
  

 

 

Tilburg University

Neighbour Games and the Leximax Solution

Klijn, F.; Vermeulen, D.; Hamers, H.J.M.; Solymosi, T.; Tijs, S.H.; Pere Villar, J.

Publication date:
1999

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Klijn, F., Vermeulen, D., Hamers, H. J. M., Solymosi, T., Tijs, S. H., & Pere Villar, J. (1999). Neighbour Games
and the Leximax Solution. (CentER Discussion Paper; Vol. 1999-110). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420777959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/b9f5b0ab-bfc5-4ad3-a4ba-8e17abb96e59


Neighbour Games and the Leximax Solution

Flip Klijna,1, Dries Vermeulenb, Herbert Hamersa,
Tamás Solymosic,2, Stef Tijsa, and Joan Pere Villard

aDepartment of Econometrics and CentER, Tilburg University, The Netherlands
bDepartment of Economics, University of Maastricht, The Netherlands

cDepartment of Operations Research, Budapest University of Economic Sciences, Hungary
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1 Introduction

In this paper we introduce neighbour games and provide an algorithm to calculate the leximax
solution (cf. Arin and Iñarra (1997)) of neighbour games. The following two examples describe
situations that give rise to neighbour games.

In the first example we consider a sequencing situation in which customers are lined up in a
queue and waiting for a taxi. The taxi company that provides the service has two types of cars:
one that transports only one customer (type A) and one that can only transport two customers
(type B). The first customer in the queue can decide to pick a taxi of type A or wait for the
next customer in the queue. In the latter case they decide both to share a taxi of type B or the
second customer will wait for the third customer. In the latter case the first customer has to pick
a taxi of type A. This procedure is repeated until all customers are transported in a taxi. Since
the costs of sharing a taxi of type B are lower than taking two taxis of type A, it is obvious
that the customers can save costs by sharing a taxi of type B. However, each customer faces the
problem that the cost of a taxi (of type B) is not fixed, because it depends on the trip to bring the
customers to the right locations. Hence, we have that only customers that are neighbours in the
queue can obtain cost savings, and customers that take a taxi of type A have cost savings equal
to zero. All customers in the queue want to choose a combination of taxis of type A and B such
that their cost savings are maximized. Moreover, they are looking for an allocation of the cost
savings that is ‘stable’.

The second example can be viewed as a restricted matching problem. Suppose a river runs
through a number of regions. To be able to utilize this cheap transportation possibility, harbours
have to be built. Because of financial restrictions, each country is able to build at most one
harbour. Neighbour regions might join to build a harbour at their border (which then can serve
both regions) and save costs. The regions are interested in maximizing their cost savings and
finding some proper allocation of the cost savings.

For analyzing both examples we can use cooperative game theory, since one of the topics in
cooperative game theory is the investigation of the stability of allocation rules. For this purpose
we introduce neighbour games. In neighbour games, players are lined up in a one-dimensional
queue. In this queue, players can only directly cooperate with one of their neighbours in the
queue.

It turns out that the class of neighbour games is the intersection of the class of assignment
games (Shapley and Shubik (1972)) and the class of component additive game (cf. Curiel et al.
(1994)). The latter one is a the class of Γ-component additive games (cf. Potters and Reijnierse
(1995)) in which the restricted graph is a line graph. As a consequence, neighbour games have
many appealing properties, such as: the core is a non-empty set and coincides with the set
of competitive equilibria (Shapley and Shubik (1972)), the core coincides with the bargaining
set, and the nucleolus coincides with the kernel (Potters and Reijnierse (1995)). Moreover,
neighbour games satisfy the CoMa-property, i.e., the core is the convex hull of some marginal
vectors (cf. Hamers et al. (1999a)).

In this paper we study in detail the leximax solution (cf. Arin and Iñarra (1997)) for
neighbour games. The leximax solution is an egalitarian solution that equals the core allocation
that minimizes the maximum satisfaction among all players. Note that there is some relation with
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the nucleolus (cf. Schmeidler (1969)), since the nucleolus maximizes the minimum satisfaction
among all non-empty coalitions of players. The nucleolus for neighbour games is studied in
Hamers et al. (1999b)).

The leximax solution and its natural counterpart the leximin solution are investigated for
several classes of games. In Arin and Iñarra (1997) the leximin solution is studied for the class
of convex games and veto games that are monotonic with respect to the grand coalition. Arin
et al. (1998) studied the leximax solution on the class of large core games. Since the class of
neighbour games is not a subclass of any of the above mentioned classes of games we study
the leximax solution for neighbour games. We characterize the leximax solution in terms of
adjustability to egalitarianism, which induces an algorithm for finding the leximax solution.
This algorithm is shown to be of order p3. A nice feature of the algorithm is that it can be
visualized nicely by pictures, showing the process of adjusting and fixing the payoffs of the
players.

In Section 2 we introduce neighbour games, relate them with other classes of games, and
provide a convexity result. In Section 3 we characterize the leximax solution for the class of
neighbour games. The proof of this characterization will be used in Section 4 to provide an
O(p3) algorithm for finding the leximax solution.

2 Neighbour games

In this section we introduce the class of neighbour games and present some results on the core
of neighbour games. But we start with recalling some notions of cooperative game theory.
In particular, we recall the definition of two classes of games that are very closely related to
neighbour games: assignment games and component additive games.

A cooperative game with transferable utility (or game, for short) is a pair (P, v) where
P = {1, ..., p} is a finite set of players and v : 2P → IR is a map that assigns to each coalition
S ∈ 2P a real number v(S), such that v(∅) = 0. Here, 2P is the collection of all subsets
(coalitions) of P .

The core of a game (P, v) consists of all vectors that distribute the gains v(P ) obtained by P
among the players in such a way that no subset of players can be better off by seceding from the
rest of the players and act on their own behalf. Formally, the core of a game (P, v) is defined by

Core(v) := {x ∈ IRP : x(S) ≥ v(S) for all S ⊂ P and x(P ) = v(P )},

where x(S) :=
∑
i∈S xi.

A game (P, v) is called convex if for all i ∈ P and all coalitionsS andT withS ⊂ T ⊆ P\{i}
it holds that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

Assignment games, introduced by Shapley and Shubik (1972), arise from bipartite matching
situations. Let M andN be two disjoint sets. For each i ∈M and j ∈ N the value of a matched
pair (i, j) is aij ≥ 0. From this situation an assignment game is defined in the following way.
The worth of coalition S ∪ T where S ⊆ M and T ⊆ N is defined to be the maximum that
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S ∪ T can achieve by making suitable pairs from its members. If S = ∅ or T = ∅ no suitable
pairs can be made and therefore the worth in this situation is 0. Formally, an assignment game
(M ∪N,w) is defined by

w(S ∪ T ) := max{
∑

(i,j)∈µ

aij : µ ∈M(S, T )} for all S ⊆M,T ⊆ N ,

whereM(S, T ) denotes the set of matchings between S and T .
The class of component additive games, introduced by Curiel et al. (1994), is a special class

of Γ-component additive games, discussed in Potters and Reijnierse (1995), which in turn is a
special class of graph restricted games in the sense of Owen (1986). Let (P, v) be a cooperative
game and let Γ = (P,E) be an undirected line graph. Then a component additive game (P,wΓ)
is defined by

wΓ(S) :=
∑

T∈S\Γ

v(T ) for all S ⊆ P ,

where S\Γ is the set of connected components of S with respect to Γ.
The situations discussed in the introduction that motivate the interest for neighbour games,

give rise to a model in which players are lined up in a one-dimensional queue. In the queue,
players can only directly cooperate with one of the neighbours in the queue. From this point
of view, neighbour games are defined as restricted assignment games: only pairs that are
neighbours in the queue can be matched. Formally, let P be the player set of size p. For the
sake of convenience we assume that P = {1, . . . , p}. Let σ : P → {1, ..., p} be an ordering
of the players. Obviously, P can be partitioned in the set M of players i in odd position (i.e.,
σ(i) is odd) and the set N of players in even position (i.e., σ(i) is even). Players i and j are
called neighbours if |σ(i) − σ(j)| = 1. We shall use the (unconventional) notation (i, j) if
σ(j) = σ(i) + 1, i.e., (., .) is used to indicate the order of (neighbouring) players as given by σ.
For all pairs (i, j) let aij ≥ 0 be given. Then, a neighbour game (P, v) is defined by

v(Q) := max{
∑

(i,j)∈µ

aij : µ ∈ N (Q)} for all Q ⊆ P ,

whereN (Q) is the set of matchings of the players inQ in which each matching consists only of
pairs (i, j) that are neighbours. From now on the word matching means a matching of this type.
A matching µ ∈ N (Q) is called optimal for Q ⊆ P if

∑
(i,j)∈µ aij = v(Q). It is called minimal

if aij > 0 for all (i, j) ∈ µ. Note that v(i) = 0 for all i ∈ P and v(i, j) = aij for all pairs (i, j).
For the sake of convenience, we assume henceforth that the players in a neighbour game

(P, v) are ordered 1 ≺ 2 ≺ · · · ≺ p.

Example 2.1 Let P = {1, 2, 3, 4} be the player set and let σ describe the order 1 ≺ 2 ≺ 3 ≺ 4.
The pairs that are neighbours with respect to σ are (1,2), (2,3), and (3,4). Hence, all other
pairs have a worth equal to zero. Take, for instance, a12 = 10, a23 = 20, and a34 = 30. Then
the corresponding neighbour game (P, v) is depicted in Table 2.1. The matching that matches
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player 1 with player 2 and player 3 with player 4 is optimal and minimal.

S {1, 2} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3} {2, 3, 4} {3, 4} {1, 2, 3, 4}
v(S) 10 20 10 30 20 30 30 40

Table 2.1: a neighbour game (P, v).

�

The following proposition follows immediately from the definition of neighbour games. The
proof is therefore omitted.

Proposition 2.2 The class of neighbour games is the intersection of the class of assignment
games and component additive games.

Let (P, v) be a neighbour game. Since neighbour games are special assignment games, the
results of Shapley and Shubik (1972) on the cores of assignment games apply to the cores of
neighbour games. In particular, the cores of neighbour games are not empty. Furthermore,
they are determined by the inequalities induced by the one-player and the neighbouring pair
coalitions. Henceforth, whenever we speak of a coalition it is a singleton or a neighbouring pair
of players.

For an optimal matching µ of P we denote, with a slight abuse of notation, by P+ the set
of players that are matched by µ. Define P− := P\P+, which will be called the set of isolated
players. The following Lemma is a straightforward consequence of a result of Shapley and
Shubik (1972).

Lemma 2.3 Let (P, v) be a neighbour game. Let µ be an optimal matching of P . Let x ∈ IRP .
Then, x ∈ Core(v) if and only if the following four conditions are satisfied:
(i) xi + xi+1 = v(i, i+ 1) for all (i, i+ 1) ∈ µ;
(ii) xi + xi+1 ≥ v(i, i+ 1) for all (i, i+ 1) 6∈ µ;
(iii) xi = 0 for all players i ∈ P−;
(iv) xi ≥ 0 for all players i ∈ P+.

In general, neighbour games do not need to be convex, as follows from the next proposition,
which provides a necessary and sufficient condition for the convexity of neighbour games.

Proposition 2.4 A neighbour game (P, v) is convex if and only if for any triple j−1, j, j+1 ∈ P
of consecutive players it holds that v(j − 1, j) = 0 or v(j, j + 1) = 0.
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Proof. We first prove the ‘only if’-part. Suppose that v(j − 1, j) > 0 and v(j, j + 1) > 0 for
some j ∈ P . Then,

v(j − 1, j, j + 1) − v(j − 1, j)

= max{v(j − 1, j), v(j, j + 1)} − v(j − 1, j)

= max{0, v(j, j + 1) − v(j − 1, j)}

< v(j, j + 1) − v(j).

Hence, (P, v) is not convex.
To prove the ‘if’-part, note that for any S ⊂ T ⊂ P and k ∈ P\T it holds that

v(T ∪ {k})− v(T ) =
∑

i∈A∩T

v(i, k)

≥
∑

i∈A∩S

v(i, k)

= v(S ∪ {k})− v(S),

where A is the set defined by

A :=


{k − 1, k + 1} if k 6= 1, p;
{2} if k = 1;
{p− 1} if k = p.

2

Although neighbour games are not convex in general, it follows from Hamers et al. (1999a)
that they satisfy the CoMa-property. In other words, the core of a neighbour game is the convex
hull of some marginal vectors.

3 The leximax solution, a characterization

In this section, we recall the leximax solution, which was introduced by Arin and Iñarra (1997).
We characterize the leximax solution in terms of adjustability to egalitarianism.

Before we turn to the definition of the leximax solution, we first recall the notion of lexico-
graphical ordering. Given two vectors x, y ∈ IRp for some p, we have that x�lexy if either x = y
or there exists a k such that xi = yi for i = 1, . . . , k and xk+1 < yk+1, Further, let θ(x) be the
vector that results when arranging the elements of the vector x in a non-increasing order. Then,
for a balanced game (P, v), Arin and Iñarra (1997) defined the leximax solution Lmax(v) as

Lmax(v) := {x ∈ Core(v) : θ(x)�lexθ(y) for all y ∈ Core(v)}.

Arin and Iñarra (1997) showed that the leximax solution is a singleton solution. This fact
also follows from Lemma 1.1 of Moulin (1988) in which a leximax-like solution for bargaining
situations is studied.
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Theorem 3.1 For a balanced game (P, v), Lmax(v) is a singleton.

Arin and Iñarra (1997) provided an algorithm that determines the leximin solution (the
natural counterpart of the leximax solution) for convex games and veto games that are P -
monotonic. Recall that from Proposition 2.4 it follows that in general neighbour games are not
convex. A game (P, v) is called a veto game if there is a player i ∈ P such that v(S) = 0 for
all S ⊆ P\{i}. A game (P, v) is called P -monotonic if v(P ) ≥ v(S) for all S ⊂ P . It is clear
from the definition of a neighbour game that neighbour games are not veto games.

The leximax solution was also studied by Arin et al. (1998). They provided a characterization
of the leximax solution on the class of large core games, which are defined next. Let (P, v) be a
balanced game. We define U(P, v) as the set of games (P,w) with w(S) = v(S) for all S 6= P
and w(P ) ≥ v(P ). Then, the game (P, v) is said to have a large core if for all (P,w) ∈ U(P, v)
and for all x ∈ Core(w) there exists an allocation y ∈ Core(v) such that yi ≤ xi for all i ∈ P .
The next example shows that neighbour games do not have a large core.

Example 3.2 Let (P, v) be the neighbour game with P = {1, 2, 3} (in the order 1 ≺ 2 ≺ 3)
and v(1, 2) = 6 and v(2, 3) = 10. Then, as is easily verified,

Core(v) = {λ(0, 6, 4) + (1− λ)(0, 10, 0) : 0 ≤ λ ≤ 1}.

Now, consider the game (P,w) ∈ U(P, v) with w(P ) = 14. Notice that x = (4, 2, 8) ∈
Core(w), but there is no y ∈ Core(v) such that y2 ≤ x2 (since for all y ∈ Core(v) we have
y2 ≥ 6 > 2 = x2). Hence, the neighbour game (P, v) does not have a large core. �

From the above it follows that the known results and algorithms concerning the leximax
solution can not be applied to the class of neighbour games. Hence, for the determination of
the leximax solution for neighbour games we need to develop a new algorithm. Before this is
presented we will first provide a characterization of the leximax solution in terms of adjustability
to egalitarianism.

Let (P, v) be a neighbour game. Let µ be a minimal optimal matching. The pairs that are
matched by µ are called essential, i.e., if (i, j) ∈ µ, then (i, j) is essential.

A coalition I ⊆ P is called an interval if i, j ∈ I and i ≤ k ≤ j imply that k ∈ I . We
write I = [i, j] for an interval I ⊆ P if i and j are the starting point and the end point of I ,
respectively.

Definition 3.3 Let (P, v) be a neighbour game. Let µ be a minimal optimal matching and
x ∈ Core(v) be a core allocation. An interval [i− 1, k] (k ≥ i) is called s-relevant3 for player
i ∈ P with respect to x, if it satisfies the following three conditions:
(1). (i, i+ 1) is either not essential or non-existent (i.e., i = p);
(2). x is tight on [i− 1, k] (i.e., xj + xj+1 = v(j, j + 1) for all j, j + 1 ∈ [i− 1, k]);
(3). [i− 1, k] ⊆ P+ (so essential and non-essential pairs alternate on [i− 1, k]).

3The s stands for successor.
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For intervals of the form [k, i+ 1], relevancy is defined in a similar way:

Definition 3.4 Let (P, v) be a neighbour game. Let µ be a minimal optimal matching and
x ∈ Core(v) be a core allocation. An interval [k, i+ 1] (k ≤ i) is called p-relevant4 for player
i ∈ P with respect to x, if it satisfies the following three conditions:
(1). (i− 1, i) is either not essential or non-existent (i.e., i = 1);
(2). x is tight on [k, i+ 1];
(3). [k, i+ 1] ⊆ P+.

If an interval is s-relevant (p-relevant) for a player i with respect to a core allocation x, we
say, when no confusion is possible, that the interval is s-relevant (p-relevant) for player i. An
interval I is called relevant for player i ∈ P if it is s-relevant or p-relevant for player i.

Lemma 3.5 Suppose x ∈ Core(v).
(i) If i ∈ P−, then no interval is relevant for i.
(ii) If i ∈ P+, then i has either only s-relevant intervals or only p-relevant intervals.
(iii) If i ∈ P+, then i has a unique maximal relevant interval.

Proof. (i) follows from condition (3) of s-relevancy and p-relevancy.
(ii) Since i ∈ P+ we have that either (i, i+ 1) or (i− 1, i) is essential. Then condition (1) of
s-relevancy and p-relevancy proves this part of the lemma.
(iii) is a straightforward consequence of statement (ii) of the lemma. 2

The maximal relevant interval for a player i ∈ P+ with respect to a core allocation x is
henceforth denoted by I(i, x). Let |I(i, x)| denote the number of players in I(i, x).

Lemma 3.6 For i ∈ P+, |I(i, x)| = 2l for some l ≥ 1.

Proof. By Lemma 3.5 (ii) we have that I(i, x) = [i − 1, k] or I(i, x) = [k, i + 1]. We may
assume, without loss of generality, that I(i, x) is of the form [i−1, k]. Then, by condition (3) of
s-relevancy we have that k ∈ P+. Then, (k, k+ 1) cannot be essential. Otherwise, [i− 1, k+ 1]
would be s-relevant for i, which contradicts the maximality of I(i, x). Hence, it follows readily,
since essential and inessential pairs alternate, that |I(i, x)| is even. 2

In the following definition we define adjustability of the payoff of a matched player. This
notion will be used in the characterization of the leximax solution.

Definition 3.7 The payoff xi of a player i ∈ P+ can be adjusted5 with respect to x if the
following three conditions are satisfied:
(1). xj > 0 for all j ∈ I(i, x) with |i− j| even;
(2). xj < xi for all j ∈ I(i, x) with |i− j| odd;
(3)(a). If I(i, x) is of the form [i−1, k], then eitherk+1 is non-existent orxk+xk+1 > v(k, k+1).
(3)(b). If I(i, x) is of the form [k, i+1], then eitherk−1 is non-existent orxk−1+xk > v(k−1, k).

4The p stands for predecessor.
5For the sake of convenience we will say that a player itself can (or cannot) be adjusted with respect to x.
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Before we can characterize the leximax solution we need the following technical lemma.

Lemma 3.8 Let x, y ∈ IRp with θ(x) 6= θ(y) and θ(y)�lexθ(x). Let σ : {1, . . . , p} → P be a
bijection such that xσ(1) ≥ . . . ≥ xσ(p). Let r be the smallest number with xσ(r) > yσ(r). Then
for all l < r, xσ(l) = yσ(l).

Proof. By induction on the number of players p. For p = 1, 2 the statement is quite obvious.
Assume that the lemma holds for p− 1 for some p ≥ 3. If r = 1, the lemma holds trivially. If
r > 1, then distinguish between l = 1 and 2 ≤ l < r.
CASE 1: l = 1. Since xσ(1) is the maximal coordinate of x, xσ(1) ≤ yσ(1) (since r > 1), and
θ(y)�lexθ(x), it is clear that xσ(1) = yσ(1).
CASE 2: 2 ≤ l < r. Consider the restrictions of x and y to P\{σ(1)} and apply the induction
hypothesis. 2

Theorem 3.9 Let x be a core allocation of a neighbour game (P, v). Then, x = Lmax(v) if
and only if no i ∈ P+ can be adjusted with respect to x.

Proof. We first prove the ‘only if’-part. Suppose that some player i ∈ P+ can be adjusted with
respect to x. We will show that there is a core allocation y ∈ Core(v) with θ(y) 6= θ(x) and
θ(y)�lexθ(x). Assume, without loss of generality, that I(i, x) = [i− 1, k] for some k. Since i
can be adjusted, there exists ε > 0 such that for all j ∈ [i− 1, k]

(A1) xj − ε > 0 if |i− j| is even;

(A2) xj + ε < xi − ε if |i− j| is odd;

(A3) xk + xk+1 − ε > v(k, k + 1) if k + 1 ∈ P ;

(A4) xj < xi − ε for all j 6∈ [i− 1, k] with xj < xi.

Now define y ∈ IRP by

yj :=


xj if j 6∈ I(i, x);
xj + ε if j ∈ I(i, x) and |i− j| odd;
xj − ε if j ∈ I(i, x) and |i− j| even.

(1)

Since I(i, x) 6= ∅, it follows that y 6= x.

We will prove that y ∈ Core(v) by checking the conditions in Lemma 2.3.
(i) (j, j + 1) ∈ µ.
Note that then either j, j + 1 ∈ I(i, x) or j, j + 1 6∈ I(i, x). If j, j + 1 ∈ I(i, x), then
yj + yj+1 = (xj ± ε) + (xj+1 ∓ ε) = xj + xj+1 = v(j, j + 1). If j, j + 1 6∈ I(i, x), then
yj + yj+1 = xj + xj+1 = v(j, j + 1). So, in either case, yj + yj+1 = v(j, j + 1).
(ii) (j, j + 1) 6∈ µ.
We distinguish among three cases.
CASE A: j, j + 1 ∈ I(i, x) or j, j + 1 6∈ I(i, x).
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A proof similar to that of (i) shows that yj + yj+1 ≥ v(j, j + 1).
CASE B: j ∈ I(i, x), j + 1 6∈ I(i, x).
Obviously, j = k. Then, by Lemma 3.6 we have that |i − k| is even. Hence, by (1) we have
that yk = xk − ε and yk+1 = xk+1. So, yj + yj+1 = xj − ε + xj+1 > v(j, j + 1), where the
inequality follows from (A3).
CASE C: j 6∈ I(i, x), j + 1 ∈ I(i, x).
Obviously, j + 1 = i − 1. So, |i − (j + 1)| = |i − (i − 1)| is odd. Hence, by (1) we have
that yj+1 = xj+1 + ε and yj = xj. So, yj + yj+1 = xj + (xj+1 + ε) ≥ v(j, j + 1), where the
inequality follows from x ∈ Core(v).
(iii) j ∈ P−.
Then, since I(i, x) ⊆ P+, j 6∈ I(i, x). So, yj = xj = 0.
(iv) j ∈ P+.
If j ∈ I(i, x), then by (A1) of the choice of ε and the definition of y, it follows that yj ≥ 0. If
j 6∈ I(i, x), then yj = xj ≥ 0.
Hence, y ∈ Core(v).

Now, we will show that θ(y)�lexθ(x) and θ(y) 6= θ(x). For this we first prove the follow-
ing two statements.

(i) if xj ≥ xi, then xj ≥ yj and

(ii) if xj < xi, then yj < yi.

To prove (i), assume that xj ≥ xi. If j 6∈ I(i, x), then xj = yj. If j ∈ I(i, x), then, since i can
be adjusted with respect to x, xj ≥ xi implies |i− j| is even. Hence, yj = xj − ε ≤ xj.

To prove (ii), assume that xj < xi. If j 6∈ I(i, x), then yj = xj < xi − ε = yi where
the inequality follows from (A4) of the choice of ε. If j ∈ I(i, x) and |i − j| is even, then
yj = xj − ε < xi − ε = yi. If j ∈ I(i, x) and |i− j| is odd, then yj = xj + ε < xi − ε = yi
where the inequality follows from (A2) of the choice of ε.

Now we will use (i) and (ii) to prove that θ(y)�lexθ(x) and θ(y) 6= θ(x). Let J := {j ∈
P : yj ≥ yi and yj 6= xj}. Since xi > yi (= xi − ε) we have that i ∈ J . So, J 6= ∅. Take
k ∈ argmaxj∈J yj.

Note that if yj > yk, then yj = xj. If yj = yk and j 6∈ J , then yj = xj. And finally, if
yj = yk and j ∈ J , then yj < xj: suppose not, i.e., suppose that yj ≥ xj. Since j ∈ J , yj 6= xj.
So, yj > xj. By (i), xj < xi. By (ii), yj < yi. This contradicts j ∈ J .

From the above and k ∈ J it readily follows that θ(y)�lexθ(x) and θ(y) 6= θ(x).

Now we will prove the ‘if’-part. Suppose there is a core allocation y ∈ Core(v) with θ(y) 6= θ(x)
and θ(y)�lexθ(x). Let σ : {1, . . . , p} → P be a bijection such that xσ(1) ≥ . . . ≥ xσ(p). We
may assume, without loss of generality, that if yσ(α) < xσ(α) = xσ(β) ≤ yσ(β), then α > β.

Let r be the smallest number with xσ(r) > yσ(r). (Note that this r exists, because x 6= y.)
We claim that player σ(r) can be adjusted with respect to x. First notice that σ(r) ∈ P+, since
xσ(r) > yσ(r) ≥ 0, where the second inequality follows from y ∈ Core(v).

Now we check conditions (1), (2), and (3) of Definition 3.7.
(1). Take j ∈ I(σ(r), x) for which |j − σ(r)| is even. From xσ(r) > yσ(r), y ∈ Core(v), and
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condition (2) of Definition 3.3 and Definition 3.4 it follows that xj > yj ≥ 0.
(2). Take j ∈ I(σ(r), x) for which |j−σ(r)| is odd. Assume thatxj ≥ xσ(r). Fromxσ(r) > yσ(r),
y ∈ Core(v), and condition (2) of Definition 3.3 it follows that yj > xj. By the assumption on
σ and xj ≥ xσ(r) there is a number l < r with σ(l) = j. This, however, contradicts Lemma 3.8.
So, xj < xσ(r).
(3). We may assume, without loss of generality, that I(σ(r), x) = [σ(r) − 1,m] for some
m ≥ σ(r). Suppose that m + 1 exists. We prove that xm + xm+1 > v(m,m + 1). We
distinguish between two cases.
CASE 1: m + 2 does not exist or (m+ 1,m + 2) is not essential. In both cases, m+ 1 ∈ P−.
Then, by x, y ∈ Core(v), Lemma 2.3 (iii), and m + 1 ∈ P−, we have xm+1 = 0 = ym+1.
Since |m−σ(r)| is even by Lemma 3.6, we know that xm > ym as in (1). Hence, xm +xm+1 >
ym + ym+1 ≥ v(m,m+ 1).
CASE 2: (m + 1,m + 2) is essential. Then, by definition of I(σ(r), x), x is not tight on
{m,m+ 1}. So, xm + xm+1 > v(m,m+ 1). 2

The leximax solution of two and three person neighbour games (P, v) can be calculated
straightforwardly. It is obvious that if |P | = 2 with say v(1, 2) = a, then Lmax(v) = (a

2
, a

2
).

Now suppose |P | = 3. Let a = v(1, 2) and b = v(2, 3). We may assume, without loss
of generality, that a ≥ b. Using Definition 3.7 and Theorem 3.9 one easily verifies that
Lmax(v) = (a

2
, a

2
, 0) if a

2
≥ b, and Lmax(v) = (a − b, b, 0) if a

2
< b. The next proposition

provides a closed formula for the leximax solution in case there are four players involved.

Proposition 3.10 Let (P, v) be a 4-person neighbour game, where P = {1, 2, 3, 4} and the
characteristic function v is induced by a12 = a ≥ 0, a23 = b ≥ 0, and a34 = c ≥ 0. Assume,
without loss of generality, that a ≥ c. Then,6

(i) if b ∈ [0, a+c
2

], then Lmax(v) = (a
2
, a

2
, c

2
, c

2
).

(ii) if b ∈ (a+c
2
, a+2c

2
], then Lmax(v) = (a

2
∧ (a− b

2
), a

2
∨ b

2
, (b− a

2
)∧ b

2
, (c+ a

2
− b)∨ (c− b

2
)).

(iii) if b ∈ (a+2c
2
, a+ c), then Lmax(v) = (0∨ (c− b

2
), c∧ b

2
, (b− c)∨ b

2
, (a+ c− b)∧ (a− b

2
)).

(iv) if b ∈ [a+ c,∞), then Lmax(v) = (0, b
2
∨ a, b

2
∧ (b− a), 0).

Proof. One easily checks the conditions in Definition 3.7 to see that no player is adjustable.
Then the proposition follows from Theorem 3.9. 2

4 The leximax solution, an algorithm

In this section we provide an algorithm for finding the leximax solution for neighbour games.
This algorithm is polynomially bounded of order p3 in the number of players p. Moreover, a
nice feature of the algorithm is that it can be visualized nicely by some pictures showing the
process of adjusting and fixing payoffs.

6For two numbers d, e ∈ IR we define d ∨ e := max{d, e} and d ∧ e := min{d, e}.
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Let us start with an algorithm to find Lmax(v) for an arbitrary neighbour game (P, v). The
algorithm is based on the proof of Theorem 3.9. Loosely speaking, given an initial allocation,
the algorithm generates a more egalitarian solution thereby fixing the payoffs of some players
in P+. The algorithm terminates when all players in P+ are fixed. The final allocation is the
leximax solution, since whenever we fix the payoff of a particular player, that player is no longer
adjustable in the remainder of the algorithm.

Algorithm for the leximax solution for neighbour games

Input:
A neighbour game (P, v).
A core allocation7 x ∈ Core(v).

Initialisation:
Let µ be a minimal optimal matching of the players in P .
Let P+ be the set of players that are matched by µ.
Set F := ∅. We call F the set of fixed players in P+.

Recursive step:
Step 1. If F = P+, then STOP, Lmax(v) = x. Otherwise, define8

S1 := {i ∈ P+\F : xi ≥ xj for all j ∈ P+\F}.

Step 2. Calculate the set C1 of inadjustable players in S1.
If C1 6= ∅, say C1 = {i1, . . . , ik}, then set t := 1 and do the following procedure:

Beginning of the procedure. If t ≤ k:
Take i := it.

If I(i, x) = [i− 1, k], then:
If there is a player m ∈ I(i, x) with xm ≤ 0 and |i−m| even, then set F := F ∪ [i− 1,m].
If there is a player m ∈ I(i, x) with xm ≥ xi and |i−m| odd, then take the player m∗ with the
highest index satisfyingm∗ ∈ I(i, x) withxm∗ ≥ xi and |i−m∗| odd. SetF := F∪[i−1,m∗+1].
If player k+ 1 exists and xk +xk+1 = v(k, k+ 1) (so, k+ 1 ∈ P−), then set F := F ∪ [i−1, k].

If I(i, x) = [k, i+ 1], then:
If there is a player m ∈ I(i, x) with xm ≤ 0 and |i−m| even, then set F := F ∪ [m, i+ 1].
If there is a player m ∈ I(i, x) with xm ≥ xi and |i−m| odd, then take the player m∗ with the
lowest index satisfyingm∗ ∈ I(i, x) withxm∗ ≥ xi and |i−m∗| odd. SetF := F∪[m∗−1, i+1].
If player k−1 exists and xk−1 +xk = v(k−1, k) (so, k−1 ∈ P−), then set F := F ∪ [k, i+ 1].

7A core allocation can for example be obtained by solving a certain linear programming problem (cf. Shapley
and Shubik (1972)).

8Notice that the set S1 is not empty.
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Set t := t+ 1 and repeat the procedure.
End of the procedure.

If S1 ⊆ F , then go to Step 1. If S1 6⊆ F , then define

S2 := S1\F 6= ∅.

Step 3. For ε > 0, consider the conditions (1), (2), (3), and (4) for a player i ∈ S2.

(B1) xj − ε > 0 if j ∈ I(i, x) and |i− j| is even;

(B2) xj + ε < xi − ε if j ∈ I(i, x) and |i− j| is odd;

(B3)(a) xk + xk+1 − ε > v(k, k + 1) if I(i, x) = [i− 1, k] and k + 1 ∈ P ;

(B3)(b) xk−1 + xk − ε > v(k− 1, k) if I(i, x) = [k, i+ 1] and k − 1 ∈ P ;

(B4) xj < xi − ε for all j 6∈
⋃
l∈S2 I(l, x) with xj < xi.

Calculate the smallest positive number ε > 0 for which one of the conditions (1), (2), (3), and
(4) becomes an equality for one of the players i ∈ S2.
Define the vector y ∈ IRP by

yj :=


xj if j 6∈

⋃
i∈S2 I(i, x);

xj + ε if j ∈ I(i, x), |i− j| odd, and i ∈ S2;
xj − ε if j ∈ I(i, x), |i− j| even, and i ∈ S2.

(2)

Set x := y.
Repeat recursive step.

The next lemma shows that the recursive step is well-defined. The lemma will be used to
prove that the algorithm terminates in a finite number of steps.

Lemma 4.1 In the recursive step of the algorithm:
(a) The players that we fix in Step 2 are inadjustable and remain inadjustable if we do not change
the payoffs of the players in F . If C1 6= ∅, then let x∗ := xi where i ∈ C1. It holds that xi ≤ x∗

for all players i 6∈ F .
(b) C1 ∩ S2 = ∅.
(c) If i ∈ S2 and j ∈ I(i, x), then j 6∈ F .
(d) If i1, i2 ∈ S2 and i1 6= i2, then not both i1 ∈ I(i2, x) and i2 ∈ I(i1, x).
(e) For ε > 0 sufficiently small, every player in S2 satisfies the conditions (B1), (B2), (B3), and

(B4).
(f) The allocation y is well-defined and does not change the payoffs of the fixed players. Moreover,
y is a core allocation and maxj 6∈F yj < maxj 6∈F xj.
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Proof. The proof is by induction on the number of loops. We assume that (a) − (f) hold for
loops 1, . . . , t − 1 of the algorithm and that F 6= P+. Then, we prove that (a)− (f) hold for
the t-th loop. The proof of (a)− (f) for the first loop of the algorithm has been omitted, since
it is similar to the proof for the t-th loop.

(a) By the induction hypothesis we only have to show that every unfixed player that we fix
in Step 2 is inadjustable by giving a condition in Definition 3.7 that is not satisfied. We distin-
guish among the three cases in Step 2. Let i ∈ C1. We may assume, without loss of generality,
that I(i, x) = [i− 1, k].
CASE I. Clearly, m ≥ i. Let j ∈ [i− 1,m], j 6∈ F .
Suppose |i − j| is even. Then, j ≥ i and I(j, x) = [j − 1, k]. Hence, j is not adjustable by
Definition 3.7 (1) and m ∈ I(j, x).
Suppose |i − j| is odd. Note that xj ≤ xi (otherwise i 6∈ S1) and I(j, x) = [l, j + 1] for some
l ≤ i− 1. Hence, j is not adjustable by Definition 3.7 (2), and i ∈ I(j, x).
CASE II.
Clearly, m∗ ≥ i− 1. Let j ∈ [i− 1,m∗ + 1], j 6∈ F . Hence, xj ≤ xi (otherwise i 6∈ S1).
Suppose |i − j| is even. Note that xj ≤ xi ≤ xm∗ and I(j, x) = [j − 1, k]. Hence, j is not
adjustable by Definition 3.7 (2) and m∗ ∈ I(j, x).
Suppose |i − j| is odd. Note that I(j, x) = [l, j + 1] for some l ≤ i − 1. Hence, j is not
adjustable by Definition 3.7 (2) and i ∈ I(j, x).
CASE III. Let j ∈ [i− 1, k], j 6∈ F .
Suppose |i− j| is even. Then, j is not adjustable by Definition 3.7 (3).
Suppose |i − j| is odd. Note that xj ≤ xi (otherwise i 6∈ S1). Hence, j is not adjustable by
Definition 3.7 (2) and i ∈ I(j, x).

Suppose C1 6= ∅. By definition of S1, it holds that the payoff of every player in C1 is the
same. So, we can define x∗ := xi for i ∈ C1. By definition of S1, we have that xi ≤ x∗ for all
players i 6∈ F .

As one can verify easily, the discussed unsatisfied conditions above remain unsatisfied in the
remainder of the algorithm if we do not change the payoffs of the players in F . Hence, the
player that we fix in Step 2 remain inadjustable in the remainder of the algorithm if we do not
change the payoffs of the players in F .

(b) Let i ∈ C1. Then, we are at least in one of the cases I, II, or III. In any case, we fix
player i. So, i 6∈ S2. Hence, C1 ∩ S2 = ∅.

(c) The statement is clear for j = i. So, suppose j 6= i.
Suppose j ∈ F . By (a), (f), and the induction hypothesis, there exists some player i0 ∈ F

with xi0 ≥ xi and j ∈ I(i0, x) for which all players between i0 and j are fixed, i.e., players in F .
Note that i ≤ i0, j or i ≥ i0, j (otherwise i ∈ F , contradicting i ∈ S2 ⊆ P+\F ). This implies
together with j ∈ I(i, x) and j ∈ I(i0, x) that i0 ∈ I(i, x).

If |i − i0| is odd, then i is not adjustable by definition 3.7 (2). If |i − i0| is even, then i is
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not adjustable for the same reason that i0 is not adjustable. So, in either case i is not adjustable,
contradicting (b). Hence, our assumption that j ∈ F is false.

(d) Suppose i1 ∈ I(i2, x) and i2 ∈ I(i1, x). Then, |i1 − i2| is odd. Since i1, i2 ∈ S2 ⊆ S1, we
have xi1 = xi2. So, i1 and i2 are not adjustable by definition 3.7 (2). This contradicts i1, i2 ∈ S2.

(e) From the definition of S2 and (b), it follows that each player in S2 is adjustable. This
implies that for ε > 0 sufficiently small, every player in S2 satisfies the conditions (B1), (B2),
(B3), and (B4).

(f) It follows from (d) that y is well-defined. It follows from (c) that the payoffs of fixed
players do not change. The inequality maxj 6∈F yj < maxj 6∈F xj follows from the definition of
S1 and the definition of the vector y. One easily verifies that y ∈ Core(v) by checking the
conditions in Lemma 2.3. We have omitted this part of the proof since it runs similarly to the
proof of y ∈ Core(v) in the ‘only if’-part of the proof of Theorem 3.9. 2

The following Lemma shows that the algorithm terminates after a finite number of steps.

Lemma 4.2 After at most 2p loops the number of fixed players increases strictly.

Proof. Let |F | denote the number of players in F . Consider a loop in which |F | does not
increase. Let x be the allocation in Step 1 of that loop.

Since |F | does not increase, we do not fix any player in Step 2. Hence, we go to Step 3 with
S2 = S1.

If there is an equality in (1) or (2) for a player i ∈ S2, then i will be fixed in the next loop in
CASE I or CASE II. So, suppose that there are no equalities in (1) and (2) for any player i ∈ S2.

If there is an equality in (3), then the maximal relevant interval of a player i ∈ S2 becomes
strictly larger. So, by lemma 4.1 (d), there can be at most p loops with equalities in (3) and
without equalities in (1) and (2).

Note also that there can be at most p loops with equalities in (4) without equalities in (1) and
(2). This follows since a player j appears at most once in an equality in (4).

We can conclude that there are at most 2p subsequent loops that only have equalities in (3)
and (4). So, after at most 2p loops we have an equality in (1) or (2), and thus the number of
fixed players |F | increases strictly. 2

Lemma 4.3 The algorithm for finding the leximax solution of a neighbour games takes O(p3)
time.

Proof. It follows from Lemma 4.2 that the algorithm terminates after at most 2p2 loops. Since
each loop takes at most O(p) time we have that the algorithm of order p3. This proves the
Lemma. 2
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In the following Example we visualize the algorithm, showing the process of adjusting and
fixing the payoffs of the players.

Example 4.4 Consider the neighbour game (P, v) where P = {1, . . . , 9} is the set of players,
which are ordered 1 ≺ · · · ≺ 9. Let v be the characteristic function determined by the values of
the neighbours in Table 3.1.

S {1, 2} {2, 3} {3, 4} {4, 5} {5, 6} {6, 7} {7, 8} {8, 9}
v(S) 3 10 10 3 3 4 6 4

Table 3.1: the values of the neighbours in the neighbour game (P, v).

One readily verifies that there is a unique minimal optimal matching, viz. the matching
that matches 1 with 2, 3 with 4, 5 with 6, and 7 with 8. A core allocation is for example
x = (0, 3, 7, 3, 0, 3, 1, 5, 0).

We can depict the game and the core allocation x in Figure 3.15. We put the players along
the x-axis and their respective payoffs along the y-axis. We connect the payoffs of the players
so that the allocation x corresponds to a piece wise linear graph. Moreover, using Lemma 2.3
we immediately see that x is indeed a core allocation:
(i) The line through the payoffs of two matched neighbours runs exactly through the filled circle,
which denotes half of the value of these neighbours.
(ii) The line through the payoffs of two unmatched neighbours lies above the open circle, which
denotes half of the value of these neighbours.
(iii) All matched players receive a non-negative payoff.
(iv) The unmatched player receives a payoff equal to zero.

player

payoff

2 3 4 5 6 7 8 91

2

4

6

8

3 10 10 3 3 4 6 4

Figure 3.15: The initial allocation x.
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We apply the algorithm to find the leximax solution for the game (P, v). Note P+ =
{1, . . . , 8} and P− = {9}. Set F := ∅.

Loop I: (F 6= P+)
Step 1: S1 = {3}.
Step 2: C1 = {3}, since player 3 is not adjustable (Definition 3.7 (1) with j = 1). As a
consequence, F = {1, 2, 3, 4}. Since S1 ⊆ F we go to:

Loop II: (F = {1, 2, 3, 4} 6= P+)
Step 1: S1 = {8}.
Step 2: C1 = ∅. Hence, S2 = {8}.
Step 3: I(8, x) = [7, 8] and by condition (B3)(a) with k + 1 = 9 we have ε = 1. The new
allocation x is depicted in Figure 3.16.

player

payoff

2 3 4 5 6 7 8 91

2

4

6

8

3 10 10 3 3 4 6 4

Figure 3.16: The allocation x that results from Loop II.

Loop III: (F = {1, 2, 3, 4} 6= P+)
Step 1: S1 = {8}.
Step 2: C1 = {8}, since player 8 is not adjustable (Definition 3.7 (3)(a) with k + 1 = 9). As a
consequence, F = {1, 2, 3, 4, 7, 8}. Since S1 ⊆ F we go to:

Loop IV: (F = {1, 2, 3, 4, 7, 8} 6= P+)
Step 1: S1 = {6}.
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Step 2: C1 = ∅. Hence, S2 = {6}.
Step 3: I(6, x) = [5, 6] and by condition (B3)(a) with k + 1 = 7 and condition (B4) with j = 7
we have ε = 1. The new allocation x is depicted in Figure 3.17.

player

payoff

2 3 4 5 6 7 8 91

2

4

6

8

3 10 10 3 3 4 6 4

Figure 3.17: The allocation x that results from Loop IV.

Loop V: (F = {1, 2, 3, 4, 7, 8} 6= P+)
Step 1: S1 = {6}.
Step 2: C1 = {6}, since player 6 is not adjustable (Definition 3.7 (3)(a) with k + 1 = 9). As a
consequence, F = {1, 2, 3, 4, 5, 6, 7, 8}. Since S1 ⊆ F we go to:

Loop VI: F = {1, 2, 3, 4, 5, 6, 7, 8} = P+

Hence, we stop and Lmax(v) = x = (0, 3, 7, 3, 1, 2, 2, 4, 0). �
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