of all payoff vectors attainable for the
grand coalition that are not dominated by any coalition S, that is

C(N,R,a) = {pR(N)|p € A*(N), psR(N) ¢ dom(S) foral SC N, S#0}.
Because
piR(N) ¢ dom({i}) < piR(N) Zi R({i})

holds for @l ¢ € N, the core is a subset of the imputation set, C(N, R,a) C I(N, R, ), for dll
games (N, R, ). In particular, C(N, R, ) = I(N, R, ) for 2-person games. Using the resultsin
the theorems 3.1 and 3.4 we can show that the core is convex if the functions f; of every agent are
linear.

Theorem 35 Let (N, R, ) be a cooperative game with stochastic payoffswhere all the functions f;
arelinear. Thenthecore C(N, R, o) isa convex set.

Proof. Let undom(S) = {pR(N)|p € A*(N), psR(N) ¢ dom(S)} be the set of efficient aloca-
tionsof R(NN) that are not dominated by coalition S. Then

I(N, R, o) = Njen undom({i})
and thisimplies that
C(N,R,a) = Ngcn, s2p undom(S) = I(N, R, o) N (ﬂch’ 1S|>2 undom(S)) .

Firstly, suppose that R(N) = 0. If R(S) # 0 for some .S C N then undom(S) = () according to
theorem 3.4 and by this C(N, R,a) = (). If R(S) = 0 for dl S C N then according to the same
theorem undom(S) = A*(NV) foradl S ¢ N andso C(N, R, o) = A*(N), whichisaconvex set.
Secondly, if R(N) # 0 then undom({i}) = {pR(N)|p € A*(N), p:R(N) z: R({i})} =
{pR(N)|p € A*(N), p;i > o;(R({i}), R(N))} isaconvex setforal i € N andsois I(N, R, «).
If R(S) = 0 for some S C N then undom(S) = {pR(N)|p € A*(N), p; > 0forsomei € S}
according to theorem 3.4 and by theorem 3.1 it follows that undom(S) D I(N, R, «). Thisimplies
that undom(S) N I(N, R, o) = I(N, R, ), whichisa convex set. If R(S) # 0 thenit followsfrom
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theorem 3.4 that undom(S) is a convex set. We conclude that also in case R(N) # 0 it holds that
C(N, R, a) isaconvex set. 0

A permutation o of the playersin N is a function from {1,2,...,n} to N and o(i) denotes
which player in N is at position i. Let II(/V) be the set of all permutations of N. Denote by
S7 = {o(k)| k < i} the set of thefirst ¢ players according to permutation o, ¢ € {1,2,...,n}, and
let S§ = 0. In adeterministic TU game (IV, v) the marginal vector m? (v) is defined by

Mgy (v) = v(5§) = v(Si_1) (= v({o (1), ..., 0(k)}) —v({o(1),...,0(k = 1)}))

foreachk € {1,2,...,n}.
In cooperative games with stochastic payoffs marginal vectors can be defined in a similar way.
For this we need the foll owing assumption on cooperative games with stochastic payoffs.

Assumption 3.6 If R(T") = 0 for some coalitionT C N then R(S) =0foral S C T, S # 0.

Thefirst player accordingto o, i.e., o(1), receivesY ) = R({o(1)}). If thesecond player, o(2),
joins then the two players together can get R(SJ). By assumption 3.6 %(1)(Y0"(1)a R(S9)) exists
and because Y7, ~o(1) %(1)(Y§(1), R(S9))R(S) the marginal contribution R7 5 of player o(2)
to coalition SY is

YGG(Q) = R(Sg) — Qg(1) (ch(l)a R(Sg))R(Sg)
= [1 = a0y (V) R(S9)| R(SS).

Similarly, the marginal contribution of thethird player is
Yz = R(S35) — aeq)(Y50), R(S3))R(S5) — ag2) (Yo(a), R(S5))R(S3)
= [1 - Z (k) (Yo (k) B(S3 ))] R(S3)
and the marginal contribution of thei'! player, o (i), to codlition S7_; is
aa(z = [1 - Z aa(k a(k (Sza))‘| R(Sza)

forali e {1,2,...,n}. Thenthemarginal vector M? isdefined by

M7y = o) (Yo, R(N))R(N)

fori =1,2,...,n, and so, this marginal vector is an efficient alocation of R(N). Based on these
marginal vectors we define the Shapley value ¢ as the average of the n! margina vectors,

just likeits counterpart for deterministic TU-games (cf. SHAPLEY (1953)).
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To conclude this section, we give an example of a bankruptcy game that illustrates the concepts
introduced in this section. In deterministic bankruptcy situations, an estate e > 0 has to be divided
among theagentsin N. Agenti € N claimstheamount d; > 0 and the total amount claimed exceeds
the estate, >,y d; > e. Thevalueof acoalition S C IV in the corresponding game is given by (cf.
O’'NEILL (1982))

v(S):maX{e— Z di,O}.

iEN\S

Situationswhere the estate e is not known with certainty may also occur. One can think for example
of the following. A widower just passed avay and since none of his children wants to have any
of his properties they will al be sold a some future point in time. However, at present each child
clamsadeterministic part of thetotal stochastic revenue. Our model offersaway to ‘translate’ these
deterministic claims in a justifiable way into multiples of the total amount of properties (and hence
into multiples of the eventual realized revenue) without having to await the specific outcome of the
property sale.

To modd these situations as a cooperative game with stochastic payoffs, denote the uncertain
estateby E € £, and thedeterministic claim of agent i by d;. These claimsare such that they always
exceed the estate, that is, theevent £ < 3, d; takes place with probability 1. Let IV be the set of
claimants. Then

R(S) = max{E - > di o}

iEN\S

isthe payoff to the codition S C N of clamants.

Example 3.7 Consider the following bankruptcy situation. There are three agents, N = {1, 2, 3},
and their claims on the estate are d; = 200, do = 180, d3 = 100. The estate E' equals

200 w.p.1/4,
E =< 300 wp.1/2,
400 w.p.1/4,

where w.p. means 'with probability’. From R(S) = max{E — > ,cn sdi, 0} it follows that the
values of the various coalitions are

0 wp.1l/4

R({1}) = max{F —280,0} ={ 20 w.p.1/2
120 w.p.1/4

B B _J 0 wp.3/4
R({2}) = max{F — 300,0} = { 100 wp. 1/4

and so on. We notice that R(N) = max{F,0} = E. The preference relations of the players are
as follows. Player 1 has expectation-preferences and the players 2 and 3 have quantile-preferences

12



with 82 = 0.75 and 83 = 0.9. Thusfor player 1 it holds that for all X,Y € B X =; Y if and
only if E(X) > E(Y). In section 2 we showed that o;(X,Y) = E(X)/E(Y) for dl X € B,
Y € B_y. For players 2 and 3 and for all X,Y € B it holds that X —; Y if and only if
Us(X) > Uy(Y) with Us(X) = uj. if E(X) > 0 and U;(X) = ui" 5, otherwise, for i = 2, 3. Then
(X, Y) = pup ¥ /(qus ™) fordl X € B,Y € B_q suchthat X = pR(Sy) and Y = gR(S)).
Because 3; > 0.75 for i = 2, 3 it holdsthat ugi(s) >0foral SCc N,S #0.

All individual rational allocations are in the set

and the core equals

C(N,R,a) =< pR(N) € I(N,R,«)
{ p2+p3>1/2

| 9py + 8ps > 6, 11py + 8ps > 22/5, }

Next, we will calculate the six marginal vectors. Let o3 = (1,2,3). Then player o(1)=1 receives
R({1}). Player 2 isthe second player according to o and because R({1}) ~1 1/5R({1,2}), his
margina contribution to codition {1} is (1 — 1/5)R({1,2}) = 4/5R({1,2}). From R({1}) ~
2/15R(N) and 4/5R({1,2}) ~2 3/5R(N) it follows that the marginal contribution of player 3 to
codlition{1, 2} equals(1—2/15—3/5)R(N)=4/15R(N). ThusM°* = (2/15,3/5,4/15)R(N).
The other five marginal vectors are as follows.

oy =(1,3,2) M°2 = (2/15,1/2,11/30)R(N)

o3 =(2,1,3) M7 = (4/9,1/4,11/36)R(N)

o4 =(2,3,1) M =(1/2,1/4,1/4)R(N)

o5 = (3,1,2) M° = (4/11,129/220,1/20)R(N)
o6 = (3,2,1) M?° = (1/2,9/20,1/20)R(N)

It is easy to check that M7 belongsto the core for ¢ = 3,4, 5,6. The other margina vectors, M !
and M°2, only belong to the imputation set. The Shapley value ¢, which is the average of the six
marginal vectors, equals ¢ = (1027/2970,29/66,29/135)R(N). 0

4 Threetypesof convexity

The following three statements about a deterministic TU game (IV, v) are equivalent (cf. SHAPLEY
(1971) and IcHIISHI (1981)).

i. Foral U ¢ Nandforal S ¢ T c N\U itholdsthat v(SUU) —v(S) <v(TUU) —v(T).
ii. Foralie Nandforall S ¢ T'c N\ {:}itholdsthat v(SU{i}) —v(S) < v(TU{i}) —v(T).

iii. All n! marginal vectors m? of (N, v) belong to the core C(v).

13



A game (N, v) that satisfies these statementsis called a convex game. Based on these statements we
define three types of convexity for cooperative games with stochastic payoffs.

Similar to Sulss and BorM (1999), statement i can be interpreted as follows. The marginal
contributionof coalition U to codition.S, v(SUU) —v(.S), issmaller than thecontributionof U to T,
v(T'UU) —v(T). Thus, when alocationsof v(S), v(T") and v(S U U) are proposed and if coalition
S iswillingtolet U join, that is, the members of S get from v(S U U) at least as much as what they
get from v(S), then there exists an alocation of v(7'U U) that makes all playersinT U U better off.
Theplayersin T get at least as much from v(T' U U) as from v(T") and the playersin U get at least
as much from v(T'U U) as from v(S U U). If we take into account that players will only consider
individual rational allocations, then we can define afirst kind of convexity as follows.

A cooperative game with stochastic payoffsis caled coalitional-merge convex if and only if it is
superadditiveand if foral U ¢ N, U # 0, foral S c T ¢ N\ U suchthat S # @ and S # T,
for dl pR(S) € IR(S), for al ¢R(T) € IR(T) and for dl rR(SUU) € IR(S U U) such that
riR(SUU) =, p;R(S) forall i € S, thereexistsanalocation sR(T'UU), s € A*(T'UU), suchthat

SiR(T U U) ,>\:z qiR(T) foralieT,
SiR(TUU) ,>\:z TiR(SU U) foralie U.

Notice that if we allow for S = () in the second part of this definition and will define R() = 0 and
IR(D) = 0, then that part implies superadditivity. Thus we can drop thefirst part of the definition. In
our opinion, the present definition allows for a better interpretation without ad hoc definitionsfor the
empty set. Thisiswhy we prefer this bipartite definition.

If we restrict ourselvesto U = {i} for al i € N then we arrive at a second type of convexity,
whichisrelated to statement ii. For the same reason as above thisdefinitionis split into two parts. A
cooperative game with stochastic payoffsiscalled individual-mergeconvexif and only if thefollowing
two conditionshold. In thefirst place, foral i € N, foral T'c N\ {i} suchthat 7' # () and for all
qR(T) € IR(T) thereexistsan dlocation sR(T'U {i}), s € A*(T'U {i}), such that

sif(T U {i}) Zi R({i})-
Secondly, forali € N,foral S c T C N\{i}suchthat S # (and S # T, foral pR(S) € IR(S),
foral gR(T') € IR(T) and for al rR(S U {i}) € IR(S U {i}) such that r; R(S U {i}) =; p; R(S)
foral j € S, thereexistsan alocation sR(T U {i}), s € A*(T U {i}), such that

{ s;R(TU{i}) =; ;R(T) fordljeT,

SjR(T U {’L}) ?\:j qu(T) fordl j €T,
siR(T' U {i}) = mR(S U {i}).

Finally, we call a cooperative game with stochastic payoffs marginal convex if and only if al its

marginal vectors M? belong toitscore. This provides a sufficient condition for the Shapley value to

belong to the core when each player either has expectation- or quantile-preferences.

Theorem 4.1 Let (N, R, «) be a marginal convex game where all the functions f,ﬁ arelinear. Then
the Shapl ey value belongsto the core C'(N, R, ).
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Proof. According to theorem 3.5 the core C(N, R, «) is a convex set. Because dl the margina
vectors belong to the core, so does their average, the Shapley value. O

When we consider other types of preferences then this result need not hold, as is shown in the
next example.

Example4.2 Consider the game (N, R, ) with N = {1,2,3}, R({1}) = R({2}) = R({3}) = 0,
R({1,2}) = R({1,3}) = R({2,3}) = 1 and R(N) ~ U([2,3]), that is, R(N) is uniformly
distributed over theinterva [2,3]. Theplayers1 and 3 have expectation preferences and the preference
relation of player 2 is represented by the function

tt,t,tY6/2) [ t>0,
P /2)
(t,t,t,2t/5) ,t<O0.
The coordinates of f? correspond to the coditions {1, 2}, {1,3}, {2,3} and N, respectively. The
core of thisgame,

e A*(N), >0, >0, >0,5 128 6>2’
C(N’ R’ Oé) — {pR(N) b ( ) b1 = D2 = b3 = p1+ (pQ) = }’

5p1 + 5ps > 2, 128(p2)® + 5pg > 2

consistsof two digoint setsin A*(V). It containsall the marginal vectors and therefore thisgameis
marginal convex. Nevertheless, the Shapley value¢ = (19/60, 11/30,19/60) R(N) isnot an element
of the core sinceit belongs to both dom({1, 2}) and dom({2, 3}). o

From the definitionsit followsimmediately that a coalitional -merge convex game is superadditive.
If thereexistsacoalition S # ) such that IR(S) = 0 thenthegame (N, R, «) is not superadditive by
lemma 3.3 and henceit is not coalitional-merge convex. The following theorem statesa similar result
with respect to marginal convexity.

Theorem 4.3 If there exists a coalition S # () with IR(S) = () then the game (N, R, a) is not
marginal convex.

Proof. Recal that
IR(S) = {pR(S) |p € A™(S), piR(S) zi R({i}) forali e S}.

Let S # () beacoalition with IR(S) = 0 such that IR(T') # 0 for all subsetsT" of S. Notethat S
should contain at least two players since IR({i}) = {R({i})} # 0 for al i € N. Without loss of
generdlity assumethat S = {1,2,..., s}. Let o beapermutation of NV such that o (i) = i. We have
seen before that the margina vector M“ is defined by

M3y = o) (Y55, B(N))R(N)

foral j € N where
j—1
o) = |1~ kz:l (k) Ya(hy B(S55))) | R(S5;)-
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individual-merge convex
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marginal convex

Figure 4.1: Relations between the three types of convexity.

IfY7 <; R({j}) forsomej < sthen M7 <; R({j}) because M7 ~; Y. ThusM? ¢ I(N, R, o).
Otherwise, if R =; R({j}) for al j < s then IR(S) = 0 impliesthat Y7 <5 R({s}). From
M? ~4 YZ weobtain, once again, that M7 ¢ I(N, R, o). Consequently, M? ¢ C(N, R, &) since
I(N,R,a) D C(N, R, ). We conclude that this gameis not marginal convex. O

Our definitions of convexity arenot equival ent for cooperative gameswith stochastic payoffs, while
the corresponding notions are equivalent for deterministic TU games. Figure 4.1 showsthe relations
between thethreedefinitions. Thelatter relation, individua -mergeconvex games are marginal convex,
isshown in the next theorem.

Theorem 4.4 Let (N, R, ) be a cooperative game with stochastic payoffs. If it isindividual-merge
convex then it ismarginal convex.

Proof. Let(N, R, «) beanindividua-mergeconvex gameand takeapermutation o € II(V). Without
loss of generality assumethat (i) = i for dl i € N. Furthermore, let Z7* be an efficient alocation
of R({1,...,k}) defined by Zf’k = oY, R{1,...,k}))R({1,...,k}) fori =1,2,...,k and
k=1,2,...,n. Noticethat Zo™ = M¢°. We show that Z>* is a core-element of the subgame I'*
with player set {1, 2, ..., k} by inductionon k.

If £ = 1 then it is clear that Z%! € C(T''). Next, assume that Z%*F ¢ C(T'*%) for k =
1,2,...,m — 1 where m < n. We have to prove that Z%™ € C(I'"™). Consider a codition
S c {1,2,...,m —1}. Thenit follows from zom~1 € C(I"™1) and Z7™ ~; Z7™ " for all
j € Sp,_1that {Z7™}jes ¢ dom(S). Therefore, coalition S has no incentivesto leave the codition
{1,2,...,m}.

Next, we show that also the codition .S U {m} has noincentiveto leavethe codition {1,...,m}
if Zo™ isdlocated. Let pR(S) € IR(S) besuchthat 3° ;g a;(p; R(S), R(SU{m})) isminimized.
Define r; = a;(p;R(S), R(S U {m})) then r;R(S U {m}) ~; p;R(S) foral j € S and ry,, :=
1 -3 ,egrjisaslarge as possible. So, due to monotonicity of the preferences, r,,, R(S U {m}) is
the best payoff player m can expect when cooperating with coalition S. Let 7" = {1,...,m — 1}
andi = m,then T U {i} = {1,...,m}. Because Zo™ ! ¢ C(I"™ ') c (™ ') and [(I™!) =
IR({1,...,m — 1}) it holdsthat Z=™~! € IR(T). Since the game (N, R, ) is individual-merge
convex thereexistsan alocation sR({1, ...,m}),s € A*({1,...,m}), such that

siR{L,...,m}) &y 27" forj e {1,...,m—1},
smR{1,...,m}) Zm rmR(SU{m})
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From s;R({1,...,m}) 7; Z;”m_l ~; Z7™" = a; (Y7, R({1,...,m}))R({1,...,m}) and theo-
rem22wederives; > (Y7, R({1,...,m}))forj=1,...,m— 1. Thus
Sm = 1-— Z Sj
j€S
< 1- Zaj(Yj", R({1,...,m})) =an(Ye,R{1,...,m})),

j€S
wherethelast equality holdsbecause Z7™ isan efficient alocation of R({1,...,m}). So, Z&™ =,
smR({1,...,m}). Together with s,, R({1,...,m}) Zm rmR(S U {m}) and transitivity we obtain
Zom = rm R(S U {m}). But we stated before that r,,, R(S U {m}) isthe best payoff player m can
obtain when cooperating with coalition S. Therefore there exists no individual rational allocation for
codition .S U {m} that yields player m astrictly better payoff then Z7:"*. Hence, coalition S U {m}
has no incentive to part company with coalition Sg, if Z%™ isallocated. Consequently, we have that
Zo™ e C(I'™). Taking m = n then givesthat M7 = Z°™ € C(I"™) = C(N, R, o). o

For deterministic convex games it iswell known that each of its subgames has a nonempty core.
We can derive a similar result for games with stochastic payoffs.

Theorem 4.5 Let (N, R, ) be a cooperative game with stochastic payoffs. If it isindividual-merge
convex then all of its subgames have a honempty core.

Proof. When the game (N, R, «) is individual-merge convex then each subgame (S, R, «), S # 0,
is aso individual-merge convex. According to theorem 4.4 each subgame is margina convex. We
concludethat al subgames have a nonempty core. O

For two-person games it holds that al three types of convexity are equivalent. In particular it
holds that marginal convex games are individua-merge convex. The following example shows that
thisneed not hold for games with three or more players. Because coalitional-merge convex games are
by definition individual-merge conve, it followsimmediately from the next example that a margina
convex game also need not be coalitional-merge convex.

Example 4.6 Consider the following game (N, R, o) where N = {1,2,3}, R({i}) = 0 for 4l
i€ N,R({1,2}) = 3, R({1,3}) = 2, R({2,3}) = 6 and R(N) ~ U([5, 15]). All players have
guantile-preferences with 5, = 0.1, B, = 0.5 and B3 = 0.9. In particular it holds for ¢; # 0 and
p; € Rforallie N that

ai(piR(S), G:R(T)) = piugy™ /(guuf ),
R(N) R(N)

R(N
piug " = 6p1, p2u52( ) = 10p; and p3ug, = l4ps.

The set of imputationsis
I(N,R,a) ={pR(N)|p1+p2+p3s=1,p; >0fordliec N}.
and the core equals

C(N,R,a) ={pR(N) € I(N,R,a)| 6p1 + 10ps > 3, 6p1 + 14p3 > 2, 10p2 + 14p3 > 6}.
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Takepermutationo; = (1,2, 3). Thenplayer 1receives R({1}) = 0. Next, player 2 gets hismarginal
contributionto coalition {1}, whichis

(1 —ai(R({1}), R({1,2}))) R({1,2}) = (1 = O)R({1,2}) = R({1,2}) = 3.
Player 3 receives all that isleft of R(INV):

(1 — e (R({1}), R(N)) — aa(R({1,2}), R(N))) R(N)
— (1-0—3/10)R(N) = 7/10R(N).

So, M°t = (0,3/10,7/10)R(N). In the same way all the other marginal vectors can be calcul ated
and itis easy to check that they al belong to the core.

However, this game is neither individual-merge nor coalitional-merge convex. Let U = {1},
S={2}andT = {2,3}. ThenSUU = {1,2}andTUU = N. Furthermore, let pR(S) = R({2}),
qR(T) = (1,0)0R({2,3}) and rR(SU U) = (1,0)R({1,2}). Then pR(S) € IR(S), because
R({2}) z2 R({2}), ¢R(T) € IR(T), because R({2,3}) zZ» R({2}) and 0 5 R({3}), and
rR(SUU) € IR(SUU) satisfies0 =2 pR(S). If there existsan alocation sR(T'UU) = sR(N),
s € A*(N), such that

SlR(N) ?\:1 TlR(S U U) = R({l, 2})
s2R(N) Z2 2R(T) = R({2,3})
SgR(N) ?\:3 Q3R(T) =0

then thisis equivaent to

6s1 >3 s1>1/2
10s9 >6 <& S > 3/5
14s3 >0 s3>0

But thisimpliesthat s; + s2 +s3 > 1/243/5+4 0 > 1, whichisin contradictionto s € A*(N). O

By definition it holdsthat coalitional -merge convex games are individual-merge convex. Onecan
easily seethat thereverse relation will hold if the game hastwo players. Thefollowingtheorem shows
the same result for games with three players.

Theorem 4.7 Let (N, R, ) be a cooperative game with stochastic payoffs and with three players. If
the gameisindividual-merge convex, then it is coalitional-merge convex.

Proof. Let (N, R, «) be athree-person game that is individual-merge convex. Firstly, we have to
show that the game is superadditive. For this, let S and 7" be two nonempty coalitionsin N such
that S N'T = (). Because there are only three players, we know that either S or T' consists of one
player. Assume without loss of generality that S = {i} for somei € N. Let pR(S) € IR(S), o,
pR(S) = R({i}). Becausethe gameisindividual-mergeconvex, it followsfrom theorems4.3 and 4.4
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that IR(T') # 0. Let qR(T) € IR(T). Thenthereexistsanalocation sR(T'U{i}), s € A*(T'U{i}),
such that

siR(T'U{i}) Zi R({i})
s;R(TU{i}) =; ¢;R({T}) fordljeT.

Hence, the game is superadditive.

Secondly, we have to show that the remaining condition of coalitional -merge convexity is satisfied.
LetU C N. If |U| = 1 then this condition is equivalent to the second condition of individual-merge
convexity withU = {i} and thusitissatisfied. Next, if U = {i,j} C N = {4, j, k} then there exist
no coditions S and 7" suchthat S ¢ T ¢ N\ U, S # 0 and S # T hold and consequently, there
is nothing to check. If U = N then there is aso nothing to check. We conclude that the second
condition of coalitiona-merge convexity is satisfied. O

In case of four or more players, wewere neither able to prove that individua -merge convex games
are coditional-merge convex nor could we find acounterexample. Hence, at thismoment thisremains
open.

Finally, we return to the example of a bankruptcy game in the previous section and we check if it
satisfies any of the convexity concepts introduced in this section. It iswell-known that deterministic
bankruptcy games are convex.

Example 4.8 Consider the same bankruptcy situation asin example 3.7. There we noticed that 1“1
and M°2 do not belong to the core. Hence this game is not marginal convex and consequently it is
neither individual- nor coalitional-merge convex. However, when we change the preferences of the
agents such that all players have expectation-preferences then the corresponding bankruptcy game
satisfies all the convexity concepts. O
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