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1 Introduction

Withinthe boundsof their possibilities, individualsgeneraly try to eliminatethe risksresulting
from their social and economic activities as much as possible. In thisregard, a common way
of doing so is by means of risk sharing and/or insurance. Firms, for instance, might prefer
to cooperate in joint ventures when investing in risky projects, while investors perpetrate risk
sharing by investing their capital in a diversified portfolio of financial assets.

In insurance, an insurance company contracts to bear (part of) an individual’s risk in
exchange for afixed payment, the insurance premium. For actuarial scientists, thisinsurance
premium has been and still isamuch examined research topic. The main question they address
is, what is areasonable premium for the risk that isinsured, for the insurance premium should
be acceptable with respect to the opposite interests of both the insurer and the insured.

Classical actuarial theory mainly considersthis problem from theinsurer’spoint of view.
In determining a reasonabl e insurance premium, it distinguishes between risk arising from the
‘life’ sector and risk arising from the ‘non life' sector. For the first, there is a profusion of
statistical data on the expected remaining life available, which makes the calculation of an
appropriate premium relatively easy. For thelatter, however, things are abit more complicated.
In‘nonlife’ insurancetheriskisnot alwayseasy to captureinastatistical framework. Therefore,
several premium calculation principles have been developed to serve this purpose, see for
instance Goovaerts, De Vylder and Haezendonck (1984).

These calculation principles, however, only take into account a part of the insurer’sside
of the deal. More precisaly, they consider whether the premium is high enough to cover the
risk. Competition arising from the presence of other insurers on the one hand, and the interests
of the insured, on the other hand, are mostly ignored. It is, of course, better to consider
all these aspects in an insurance deal, since the premium should not only be high enough to
compensate the insurer for bearing the individual’s risk, it should also be low enough so that
an individual is willing to insure his risk (or a part of it) for this premium. The economic
models for (re)insurance markets, which were developed from the 1960's on (cf. Borch
(1962a) and Buhimann (1980), (1984)), consider indeed the interests of both the insurers
and the insureds. These models incorporate the possibility to study problems concerning
fairness, Pareto optimality and market equilibrium. Bihlmann (1980), for example, shows
that the Esscher calculation principle results in a Pareto optimal outcome. For an overview of
economic modelsin insurance see Borch (1990).

Game theory is aso used to model the interests of all partiesin an insurance problem.
Examples can be found in Borch (1962b), Lemaire (1991), Alegre and Merce Claramunt
(1995), and Suijset al. (1998). Thelatter uses stochastic cooperative gamesto model individual
insurance as well as reinsurance by insurance companies. The results they obtain, however,
only hold for exponentially distributed losses. This paper generalizes Suijs et a. (1998) in the
sensethat it allowsarbitrary random losses. We determine Pareto optimal allocations and show



that the zero utility principle for calculating premiums (see Goovaerts et a. (1984)) yields a
core alocation.

2 Stochastic Cooper ative games

Let usfirst recall some of the definitionsconcerning stochastic cooperative gamesasintroduced
by Suijs, Borm, De Waegenaere and Tijs (1999). A stochastic cooperative game is described
by atupleI’ = (N, {Xs}scn, { =, }ien), Where N isthe set of agents, X's the nonempty set
of random payoffs coalition S can obtain, and . the preference relation of agent « over the
set L'(R) of stochastic payoffs with finite expectation. We assume that for each agent the
preferences are complete, transitive and continuous'. The class of al cooperative games with
stochastic payoffswith agent set NV is denoted by SG(N).

An allocation of a stochastic payoff Xs € A’s to codition S is described by a pair
(d,r) € R® x R® suchthat ;e d; < 0and Y57 = 1 andr; > 0 foral i € S. The payoff
to agent : € S according to the allocation (d, r) equals d; + r; Xs. The set of all alocations
for coalition S isdenoted by Z-(.5).

The core of a stochastic cooperative game is defined as follows. Let I' € SG(N)
and (d; + ;. Xn)ien) € Zr(N). Then the alocation (d; + r; Xy ):en iSacore alocation for
the game I" if for each coalition S thereis no alocation (d; 4+ 7 Xy )ies € Zr(S) such that
d; + 7 Xs =i d; +r; Xs foral i € S. Theset of all core allocationsfor I' is denoted by C'(I).

Next, consider preferences { z,}:cn such that for each : € N there exists a function
m; : L'(R) — R satisfying

(M1) foradl X,Y € LY(R) : X .Y if and only if m;(X) > m,(Y);
(M2) fordl X € L'(R)and dl d € R: m;(d + X) = d + m;(X).

Theinterpretationisthat m;(.X') equals the amount of money m for which agent : isindifferent
between receiving the amount m;(.X') with certainty and receiving the stochastic payoff X.
The amount m;(X) is called the certainty equivalent of X. Condition (M1) states that agent
+ weakly prefers one stochastic payoff to another one if and only if the certainty equivalent
of the former is greater than or equal to the certainty equivalent of the latter. Condition (M2)
states that the certainty equivalent is linearly separable in the deterministic amount of money
d. The class of all stochastic coopertive games satisfying conditions (M 1) and (M2) is denoted
by MG(N).

Example 1 Consider the preferences based on a utility function of the form U(t) = fe™,
(t € R), where 8 < 0 and a > 0. The certainty equivalent of X € L'(R) can be defined by

!The preferences % are continuous if for al X € L'(R) the sats {Y € LY(R)|Y zX} and {V €
LY(R)|Y 33X} areclosed.



m(X) = U Y E(U(X))). Itiseasy to check that m satisfies condition (M1). For condition
(M2),let X € L'(R)and d € R. Then U~ (1) = —7 log () and

m(d+X) = UNE(U(d+ X))

(¥ [ pemesiars(n)
= o (= [ petarx(n)
= a4 log (5(f Betar ()
= d+m(X).

—2 log

The following theorem regarding nonemptiness of the core is due to Suijs and Borm
(1999).

Theorem 2 LetI' € MG(N). Then C(G) # 0 if and only if C(vr) # 0, where

UF(S) = max {Z mZ(JZ + fZX)| (622 + fiX)ieS - ZF(S)} ,

1€S

foral S C N.

3 Insurance Games

For modeling insurance problemswe use a dlightly modified version of astochastic cooperative
gameasintroducedin Suijset al. (1999). We show that by cooperating, individualsand insurers
can redistribute their risks and, consequently, improve their welfare. First, we need to specify
the agents that participate in the game. An agent can be one of two types, either an individual
person or an insurer. The set of individual personsis denoted by Np and the set of insurersis
denoted by ;. Hence, the agents of the game are denoted by the set V; U Np.

Again, al agents are assumed to be risk averse expected utility maximizers with utility
function U;(t) = pie=", (t € R), with 5, < 0, a; > 0 forall ¢ € N; U Np. By changing the
signs of the parameters 3; and «; the utility function becomes convex, and, as a consequence,
the agent will be risk loving. Regarding the situations where one or more risk neutral/loving
insurers are involved we confine ourselves to a brief discussion later on.

Next, let — X; with X; € L'(R, ) describethefuturerandomlossesof agenti € N;UNp.
For an individual : € Np, the variable — X; describes the random losses that could occur to
thisindividual. They include, for example, the monetary damages caused by cars, bikes, fires,
or people. For an insurance company ¢ € Ny, the variable — X; describes the random losses



corresponding toitsinsurance portfolio. Weassumethat therandomlosses— X, (: € N;UNp),
are mutually independent.

Now, let us focus on the possibilities that occur when agents decide to cooperate.
Therefore, consider a coalition S of agents. If the members of .5 decide to cooperate, the total
loss X5 € L'(R) of codlition S equals the sum of the individual losses of the members of 5,
i.e, Xs = — ;s X;. Subsequently, the loss X's has to be allocated to the members of 5.

In Suijset a. (1999) an allocation of the random payoff X s to the members of coaition
S isdescribed by apair (d,r) satisfying 3 ;esd; < 0,3 ;csm = 1,andr; > 0fordl: € 5.
Given an allocation (d,r), agent ¢ € S N Np receivesd; + r; Xs. Applying this definition to
insurance games, however, raises a problem. For Xs not only consists of the future random
losses of agent ¢, but also of the future random losses of al other individuals j € S N Np.
Hence, if agent ¢ receives d; + r; Xs he receives (part of) the random losses of his fellow
agentsj € S N Np. Furthermore, this means that an agent 5 € S N Np transfers (part of) his
random losses to agent ¢, or, put in other words, agent ; insures (part of) his random losses at
agent ;. But thisisrather unusual; agents only makeinsurance deal s with insurance companies
and not with other individuals. So, we need to modify our definition of an allocation so as
to incorporate transfers of random losses from individuals to insurance companies only. The
option we choose for is to replace the vector » € A by amatrix R € R°*°. An dement
r;; then represents the fraction of agent ;’s random loss that he transfers to agent :. Then by
imposing the right conditionson R we can guarantee that individuals cannot transfer any risks
among each other.

For explaining an allocation of the loss X5 in more detail, we distinguish between the
following three cases. In the first case, codlition S consists of insurers only. So, S C Nj.
Such a codlition is assumed to allocate the loss X5 in the following way. First, a coalition
S dlocates a fraction r;; € [0,1] of the loss X; of insurer j € S toinsurer i € S. So,
insurer ¢ bears atotal lossof 3~ 7; X;, wherer;; € [0,1] and Y-y 7; = 1. Thisiscalled
proportional (re)insurance. This part of the allocation of X for coalition .S is described by
amatrix R € ]Rixs , Where r;; represents the fraction insurer ¢ bears of insurer j’sloss X;.
Second, the insurers are alowed to make deterministic transfer payments. This means that
each insurance company : € S also receivesan amount d; € R suchthat 3,5 d; < 0. These
transfer payments can be interpreted as the aggregate premium insurers have to pay for the
actual risk exchanges.

In the second case, coalition S consists of individua personsonly. So, S C Np. Then
the gains of cooperation are assumed to be nil. That is, we do not alow any risk exchanges
between the persons themselves. For, that is what the insurers are for in the first place. Asa
result, the only allocations (d, R) of X which areallowed are of theformr; = 1 forall : € S
andr;; = 0forali, j e Swith: # .

In the third and last case, coalition S’ consists of both insurers and individual persons.
So, S € N;U Np. Now cooperation can take place in two different ways. First, insurers
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are allowed to exchange (parts of) their portfolios with other insurers, and, second, individual
persons may transfer (partsof) their risksto insurers. Again, individual personsarenot allowed
to exchange risks with each other. Moreover, we assume that insurers cannot transfer (parts
of) their portfoliosto individuals.

Summarizing we can say that there are several restrictions on allocations. To be more
precise, denote by S; the set of insurers of codlition S, i.e.,, S; = S N Ny, and by Sp the set
of individuals of coalition S, i.e,, Sp = S N Np. Then andlocation (d, R) € R” x R}*% is
feasible for the coalition S if for al « € Sp and dl j € S with # j it holds that »;; = 0 and
Yiesmi; = Lfordl j € 5. Furthermore, given an allocation (d, R) of the random loss X,
agent: € S receivesd; + Y ;s ri; X; = d; + R;X®, where R; denotes the:-throw of R and
X = (—Xi)ies.

Examplel Let N; = {1,2}, Np = {3,4} and consider the coalition 5 = {1,3,4}. Then
Xs=—-X; — X5 — Xy4. Afeasbleallocation for S isthefollowing. Let d = (3,—2,—1) and
M1 = 1, M3 = %, '3z = %, 4 = % and 44 = % Then inSJrerl reCdV%

di + B X® = 3- X, —35X3— %X4),

individual 3 receives

d3—|—R3XS - —2— %Xg,

and individual 4 receives

d4—|—R4XS - —1—%X4

So, individuals 3 and 4 pay a premium of 2 and 1, respectively, to insurer 1 for the insurance
of their losses.

In conclusion, an insurance game I with agent set N; U Np is described by the tuple
(N1 UNp, {Xs}scw, {Ui}ien,un, ), Where Ny isthe set of insurers, Np the set of individuals,
Xs = {Xes —X;} the random loss for coalition S, and U; the utility function for agent
© € Ny U Np. The class of all such insurance games with insurers N; and individuals Np is
denoted by /G/( Ny, Np).

3.1 Pareto Optimal Distributions of Risk

Since the preferences of each agent are described by means of an exponential utility function,
we can confine ourselves to considering certainty equivalents. In this model, we define the
certainty equivalent by m;(X) = U7'(E(U:(X))) provided that the expected utility exists,
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of course? From Example 1 it follows that the certainty equivalent for exponentia utility
functions satisfies the conditions (M1) and (M2). Hence, the results stated in Suijs and Borm
(1999) on certainty equivalents apply. One of these results concerns the Pareto optimality of
an allocation. For insurance games this result reads as follows.

Proposition 2 Let’ € IG(N;, Np)and S C N;UNp. Analocation (d;+R; X®);es € Zr(S)
is Pareto optimal for codlition S if and only if

1€S

1
= maX{Z mZ(CZZ + EZXS” (CZZ + ﬁfiXS)ies € ZF(S)} . ( )

1€S

S0, an alocation isPareto optimal for coalition S if and only if thisallocation maximizes
the sum of the certainty equivalents. To determine these allocations, we first need to calculate
the certainty equivaent of an alocation (d; + R; X*),cs € Zr(S) for agent: € S. Therefore,
let S € N;U Np and (d; + R X®);es € Zr(S). The random loss coalition S hasto allocate
equals Xs = Y,z X;. Given afeasible alocation (d; + R; X®);cs € Zr(S), the random
payoff to agent : € S equals

di + RZXS == dZ — Z TZ']‘X]‘

JjES
if: € Sy and

di+ R X® = d; —rii X;

if : € Sp. Consequently, we have that the certainty equivalent of (d; + 2, X*);cs equas

-1

4 a%log (/oo eaiT”tdFXi(t)) , if2 € Sp,
0

mz(dz —|— RZXS) = 1 00 -1 A (2)
i+ Y Elog (/ etdFy, (t)) ,ifie sy
jES 0
The sum of the certainty equivalents then equals
o) -1
Zmz(dz + RZXS) = Z d; + Z a% log (/ eaiTiitdFXi(t))
i€S = i€Sp 0
00 -1
+ Y dlog ([T entary (1) 3
i€ jeS 0

2Throughout this paper we assume that the utility functions and random payoffs are such that the expected
utility exist, and that we may interchange the order of integration and differentiation.



Since ;.5 d; = 0 for Pareto optimal allocations, we have for these allocations that the
sum of the certainty equivalentsisindependent of the vector of transfer paymentsd. Intuitively,
thisisquiteclear. Forsince}", s d;, < 0, anincreaseind; for agent: impliesthat d; decreases
for at least one other agent ;. Consequently, Pareto optimality is solely determined by the
choice of the allocation risk exchange matrix R of the random losses. In fact, the next theorem
shows that there is aunique alocation risk exchange matrix R* inducing Pareto optimality.

Theorem 3 LetT" € IG(N;, Np)and S C N;U Np. Analocation (d; + RB; X®)ies € Zr(S)
is Pareto optimal for S if and only if

1

—— ,ifs,5 €5y,

Z?esj an
"ij T —=—— ,ifie S;u{j}and; € Sp,
Zhesju{]} Xn
0 ,otherwise.

PROOF: We have to show that £~ isthe unique solution of
o) -1
max Y a;log (/ eaiTiitdFXi(t))
€SP 0 1
_I_ Z Z a%log (/ eozﬂigtdFX](t))
0

€51 5€S
st.: T + ZiESI Ty = 1, for a”j - Sp,
Yoies, Ty = 1, foralj e Sy,
ri > 0, ifi € Sp,
ri; > 0, ifee Syandy € 5.

Lemma 1 with ¢ = o; and = = r;; for al relevant combinations of ¢, 5 € S, implies that the
objective function is strictly concave. Hence, it is sufficient to prove that R* is a solution of
this maximization problem. The Karush-Kuhn-Tucker conditions’ tell us that this is indeed

3 The Karush-Kuhn-Tucker conditionsread as follows:
If f(x) = max, f(y)
st. gi(y) <0, keK
a(y) =0, el

then thereexist v, > 0 (Vk € K)and \; € R (VI € L) such that

Vi) = ZkeK vp - Vr(z) + ZleL Ar-Vai(x)
vp-gr(x) = 0,fordlk e K.

Moreover, if f isstrictly concave and g5, (k € K), g; (I € L) are convex then the reverse of the statement also
holds and the maximum is unique.



thecaseif thereexists \; € R (j € 5),v;; > 0( € Sp)andv;; >0 (2 € Sy, j € S) suchthat

Oot oz]TJ*JtdF 1
_J})“) e“ s tdFXJ((t)) = A —v;, foralj e Sp,
o €7 X,
oot ozirfjtdF !
_J}Joo eair* tdFXJ((t)) = )\]‘ — Vij, foral: e Syandadl j € 5,
o ¢ Y X;
ViiTis = 0, forall j € Sp,
VijTij = 0, fordl: e Srandall j € S.

Substituting r¥; gives v;; = 0 for al relevant combinationsof ¢, j € S and

fooo tet/a(S]U{j})dFX] (t)

)\j fooo et/a(SIU{j})dFXJ (t) 5 for al J € SP,
fOOO tet/a(SI)dFX] (t) |
)\j - fOOO et/a(sj)dFXj (t) 5 for all : c 5'17
with a(5) = Yies 5 Consequently, /" is the optimal solution. 0

So, for a Pareto optimal allocation of aloss X; within S one has to distinguish between
two cases. In the first case the index ;j refersto an insurer and in the second case j refersto
an individual. When X; isthe loss of insurer j € S}, thelossis allocated proportionally to 4
among all insurersin coalition S. When X; isthelossof individual 5 € Sp, thelossisallocated
proportionally to z; among all insurersin coalition S and individual j himself. Note that by
the feasibility constraints nothing is allocated to the other individuals. Furthermore, remark
that if only reinsurance of the insurance portfolios is considered, that is, Np = ( then the
Pareto optimal allocation coincides with the Pareto optimal alocation of (re)insurance markets
discussed in Buhlmann (1980).

The determination of the allocation risk exchange matrix is, of course, only one part
of the allocation. We still have to determine the vector of transfer payments d, that is, the
premiumsthat have to be paid. Although an allocation (d; + B X*®);cs may be Pareto optimal
for any choice of d, not every d is satisfactory from a social point of view. An insurer will
not agree with insuring the losses of other agents if he is not properly compensated, that is,
if he does not receive a fair premium for the insurance. Similarly, insurance companies and
individuals only agree to insure their losses if the premium they have to pay is reasonable.
Consequently, there is a conflict of interests; both insurance companies and individuals want
to pay alow premium for insuring their own losses, while insurance companieswant to receive
a high premium for bearing the losses of other agents.

3.2 TheZero Utility Premium Calculation Principle

Premium calculation principles indicate how to determine the premium for a certain risk. In
the past, various of these principles were designed, for example, the net premium principle,

9



the expected value principle, the standard deviation principle, the Esscher principle, and the
zero utility principle (cf. Goovaerts et al. (1984). In this section we focus on the zero utility
principle. A premium calculation principle determines a premium =;(.X') for individual « for
bearing the risk X. The zero utility principle assigns a premium =,(.X') to X such that the
utility level of individual ¢, who bears the risk X', remains unchanged when the wealth w; of
thisindividual changesto w; + 7;(.X) — X. Sinceindividuals are expected utility maximizers
this means that the premium =;( X) satisfies U;(w;) = F(U;(w; + 7;(X) — X)). Notethat the
premium of therisk X depends on the individual who bears thisrisk and his wealth w;.

Now, let us return to insurance games and utilize the zero utility principle to determine
the allocation transfer payments d € R™7%Vr. At first this might seem difficult since the zero
utility principlerequiresinitia wealthsw; which do not appear in our model of insurance games.
The exponential utility functions, however, yield that the zero utility principle is independent
of theseinitial wealthsw,. To seethis, let" € IG(N;, Np) beaninsurancegame. Since utility
functions are exponential we can rewrite the expression U;(w;) = E(U;(w; + m(X) — X)) as
follows

wi = UTHE(Ui(wi + mi(X) = X)) = wi +m(X) + U7 (E(U(=X))).

K3

Hence, m;(X) = —U7(E(U;(—X))) = —m;(—X) whichindeed isindependent of the wealth
w;. Furthermore, we can calculate the premium that agents receive for the risk they bear. For
this, recall that for the Pareto optimal allocation risk exchange matrix R* we have that

1

= T ,If Z,] E SI,

Z?esj an
"ii T —>—— ,ifieS;u{j}and;j € Sp,
Zhesju{]} Xh
0 ,otherwise.

Since the risk that insurer : bears equals 3= ;¢ v,un, 75 X, the premium he should receive for
this according to the zero utility principle equals

i Z ru X)) = —ma(— Z 5 X;)

JENTUNp JENTUNp
Note that due to the mutual independence of (.X;);en,un,, the zero utility principle satisfies
additivity, that is, 7:(3°en,un, 75X5) = 2 jen,un, Ti(r5X;). As aconsequence, we let the
premium that individual : € Np has to pay for insuring his loss at insurer j equal the zero
utility premium that this insurer wants to receive for bearing this risk. Hence, individua ¢
paysinsurer j an amount 7;(r; X;) = —m;(—r7X;). Because individuals are not allowed to
bear (part of) the risk of any other individual/insurer he does not receive any premium. Soin
aggregate he pays
Z F](T;ZXZ)

JENT

10



Similarly, the premium that insurer « has to pay for reinsuring the fraction 7 of his own
portfolio X; at insurer 5, equals the premium that insurer ; wants to receive for bearing this

risk, that is, 7;(r5;X;) = —m;(—r7;X;). Then the premium insurer ; receives in aggregate
equals
Y. mriXg) = 0w
JENTUNp JENT
Since

> ( Y. mrnX) = D0 WJ(T;iXi)) - > > mX) =0,

{€N; \JEN;UNp JENT 1€Np jEN]

the zero utility principle yields an alocation transfer payments vector ¢° where

=Y m(r5X;) — Y (X

JENJUNp JENT
= — Y m(=riXy) + Y m(—rXa) 4
JENJUNp JENT

forall - € Ny and
&} == > w5 Xi) = Y my(—r; X)) (5
JENT JENT
foral: ¢ Np.
Theorem 4 LetT' € IG(Ny, Np). If d° isthe vector of transfer payments determined by the

zero utility premium calculation principle and R* is the Pareto optimal risk exchange matrix

ProOF: By Theorem 2 it suffices to show that (m;(dY — R: X"V ));en € C(vr). Hence, we
must show that ;e m(d? — B X)) > vp(S) fordl S ¢ N. So, let us start by determining
UF(S).

op(S) = max {Zmi(di—l—RiXN)

(di + RiX™)ien € ZF(N)}

i€S
o ) -1
= Z a%log (/ et/a(SIU{]})dFXJ(t))
jESP 0
o0 -1
LYY Lo (/ et/a(SI)dFXj(t))
€Sy jes 0
o) ) -1
_ Z a%log (/ et/a(SIU{]})dFXJ(t))
jESP 0
o0 -1
LYY log (/ et/a(SI)dFXj(t))
1€Sr JESP 0

11



= + > 3 olog (/ et/a(sf)dFXj(t))_l

1€ST JEST
: -1
= 3 3 ulidarlos ([ iy, n)
JESPIEST
-1
X g ([ o)
JEST1EST
o] ] 1
= Z Oé(S[ U {j})log (/ et/a(sju{]})dFX] (t))
JESP 0
-1
+ 3 atsiog (e ar )
JEST
—a(S i
= > log (/ et/ (51 gy (t)) (570{7})
JESP
—a(S1)
+ S tog ([ el ar, @)
JEST

where the second equality follows from Theorem 3.
Next, note that for : € N; we have that

mi(d) — REXY) = d) + > mi(—r5X;)
JENUNP

= — > mi=ri X))+ Y m(—rXs)

JENJUNp JENT

+ D mi(=riX;)

JENJUNp

= > m(—r;X;)

JENT

= Y Llog ( / * et/a(NI)dFX])
0

JENT

[oe) —oz(N])
= log (/ et/a(NI)dFX])
0

-1

andfor: € Np that

mi(d?—l—RfXN) = d?-l—mi(—TZXi)

= D (=5 X))+ mi( =)

JENT

= > m(=rX)
JENU{i}

= Z CY%vlog (/0 et/a(NIU{i})dFXJ)_
JENU{i}

12
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0 —a(N7u{s
~ log (/ et/a(NIU{i})dFX]) (N7u{ })7
0

Then for S € N;U Np it holdsthat

o —a(Ny)
Zmz(d? —I-RjXN) — Z log (/0 et/a(NI)dFX]) !

€8 1EST
00 —a(N 7
N Z log (/ et/a(NfU{i})dFX) (Nru{s})
€SP 0
> ijalsn) e
> Zlog(/ el IdFXJ)
1E€ST 0
00 —a(S 7
£ log (/ et/a(sfu{i})dFX) (S1u{i})
ieSp 0 ’
= UF(S),
where theinequality followsfrom Lemma2withc =1 and x = ﬁ O

Example5 Inthisexample all monetary amounts are stated in thousands of dollars. Consider
the following situation in automobile insurance with two insurance companies and three indi-
vidual persons. So, N; = {1,2} and Np = {3,4,5}. The utility function of each agent can be
described by U;(t) = e=** withay = 0.1, ay = 0.167, a3 = 0.333, oy = 0.125 and a5 = 0.2,
respectively. For evaluating random payoffs X € L'(R), we focus on the corresponding
certainty equivalent m;(X) = U7 (E(U:( X)), € {1,2,3,4,5}.

Each insurance company bearstherisk of all the cars contained initsinsurance portfolio.
A car can be either one of two types. Thefirst type corresponds to an average saloon car with
aretail price of $20, and generates relatively low losses. The second type corresponds to an
exclusive sportscar with a retail price of $200, and generates relatively high losses. More
precisaly, the monetary loss generated by a car is uniformly distributed between zero and its
retail price. Thus the expected loss of atype 1 car and atype 2 car equal $ 10 and $ 100,
respectively.

The insurance portfolio of insurer 1 consists of 900 cars of type 1 and 25 cars of type 2.
For insurer 2 the portfolio consists of 400 cars of type 1 and 70 cars of type 2. The expected
lossfor insurer 1 then equals 900 - 10 + 25 - 100 = $ 11500. The expected losses for insurer 2
equals $ 11000. Theindividuals3 and 4 each possess one car. Individual 3's car is of type 1
and individual 4’s car is of type 2. Individual 5 possesses both cars. The expected losses are
$10,$100, and $110, respectively.

Next, let X; denote the loss of agent «. If all agents cooperate, the Pareto optimal risk
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allocation matrix of the total randomloss X; + X, + X3 + X, + X5 equals

5 5 10 5 10

8 8 19 12 21

3 3 6 3 6

8 8 19 12 21

3
RF=]100 %5 0 0|,
4

00 0 5 0

5

0 0 0 0 s

Then the certainty equivalent of a Pareto optimal alocation (d; + Ry XV ),en € Zr(N) equas

ma(dy + RiXY) = dy — 18582,
ma(dy + R3XN) = dy — 11149,
ma(ds + R3XY) = dy—2,
my(dy + R;XY) = dy — 50,
ms(ds + REXN) = ds — 39.

Theinsurance premiumsthat the agents have to pay, are cal culated according to the zero
utility principle. This means that the aggregate premium which insurer 1 receives, equals
d(l) = m (%Xz) + ™ (%Xg) + ™ (%)Q) + ™ (%X5) — Ty (%Xl)
= (1) = (=8 Xs) —ma (—50X0)
1 (=X5) + ma (150
~ 9739 +6 462 4 78 — 5597 = 4288.

—

Similarly, we get for insurer 2 and individuals 3, 4 and 5

dy = 5597 + 3 4+ 37 + 47 — 9739 = —4055,

d=-3-6 = -9,

dy = —37—-62 = —99,

d9 = —47 — 78 = —125.
With d° = (4288, —4055, —9, —99, —125) being the aggregate insurance premiums we obtain
that (m;(d? + REXN))ien = (—14294, —15204, —11,—149, —164). It is a straightforward
exercise to check that (—14294, —15204, —11, —149, —164) is a core alocation of the corre-
sponding TU-game (N, vr) presented in Table 1.

Now, let us take a closer look at the changes in insurer 1's utility when the allocation
(d? + RrX"),cn isredized. In theinitial situation insurer 1 bears the risk X, of his own
insurance portfolio. The certainty equivalent of X; equals

m1(Xy) = 900 —10log (0.5(62 - 1)) +25-—101log (0‘05(620 B 1))
~  —14704.
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s [ w® | s [ w® [ & [ wS |

{1} —14704 {2,5} —17730 {2,3,4} —17725
{2} —17551 {3,4} —189 {2,3,5} —17742
{3} —14 {3,5} —209 {2,4,5} —17893
{4} —174 {4,5} —369 {3,4,5} —383
{5} —195 {1,2,3} —29509 {1,2,3,4} —29658
{1,2} —29498 {1,2,4} —29647 {1,2,3,5} —29672
{1,3} —14715 {1,2,5} —29661 {1,2,4,5} —29810
{1,4} —14861 {1,3,4} —14872 {1,3,4,5} —15044
{1,5} —14876 {1,3,5} —14888 {2,3,4,5} —17905
{2,3} —17562 {1,4,5} —15053 {1,2,3,4,5} —29822
{2,4} —17713
Table 1:

To allocate thetotal risk in aPareto optimal way, insurer 1 bearsthefraction >, = 15 of therisk

X, of insurer 2. For thisrisk he receives apremium r (15X, ) as determined by the zero utility
principle. From the definition of the zero utility calculation principle and the independence of
X, and X,, it followsthat m, (=X, — 1§.Xs 4+ 71 (16 X2)) ~ —14704. So insurer 1's welfare
does not change when heinsures apart of therisk of insurer 2. A similar argument holdswhen
he insures a part of the risks of the other agents. Hence

mq(—X7 — X, + 7T1(%X2) — 16X + 7T1(%X3)
— 3 Xy + (35 Xe) — B X5 + m(3X5)) ~ 14704
Theincreaseininsurer 1’swelfare arises only fromtherisk £5.X; he transfersto insurers 2:
m1(—%X - 772(16_6X1) — 15X, + 7T1(%X2) — 19X +p1(%X3)
— 53 Xy + 771(%)(4) — % X5 + 71(%)(5))
= my(d) + R XN) &~ —14294 > —14704.

The phenomenon described above is subsistent in the definition of the zero utility
principle. This means that the welfare of an insurer always remains the same when he bears
therisk of someone else in exchange for the zero utility principle based premium. Anincrease
in welfare only ariseswhen he transfers (a part of) hisown risk to someone el se.

4 Subadditivity for Collective Insurances

In the insurance games defined in the previous section individual persons are not allowed to
cooperate; they cannot redistribute the risk amongst themselves. Looking at the individuals
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behavior in everyday life, thisisajustified assumption. People who want to insure themselves
against certain risks do so by contacting insurance companies, pension funds etc. We show,
however, that when this restriction is abandoned then the mere fact that risk exchanges could
take place between individuals implies that insurance companies have incentives to employ
subadditive premiums. Whether or not such risk exchanges actually do take place is not
important. As a consequence, collective insurances become cheaper for the individuals.

Let Np betheset of individuals. A premium calculation principle = iscalled subadditive
if for al subsets 5,7 ¢ Np with SN7T = @it holdsthat 7(Xs) + 7(X7) > 7n(Xs + X7).
Here, X5 denotesthe total loss of the codlition S. So, it is attractive for the individualsto take
a collective insurance, since this reduces the total premium they have to pay.

Next, consider a game with agent set Np only where the individuals are alowed to
redistribute their risks. This situation can be described by an insurancegame I’ € IG/(Np, 0).
So, the individuals Np can now insure their losses among each other. Then we can associate
with I' the TU-game (N, vr), with

vp(S) = max {Z mi(d; — R X%)| (di — RiX®)ies € ZF(S)}
1€S

for al S C Np. Note that this maximum is attained for Pareto optimal allocations (d; —
R:X®)ies € Zr(S) for codition S. For this game, the value vr(S) can be interpreted
as the maximum premium coalition S wants to pay for the insurance of the total risk Xs.
To see this, suppose that the coalition S can insure the loss X ¢ for a premium =(Xs) that
exceeds the valuation of the risk X, that is, —7(Xs) < vr(5). Then for each allocation
y € R of the premium —r(Xs) there exists an alocation (d; — Rz X5) € Zr(S) such that
E(Ui(d; — R2X5)) > U(y;) foral i € S. Indeed, let (d; — R X%)ics € Zp(S) be such that
ZieS mz(dz — RjXS) = UF(S). Define

CZZ' =d;, — mi(di - RfXS) +y+ # (UF(S) + W(XS))a
fordl: e S. Since
ZCZZ = Zdz_Zml(dl_RZXS)+ZyZ+vF(S)+7T(XS)

€S €S €S €S
= Yiesdi <0

it followsthat (d; — Ri X®)ies € Zr(S). Then by thelinearity of m; in d; (cf. expression (2))
we havefor all : € S that

mi(di — R X®) = yi + 35 (00 () + 7(Xs)) > yi.
Hence, themembersof S prefer thealocation (d; — R: X %);c of X5 toaninsuranceof X and
paying the premium = ( X's). Consequently, they will not pay more for the insurance of the risk
X5 than theamount —vr-(.5). Now, it isastraightforward exercise to show that this maximum
premium —or(5) satisfies subadditivity, i.e. —op(S) — vp(T) > —op(S U T). For totaly
balancedness of insurance games implies superadditivity, i.e. vr(.S) + vp(1) < op(S UT) for
al digoint S, 7" C N.
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5 Remarks

Inthis paper (re)insurance problemsare model |l ed as cooperative gameswith stochasti c payoffs.
In fact, we defined a game that dealt with both the insurance and the reinsurance problem
smultaneously. We showed that there is only one allocation risk exchange matrix yielding
a Pareto optimal distribution of the losses and that a core allocation results when insurance
premiums are cal culated according to the zero utility principle.

Recall that insurersdo not benefit frominsuring therisksof theindividualswhen utilizing
the additive zero utility principle; thispremium cal cul ation principleyieldsthelowest premium
for which insurers still want to exchange risks with the individuals (see Example 5). So, from
asocia point of view, it might be best to adopt a middle course and look for premiumswhere
both insurers and individual s benefit from the insurance transaction. Interesting questionsthen
remaining are: are these premiums additive or subadditive and do they yield core allocations?

An issue only briefly mentioned in this paper concerns the insurers behavior. What if
aninsurer isrisk neutral or risk loving instead of risk averse? Thus, thereis at least oneinsurer
whose utility function is linear or of the form w,(t) = B,e=** (¢ € R) with 3; > 0, o; < 0.
Although the proofs are not provided here, most of the results presented in this paper still hold
for these situations. This means that the corresponding games have nonempty cores and that
the zero utility principle still yields a core allocation. The result that does change is the Pareto
optimal allocation of therisk. The allocationsthat are Pareto optimal when all insurersarerisk
averse are not Pareto optimal anymore when one or more insurers happen to berisk loving. In
fact, they are the worst possible allocations of the risk one can think of. In that case, allocating
all therisk to themost risk loving insurer is Pareto optimal. Thiswould actually mean that only
one insurance company is needed, since other insurance companies will ultimately reinsure
their complete portfoliosat this most risk loving insurer.

Finally, it should be mentioned that the results presented in this paper still go through
if we replace the assumption that the risks (X;);en,un, ae mutualy independent by the
assumption that the covariance matrix of (.X;):en,un, IS negative definite.

6 Appendix: Proofs

Lemmal Let c € R\{0} and let /" be a probability distribution function corresponding to a
non-degeneraterandomvariable. Thenthefunction h.. definedby h.(z) = log (f5° e**'dF(1))™"
for x > 0, isstrictly concavein «.

PrOOF: Since
@ _ Joo te et d I (t)
dr [ etdF (1)
we obtain that

17



dh? 2 Jot AR () [ AR (t) — (fo tetdF (1))’
dx? (fo eretdF (1))’
2

F
0 acCTdF )
& o hTe dF ¢
‘ /0 ( < ewerd F(r ewdF ®)

< 0.

Hence, & is concave. The lemma then follows from the observation that the inequality is
binding if and only if /' corresponds to a degenerate random variable. O

Lemma 2 Let ¢ € R\{0}. Then thefunction .(z) = (f5” emdF(t))%, x > 0, isincreasing
inz.

PrOOF: Note that

dhc _ d ei log(foo emctdF(t))
dx dz
— ~ e*etd I
= hc(x) (x—zllog (/0 el’ctdF(t)) + _((fooot MtdF((t))))

7
L i) (bg ([ eario) - “((“’foofe:; ;% )>)>) _

Since z > 0 it is sufficient to show that

~ zct (fOOO teQUCtdF(t))
log (/0 e dF(t)) — xc (5 e dF (1) < 0. )

First, note that
o xct _ (IOOOtethdF(t)) _
1;;%1 log (/0 e dF(t)) xe (e db (D) 0.
Second, differentiating expression (7) to « yields
Jottertd b (1)  [Tterd ' (t)  d [ fg te™d ()
T etdr(t) [T ertdF(t)  de \ [ ertdF (1)
zct
_ —xcifo te™dF(1)
de [3° emtdF(t)
2f0 et d B (1) Jo© e"dF (1) — (fo te*td (1 ))

(5™ (D)’

F

o) acCTdF )
— 2 t— Jo7e dFt
xc/o ( Jo< ererd F (7 ewdF ®)

< 0.

Thus, since (7) isadecreasing function in x taking the value zero in « = 0, it followsthat (7)
isnegativefor all = > 0. O
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