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in a Model with Production and Consumption Bundles
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Abstract

In contrast to the neo-classical theory of Arrow and Debreu, a model of a private

ownership economy is presented, in which production and consumption bundles are

treated separately. Each of the two types of bundles is assumed to establish a con-

vex cone. Production technologies can convert production bundles into consumption

bundles, and the preferences of the consumers are assumed to lie only on the set

of consumption bundles. The main theorem of this paper states the existence of a

Walrasian equilibrium in this setting.
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Introduction

In [9], a model of a pure exchange economy is presented only in terms of convex cones,

whereas, in case of n commodities, the neo-classical models are set in terms of the Eu-

clidean space IRn. As a consequence, the model of [9] recognises economy bundles, rather

than separate commodities, as entities of exchange. The model of a private ownership

economy, presented in [11], introduces production in this setting. Apart from the use

of convex cones, the model of [11] di�ers from the neo-classical models described in the

standard works [3] and [1], since in this model distinction is made between production and

consumption bundles.

The use of convex cones is emphasized by an axiomatic introduction of the concept of

salient half-space, a set in which addition and scalar multiplication over the positive reals

are de�ned such that the set is an addition semi-group. The main di�erence with a vector

space is that, for a salient half-space multiplication is allowed over the non-negative real

numbers only, and that addition is not a group. Each pointed convex cone in a vector

space is a salient half-space. Also, each salient half-space induces a partially ordered vector

space for which the salient half-space is the positive cone. In [11], a great deal of e�ort

is put in the presentation of this mathematical concept of salient half-space and related

topics. Also in [11], these concepts are incorporated in a model of a private ownership

economy.

In the �rst section of this paper we further investigate the concept of salient half-space.

Among the new contributions are the de�nitions of subcone, convex cone span, �nitely gen-

erated salient half-space, cone-dependence and �nite-dimensional salient half-space. The

existence of a maximal cone-independent set is proved and its relation with the vector

space reproduced by the salient half-space is given. Furthermore, the concept of interior

point is introduced, a relation between interior points and order units is given, and there

is an introduction of a metric, corresponding to an order unit of the half-dual space, which

induces a topology on the salient half-space.

Section 2 of this paper is devoted to the introduction of a model of a private ownership

economy and a suitable de�nition of a Walrasian equilibrium in this setting. The model

presented here is an adaption of the model described in [11].

Following [11], we do not introduce the concept of \commodity" but consider the concept

of \economy bundle", which carries the characteristics of exchangable objects in the econ-

omy, instead. An economy bundle is a unique concatenation of a production (economy)

bundle and a consumption (economy) bundle. Only production bundles can be used as

input for a production process whereas the output of this process is always a consumption

bundle. The set consisting of all economy bundles is taken to be the direct sum of the

salient half-spaces Cprod and Ccons, containing the production and consumption bundles,

respectively. This direct sum Cprod�Ccons is a salient half-space, and will often be denoted

by C.

The main di�erence between the model of a private ownership economy described in [11]

and the model described in Section 2 of this paper, is the assumption that the preference

relations of the consumers are only de�ned on the set Ccons of consumption (economy)
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bundles, instead of on the direct sum Cprod�Ccons. This re
ects a disinterest of consumers

for production bundles, following from their inabillity to consume production bundles and

from the absence of a \second time period" in which the consumers are able to sell pur-

chased production bundles.

In a worldlike example, our model can describe the non-neo-classical situation in which

�xed links between di�erent commodities are present, for instance an economy in which

only �xed, prescribed combinations of commodities can be traded. Examples are special

pre-packed o�ers, or free (sample)-products received when purchasing a commodity. Also,

this model can describe a situation in which the preferences of the agents are in terms of

characteristics of commodities, instead of in terms of the commodities themselves. In the

labour market, for instance, a �rm may ask for an employee with a certain education, in-

telligence and working experience. In this setting, one can consider an \economy bundle"

to be a person with such (and perhaps other) speci�c attributes. In general, an \economy

bundle" can be considered to be a carrier of several attributes (cf. the work of Lancaster,

[6]). Moreover, the same attribute may appear in more than one economy bundle. This

mixture of attributes can be inextricable both in characteristics and in time.

In Section 3, the concept of production technology, introduced in Section 2, is explored

and, in comparison with [10], some new properties are derived regarding the closedness of

a production technology and the closedness of its e�cient set. Furthermore, some assump-

tions are introduced, which imply that we can deal with supply functions instead of with

supply sets. Also, these assumptions imply that the supply functions are continuous on

a domain which possibly is larger than the domain de�ned in [10]. More speci�cally, this

new approach allows for zero prices for certain production (economy) bundles. Typically,

production bundles which can only be used to produce certain consumption bundles, for

which there is a cheaper way of producing them, will have zero-prices. As a consequence,

several proofs of the stated lemmas and propositions di�er from the corresponding ones

in [10].

Section 3 ends with the de�niton of the total supply function and with the derivation of

some lemmas concerning production technologies and supply functions which will be use-

ful in Section 5, where the existence of a Walrasian equilibrium pricing function is proved.

The arrangement of Section 4 is similar to the one of Section 3, only here the topic con-

cerns the agents instead of the production technologies. Firstly, the concepts of budget

set and demand set, de�ned in Section 2, are further explored. Some assumptions which

guarantee continuous demand functions on (a subset of) the domain of the total supply

function, are introduced. The total demand function is de�ned and, �nally, some useful

lemmas will be derived. The main di�erence with the corresponding section of [10] will be

the restriction of most concepts to the salient half-space Ccons of consumption (econcomy)

bundles. This is a consequence of the restriction of the preference relations of the agents

to Ccons

The Equilibrium Existence Theorem, the main theorem of this paper, is presented in

Section 5. It states that under rather weak conditions, among which the assumptions

introduced in Sections 2 and 3, the existence of a Walrasian equilibrium pricing function

is guaranteed. The paper ends with a proof of this main theorem.
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1 Mathematical concepts

One of the essential di�erences between the model of a private ownership economy in

this paper and the well-known models of Arrow and Debreu (cf. [1] and [3]) is the use

of so-called salient half-spaces to describe the set of all exchangable objects and the set

of all prices. Before we start with the description of our model, which will be done in

Section 2, we give a formal introduction to the concept of salient half-space and related

topics. This section is divided into three parts. The �rst part introduces the concept of

salient half-space and describes the construction of the vector space reproduced by it and

the partial order relation induced by it. Also, other concepts closely related to salient half-

spaces, such as the concept of cone span, of cone dependancy, of �nitely generated salient

half-space and of order unit, are introduced. The second part of this section focusses on

the half-dual space, i.e., the dual set of a salient half-space. Finally, in the third part titled

\Topology", we present conditions on the half-dual space which guarantee existence of a

metric on the salient half-space. Also, several properties for �nite-dimensional, re
exive

salient half-spaces are derived, among which an adaption of the well-known Brouwer Fixed

Point Theorem.

Salient half-space

As mentioned above, we start with the formal introduction of the concept of salient half-

space and the vector space reproduced by it.

De�nition 1.1 A salient half-space is a set C with the following properties:

� An addition is de�ned on C, which is commutative, associative and satis�es

1.1.a) there exists an element v 2 C, called the vertex of C, such that x + y =

v () x = y = v,

1.1.b) for every x 2 C the mapping addx : C ! C, de�ned by addx(y) := y+x, is

injective.

� To every pair x 2 C and � � 0, there corresponds an element �x 2 C, called

the (scalar) product of � and x. Scalar multiplication over IR+ thus de�ned, is

associative and satis�es the distributive laws. Furthermore, 1x = x holds for every

x 2 C.

Note that Condition 1.1.a implies that the mapping addx is surjective if and only if x = v.

It is not di�cult to prove that the vertex of a salient half-space is unique and satis�es

� 8� > 0 : �v = v;

� 8x 2 C : x+ v = x;

� 8x 2 C : 0x = v:

From the second property together with the �rst conditions of De�nition 1.1, we conclude

that (C;+) is an addition semi-group with zero-element v. Since in a salient half-space,

scalar multiplication is de�ned only over IR+ and due to Condition 1.1.a, (C;+) is not a

group. However, we can extend (C;+) to a group in a similar way as IN [ f0g extends to

ZZ, by de�ning the equivalence relation � on the product set C � C by:

(x1; x2) � (y1; y2) :() x1 + y2 = y1 + x2:
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Let V [C] be the collection of all equivalent classes [(y1; y2)] := f(z1; z2) 2 C�C j (z1; z2) �

(y1; y2)g, so V [C] := (C�C)=�. Unambiguously, we can de�ne the following addition and

scalar multiplication over IR on V [C]:

[(y1; y2)] + [(z1; z2)] := [(y1 + z1; y2 + z2)]

�[(y1; y2)] :=

(
[(�y1; �y2)] if � � 0

[((��)y2; (��)y1)] if � < 0:

With these de�nitions, V [C] becomes a real vector space. We call V [C] the vector space

reproduced by the salient half-space C. Identifying each element x 2 C with the vector

[(x; 0)] 2 V [C], we regard the salient half-space C to be a subset of V [C]. Note that C is

total in V [C], i.e., the linear span of C, denoted by spanV [C]
(C), equals the vector space

V [C]. The vertex v of C coincides with the origin of V [C], and henceforward we shall

denote the vertex of a salient half-space by 0. Also, C is a convex cone in V [C], which

means that C is a convex set that is closed under addition and scalar multiplication over

IR+.

De�nition 1.2 A subset S of a salient half-space C is a subcone of C, if S, endowed with

the addition and scalar multiplication over IR+ of C, is a salient half-space.

Proposition 1.3 A subset S of a salient half-space C is a subcone of C if and only if

8x; y 2 S 8� 2 IR+ : x+ y 2 S and �x 2 S.

De�nition 1.4 For any subset S of a salient half-space C the convex cone span of S,

denoted by cone(S), is the intersection of all subcones of C, that contain S. If there is a

�nite set S such that cone(S) = C then C is a �nitely generated salient half-space.

Note that by de�nition, cone(;) = f0g. Furthermore, for every S � C : V [cone(S)] =

spanV [C]
(S), and so cone(S) � spanV [C]

(S) where cone(S) is regarded as a subset of V [C].

As a result, if S is a �nite set in C, then V [cone(S)] is a �nite-dimensional subspace of V [C].

The proof of the following proposition is similar to the proof of Theorem 2.3 of [7], stating

that the convex hull of a set S consists of all (�nite) convex combinations of the elements

of S. Henceforth, we call an element of cone(S), a (�nite) cone combination of S.

Proposition 1.5 Let S be a subset of a salient half-space C, then for every x 2 cone(S),

there is a �nite set F � S such that x 2 cone(F ). Hence,

cone(S) = fx 2 C j 9n 2 IN 9x1; : : : ; xn 2 S 9�1; : : : ; �n 2 IR+ : x =
nX
i=1

�ixig:

De�nition 1.6 On a salient half-space C the partial order relation �C is given by

x �C y :() 9z 2 C : x+ z = y;

x <C y :() 9z 2 C n f0g : x+ z = y:

Above, we mentioned that a salient half-space C can be identi�ed with f[(y1; y2)] � V [C] j

9x 2 C : [(y1; y2)] = [(x; 0)]g. The partial order relation�C , de�ned on C, can be extended

to a partial order relation � on V [C] by de�ning for all [(y1; y2)]; [(z1; z2)] 2 V [C]:

[(y1; y2)] � [(0; 0)] :() y1 �C y2
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and

[(y1; y2)] � [(z1; z2)] :() [(y1 + z2; y2 + z1)] � [(0; 0)]:

Note that this partial order relation on V [C] satis�es:

[(y1; y2)] � [(z1; z2)] () 9[(x1; x2)] 2 C : [(y1; y2)] + [(x1; x2)] = [(z1; z2)];

where C is regarded as a subset of V [C].

De�nition 1.7 An element u of a salient half-space C is an order unit (for C) if

8x 2 C 9� � 0 : x �C �u:

Lemma 1.8 Let u be an order unit for C, and let [(y1; y2)] 2 V [C]. Then

9� � 0 : ��[(u; 0)] � [(y1; y2)] � �[(u; 0)]:

Proof

Since u is an order unit for C, we �nd

(
9�1 � 0 : y1 �C �1u

9�2 � 0 : y2 �C �2u:

De�ne � := maxf�1; �2g, then

(
y1 �C y2 + �u

y2 �C y1 + �u:
2

We next introduce the de�nition of internal point, and lay the relation with order unit.

De�nition 1.9 Let S be a subset of a salient half-space C. Then an element s0 2 S is

an internal point of S if 8x; y 2 C 9" > 0 8� 2 (0; ") : s0 + �x 2 f�yg+ S.

When we consider S as a subset of the vector space V [C], then an internal point s0 of S,

as de�ned above, is an internal point of S, in accordance with the de�nition in [2, Chapter

IV.1].

Corollary 1.10 Let C be a salient half-space and let s0 2 C. Then s0 is internal point

of C if and only if 8y 2 C 9" > 0 : s0 2 f"yg+ C.

Proof

Clearly, the statement 8y 2 C 9" > 0 : s0 2 f"yg + C is implied by the de�nition of an

internal point of a salient half-space C. Furthermore, 8y 2 C 9" > 0 : s0 2 f"yg + C is

equivalent with 8x; y 2 C 9" > 0 : s0 + "x 2 f"y + "xg + C � f"yg + C. Since the set

f"yg + C is convex and contains s0, we conclude 8x; y 2 C 9" > 0 8� 2 (0; ") : s0 + �x 2

f"yg+ C � f�yg+C. 2

By de�nition, u 2 C is an order unit if and only if 8x 2 C 9� > 0 : u 2 f 1
�
xg + C. This

proves the following lemma.

Lemma 1.11 Let C be a salient half-space and let u 2 C. Then u is an order unit in C

if and only if u is an internal point of C.

The set of all internal points of a salient half-space C will be denoted by int(C). Using

the de�nition of order unit, it is not di�cult to check that int(C)[ f0g is a subcone of C.

By bd(C) we denote the set C n int(C).
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De�nition 1.12 Let Ca and Cb be two salient half-spaces. Their direct sum is the salient

half-space Ca � Cb, consisting of all ordered pairs x = (xa; xb) with xa 2 Ca and xb 2 Cb.

The salient half-space operations are for all x; y 2 Ca �Cb and for all � � 0 given by:(
(x+ y)a := xa + ya

(�x)a := �xa
and

(
(x+ y)b := xb + yb

(�x)b := �xb:

For every x 2 Ca � Cb, there are unique xa 2 Ca and xb 2 Cb such that x = (xa; xb).

Since Ca � Cb is a salient half-space, every property derived for salient half-spaces is also

applicable to Ca � Cb.

On the direct sum Ca � Cb the partial order relation �Ca�Cb
satis�es:

x �Ca�Cb
y ()

(
xa �Ca y

a

xb �Cb
yb:

We conclude this short introduction to direct sums by remarking that

V [Ca � Cb] = V [Ca]� V [Cb];

where the second � denotes the usual direct sum de�ned for two vector spaces (cf. [4]).

In the following, we present the de�nition of a cone-dependent set of a salient half-space C

and state its relationship with the de�nition of a linear dependent set in V [C]. We conlcude

this subsection by stating that every salient half-space C has a maximal cone-independent

set and that this set is a basis for the vector space reproduced by C.

De�nition 1.13 Let S be a subset of a salient half-space C. Then S is cone-dependent

if 0 2 S or if there is a non-empty, �nite subset U of S such that

cone(U) \ cone(S n U) 6= f0g:

The set S is cone-independent if S is not cone-dependent, i.e., if 0 62 S and every non-

empty, �nite subset U of S satis�es

cone(U) \ cone(S n U) = f0g:

Lemma 1.14 Let S be a subset of a salient halfspace C. Then

S is cone-dependent () S is linearly dependent in V [C]:

Proof

The above lemma is obviously true in case 0 2 S, hence, throughout this proof, we assume

0 62 S.

If S is cone-dependent, there is x 2 C n f0g and there is a non-empty, �nite set U � S

such that x 2 cone(U) \ cone(S n U). Clearly, x 2 spanV [C]
(U) \ spanV [C]

(S n U), and so

S is linearly dependent in V [C].

For the converse, assume S is linearly dependent in V [C]. Then 9n 2 IN 9s1; : : : ; sn 2

S; satisfying si 6= sj (i 6= j) 9�1; : : : �n 2 IR n f0g :
nP
i=1

�isi = 0. Since C is pointed,

there is k 2 IN such that 1 < k < n and 8i 2 f1; : : : ; kg : �i < 0 and 8i 2 fk +

1; : : : ; ng : �i > 0. Now, if x =
kP

i=1

(��i)si then x 6= 0 and x =
nP

i=k+1

�isi, i.e., x 6= 0 and

x 2 cone(fs1; : : : ; skg) \ cone(fsk+1; : : : ; sng). 2
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Corollary 1.15 Let S be a subset of a salient halfspace C. Then

S is cone-independent () S is linearly independent in V [C]:

For every salient half-space C, the family M of cone-independent sets can be partially

ordered by inclusion: for all S1; S2 2 M de�ne S1 � S2 :() S1 � S2. A totally

ordered family or chain is a partially ordered set such that every two elements of the

set are comparable. An upper bound of a subset N � M is an element U 2 M such

that 8S 2 N : S � U . A maximal element of M is an element U 2 M such that

8S 2M : U � S =) U = S.

Proposition 1.16 Let C be a salient half-space. Then C has a maximal cone-independent

subset.

Proof

To prove the proposition, we use Zorn's Lemma. So, let K be a chain in the family M

of cone-independent subsets of C. We show that sup(K) :=
S

S2K

S is an upper bound

for this chain. Clearly 8S 2 K : S � sup(K), so we only have to prove that sup(K)

is cone-independent. Let U be a non-empty, �nite subset of sup(K). Let x 2 cone(U) \

cone(sup(K)nU), then there is a �nite set V � sup(K)nU such that x 2 cone(U)\cone(V ).

Since K is a chain, there is a S0 2 K such that U [ V � S0. Since U \ V = ; we �nd

x 2 cone(U) \ cone(S0 n U) and since S0 is cone-independent, we conclude x = 0. 2

For two maximal cone-independent sets Smax and ~Smax, each x 2 Smax can be associated

with a �nite subset of ~Smax. So, the cardinality of Smax is not greater than the cardinality of
~Smax. Interchanging the role of Smax and ~Smax, we �nd that they have the same cardinallity.

De�nition 1.17 Let C be a salient half space, and let Smax be a maximal cone-independent

set of C. The dimension of C, denoted by dim(C), equals the cardinality of Smax.

As a result, a salient half-space C is �nite-dimensional if Smax is �nite.

Lemma 1.18 Every maximal cone-independent set Smax in a salient half-space C, satis�es

spanV [C]
(Smax) = V [C].

Proof

Since Smax is maximal, we �nd that for every x 2 C n f0g : Smax [ fxg is cone-dependent,

i.e., for every x 2 C n f0g there is a �nite subset U � Smax such that cone(U [ fxg) \

cone(Smax n U) 6= f0g. So, 9u 2 cone(U) 9v 2 cone(Smax n U) such that x+ u = v. Hence,

[(x; 0)] = [(v; u)], which is an element of spanV [C]
(Smax). 2

Corollary 1.15 and Lemma 1.18 imply that for a salient half-space C, every maximal cone-

independent set is a basis for V [C]. However, in general, Smax is too small to fully describe

C; clearly, cone(Smax) = C does not have to hold, since this would imply that every cone

in a �nite-dimensional vector space is �nitely generated.

7



Half-dual space

Let C be a salient half-space, as de�ned in the previous subsection.

De�nition 1.19 A positive functional p : C ! IR+ is half-linear if p satis�es(
p(x+ y) = p(x) + p(y) 8x; y 2 C

p(�x) = �p(x) 8x 2 C 8� � 0:

The set of all positive half-linear functionals de�ned on C will be denoted by C�. If in

C�, addition and positive scalar multiplication are de�ned pointwise, then C� is a salient

half-space with the zero-functional as its vertex. We call C� the half-dual space of C.

Note that for a direct sum Ca � Cb of two salient half-spaces

(Ca � Cb)
� = C�a �C�b ;

where the action of p 2 C�a � C�b on an element x 2 Ca � Cb is de�ned by

[x; p]Ca�Cb
= [xa; pa]Ca + [xb; pb]Cb

:

It turns out that existence of one order unit in a salient half-space C is su�cient to

guarantee that the half-dual space C� is non-trivial, i.e., C� 6= f0g.

Proposition 1.20 If C has an order unit, then C� 6= f0g.

Proof

Let u be an order unit for C. De�ne the set U � V [C] by U := f�[(u; 0)] j � 2 IRg, then

U is a subspace of V [C]. By Lemma 1.8, we �nd

8[(y1; y2)] 2 V [C] 9� � 0 : ��[(u; 0)] � [(y1; y2)] � �[(u; 0)]:

Thus, we can de�ne the sublinear functional q : V [C]! IR by

q([(y1; y2)]) := inff� j [(y1; y2)] � �[(u; 0)]g:

De�ne f(�[(u; 0)]) := �, for every � 2 IR. With this de�nition, f : U ! IR is a positive

linear functional on U satisfying 8� 2 IR : f(�[(u; 0)]) = q(�[(u; 0)]). By the Hahn-Banach

Theorem, there exists a linear functional ~f : V [C]! IR such that on the set U , ~f is equal

to f , and 8[(y1; y2)] 2 V [C] : ~f([(y1; y2)]) � q([(y1; y2)]). For every [(x1; x2)] 2 C it holds

that q([(x1; x2)]) � 0. We conclude that the functional ~f acts positively on C since for all

[(x1; x2)] 2 C : ~f(�[(x1; x2)]) � q(�[(x1; x2)]) � 0. 2

The partial order relation �C� on C� satis�es

p �C� q () 8x 2 C : p(x) � q(x):

p <C� q () (8x 2 C : p(x) � q(x)) ^ (9x 2 C : p(x) < q(x)):

Besides a partial order relation on V [C�] (cf. De�nition 1.6 and subsequent construction),

the partial order relation �C� on C� also induces a partial order relation �� on (V [C])�:

f �� g () 8x 2 C : f(x) � g(x):

f <� g () (8x 2 C : f(x) � g(x)) ^ (9x 2 C : f(x) < g(x)):

Next, we examine the relationship between the vector space V [C�], reproduced by the

half-dual C� of C, and the dual space (V [C])� of V [C].
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Proposition 1.21 V [C�] is canonically, linearly injected in (V [C])�. Furthermore, C� =

fp 2 (V [C])� j 8x 2 C : p(x) � 0g.

Proof

Let [(p1; p2)] 2 V [C�] and de�ne for every [(y1; y2)] 2 V [C]:

[(p1; p2)] ([(y1; y2)]) := p1(y1)� p1(y2)� p2(y1) + p2(y2):

It is easy to check that this de�nition is independent of the choice of the representatives

(y1; y2) and (p1; p2), and that with this de�nition [(p1; p2)] acts as a linear functional on

V [C]. Secondly, it is easy to check that the mapping, described above, which associates

a linear functional to every pair [(p1; p2)] 2 V [C�] is linear. Furthermore, this mapping

is injective: if 8[(x1; x2)] 2 V [C] it holds that [(p1; p2)]([(x1; x2)]) = 0, then 8x 2 C :

[(p1; p2)]([(x; 0)]) = p1(x) � p2(x) = 0, and we conclude p1 = p2, or, in other words,

[(p1; p2)] = [(0; 0)]. 2

In the sequel we shall regard C� and V [C�] as a subset of (V [C])�.

We recall that for a vector space W , a set S � W � is said to be separating the elements

of a subset M � W if 8x; y 2 M;x 6= y 9f 2 S : f(x) 6= f(y). If M is linear, this comes

down to 8x 2M n f0g 9f 2 S : f(x) 6= 0.

Lemma 1.22 A set S � C� separates the elements of C if and only if the collection

SV [C] := f[(p1; p2)] 2 V [C�] j p1; p2 2 Sg separates the elements of V [C].

Proof

Let x; y 2 C. Consider the following sequence of equivalent statements

8p 2 S : p(x) = p(y);

8p1; p2 2 S : p1(x) + p2(y) = p1(y) + p2(x);

8[(p1; p2)] 2 SV [C] : p1(x) + p2(y)� p1(y)� p2(x) = 0;

8[(p1; p2)] 2 SV [C] : [(p1; p2)] ([(x; y)]) = 0:

Note that x 6= y is equivalent with [(x; y)] 6= [(0; 0)]. 2

For each x 2 C there is a natural action of x as a positive half-linear functional �x on C�.

So, the set f�x j x 2 Cg separates the elements of C�. The canonical mapping x ! �x
from C into C��, de�ned by �x(p) := p(x); p 2 C�, is injective and linear. With C�� = C

we mean that the canonical injection from C to C�� is also surjective, i.e., all positive

functionals on C� arrise from elements of C, or, in symbols: C�� = f�x j x 2 Cg.

De�nition 1.23 A salient half-space C is re
exive if C�� = C.

Clearly, if a salient half-space C is re
exive, then C� separates the elements of C. Using

Lemma 1.22, this yields that for a re
exive salient half-space C, the vector space V [C�]

separates the elements of V [C]. Furthermore, if C� separates the elements of C and if C

is �nite-dimensional, then

V [C�] = (V [C])�:

9



Conversely, if C is a �nite-dimensional salient half-space for which C� does not separate

the elements of C, then, by Lemma 1.22, V [C�] does not separate V [C], hence V [C�] 6=

(V [C])�. So, if C is a �nite-dimensional salient half-space satisfying V [C�] = (V [C])�,

then C� separates the elements of C. Hence, we �nd the following lemma.

Lemma 1.24 Let C be a �nite-dimensional salient half-space. Then

C� separates the elements of C () V [C�] = (V [C])�:

Note that, in general, it is not true, that V [C�] = (V [C])� implies that C is re
exive, since

re
exivity is related to a topological condition on C (cf. Corollary 1.33).

If C is re
exive, then we like to identify each x 2 C with the functional �x 2 C��. Since in

this situation also C� is re
exive, we introduce the notation [x; p] for every p(x) and �x(p),

x 2 C; p 2 C�. Note, that if C is a re
exive salient half-space, then dim(C) = dim(C��).

If C is a re
exive salient half-space then x �C y is equivalent with 8q 2 C� : [x; q] � [y; q].

Indeed, let x; y 2 C, then

x �C y () 9z 2 C : x+ z = y

() 9z 2 C�� : x+ z = y

() 8q 2 C� : [q; x] � [q; y]

() 8q 2 C� : [x; q] � [y; q]:

Topology

Let C be a salient half-space. If k : k is a norm on the vector space V [C], then

d : C � C ! IR+, de�ned by d(x; y) := k [(x; y)] k is a metric on C. Clearly, the func-

tion d, thus de�ned, is real-valued, �nite and non-negative. Furthermore, d is symmetric

since d(x; y) = k [(x; y)] k = k �[(y; x)] k = k [(y; x)] k = d(y; x). Finally, the triangle

inequality and d(x; y) = 0 if and only if x = y follow from the equivalent properties of the

norm.

Conversely, if d : C � C ! IR+ is a metric on C, satisfying(
8x; y 2 C 8� � 0 : d(�x; �y) = �d(x; y); (homogeneity of degree 1);

8x; y; z 2 C : d(x+ z; y + z) = d(x; y); (translation invariance);

then by k [(x1; x2)] k := d(x1; x2) a norm is de�ned on V [C]. Indeed, this norm is

de�ned independently of the choice of representatives: if [(x1; x2)] = [(y1; y2)], i.e., if

x1+y2 = x2+y1, then k [(x1; x2)] k = d(x1; x2) = d(x1+y1; x2+y1) = d(x1+y1; x1+y2) =

d(y1; y2) = k [(y1; y2)] k . Furthermore, the norm de�ned above satis�es the triangle in-

equality: k [(x1; x2)] + [(y1; y2)] k = d(x1 + y1; x2 + y2) � d(x1 + y1; x2 + y1) + d(x2 +

y1; x2 + y2) = d(x1; x2) + d(y1; y2) = k [(x1; x2)] k + k [(y1; y2)] k .

Recall, that for a metric d on C, a subset S of C is d-bounded if and only if 9x0 2 C 9� >

0 : S � fx 2 C j d(x0; x) � �g, i.e., if and only if 9� > 0 8s; t 2 S : d(s; t) � �.

Since we regard the salient half-space, rather than the vector space V [C], to be the essential

concept of this paper, we would like to have a salient half-space related introduction of
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topology on C. Hence, in the following proposition, we present conditions on C� which

guarantee the existence of a metric on C, which is related to an internal point of the half

dual-space C�.

Proposition 1.25 Let C be a salient half-space for which C� admits an order unit p0.

Then dp0 : C � C ! IR+, de�ned by

dp0(x; y) := inff[v + w; p0] j v; w 2 C with x+ v = y + wg;

is a semi-metric on C (cf. [5]).

For every x; x1; y; y1; z 2 C and �; � � 0 this semi-metric satis�es

� dp0(�x; �y) = �dp0(x; y) (homogeneity of degree 1),

� dp0(x+ z; y + z) = dp0(x; y) (translation invariance),

� if x+ y1 = x1 + y then dp0(x; y) = dp0(x1; y1),

� dp0(�x; �x) = j�� �jdp0(x; 0),

� dp0(x; 0) = [x; p0].

If, in addition, C� separates the elements of C, then dp0 is a metric on C.

Proof

It can be easily checked that dp0 is �nite, non-negative and symmetric and satis�es 8x 2

C : dp0(x; x) = 0. So, in order to complete the proof that dp0 is a semi-metric, we prove

that the triangle inequality holds. Let x; y; z 2 C, then

dp0(x; y) + dp0(y; z)

= inff[v1 + w1; p0] j v1; w1 2 C with x+ v1 = y + w1g

+ inff[v2 + w2; p0] j v2; w2 2 C with y + v2 = z + w2g

= inff[v1 + w1 + v2 + w2; p0] j v1; v2; w1; w2 2 C; x+ v1 = y + w1 and y + v2 = z + w2g

� inff[v1 + w1 + v2 + w2; p0] j v1; v2; w1; w2 2 C; x+ v1 + y + v2 = y + w1 + z + w2g

= inff[v + w; p0] j v; w 2 C with x+ v = z + wg = dp0(x; z):

Translation invariance and homogeneity of degree 1 are easily checked by the reader. The

fact that x+y1 = x1+y implies dp0(x; y) = dp0(x1; y1), is already proved at the beginning

of this subsection. It is not di�cult to prove that this, combined with the symmetry of

dp0 , implies 8x 2 C 8�; � � 0 : dp0(�x; �x) = j�� �jdp0(x; 0).

To prove that 8x 2 C : dp0(x; 0) = [x; p0], we remark that 8x 2 C : [x; p0] � dp0(x; 0),

since for all v; w 2 C satisfying x+v = w it holds that x �C x+2v = v+w. Furthermore,

we can choose v = 0 and w = x to obtain that dp0(x; 0) � [x; p0].

Finally, we show that if the half-dual space C� separates the elements of C, then dp0(x; y) =

0 implies x = y. If dp0(x; y) = 0, there are sequences (vn)n2IN and (wn)n2IN in C such

that 8n 2 IN : x+ vn = y + wn, and lim
n!1

[vn; p0] = lim
n!1

[wn; p0] = 0. Since p0 is an order

unit, we �nd that 8q 2 C� : lim
n!1

[vn; q] = lim
n!1

[wn; q] = 0. Hence, 8q 2 C� : [x; q]� [y; q] =

lim
n!1

[wn; q]� lim
n!1

[vn; q] = 0. Since C� separates C, we conclude x = y. 2
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The previous proposition implies that for a salient half-space C, every element q of its

half-dual space C� generates a semi-metric dq on C. If q1; q2 2 C� satisfy q1 �C� q2,

then for all x; y 2 C we �nd dq1(x; y) � dq2(x; y). Furthermore, in case C� separates the

elements of C, then every element of int(C�) generates a metric on C. (Recall that for

every re
exive salient half-space C, the half-dual space C� separates the elements of C.)

Since for all p0; q0 2 int(C�) there are �; � > 0 such that �p0 �C� q0 �C� �p0, we conclude

that all these metrics, generated by internal points of C�, are equivalent. We denote the

topology on C, generated by any p0 2 int(C�), by T (C; int(C�)).

A subset S � C is called bounded if S is dp0-bounded for any p0 2 int(C�). Note that S

is bounded if and only if 9p0 2 int(C�) 9� > 0 8s 2 S : [s; p0] � �.

On a direct sum C = Ca � Cb of salient half-spaces, where C
� separates the elements of

C, every element p0 2 int(C�) = int(C�a) � int(C�b ) induces a metric dp0 on C, where dp0
satis�es 8x; y 2 C : dp0(x; y) = dpa

0
(xa; ya) + dpb

0
(xb; yb).

As mentioned at the beginning of this subsection, we can relate a norm on V [C] to every

metric dp0 , with p0 2 int(C�), by de�ning

k [(x1; x2)] kp0 := dp0(x1; x2);

for every [(x1; x2)] 2 V [C]. Hence, every order unit of C�, where C is a salient half-space

for which C� separates C, induces a norm on V [C]. Note that all these norms are equivalent

and therefore all topologies, generated by these norms, are equal. By T (V [C]; int(C�)), we

denote the unique topology on V [C], generated by any order unit of C�. Regarding C as

a subset of V [C], the topology T (C; int(C�)) is the relative topology of T (V [C]; int(C�)).

Note that if C is �nite-dimensional, the set int(C), consisting of all internal points of C,

coincides with the T (V [C]; int(C�))-interior of C. Hence, every T (V [C]; int(C�))-interior

point of C is an order unit.

Lemma 1.26 Let C be a salient half-space for which C� separates the elements of C, and

let p0 2 int(C�). Then

8q 2 C� 9�q > 0 8x; y 2 C : j[x; q]� [y; q]j � �qdp0(x; y):

Proof

Since p0 is an order unit for C�, we �nd 8q 2 C� 9�q � 0 : q �C� �qp0. Hence, for all

x; y; v; w 2 C, satisfying x+ v = y + w, and for all q 2 C� we �nd

j [x; q]� [y; q] j � [v; q] + [w; q] � �q([v; p0] + [w; p0]):

Taking the in�mum of [v + w; p0] over v; w 2 C we �nd

8q 2 C� 8x; y 2 C : j [x; q]� [y; q] j � �qdp0(x; y):

2

Corollary 1.27 Let C be a salient half-space for which C� separates C, and for which

int(C�) 6= ;. Then every q 2 C� is a continuous positive half-linear functional on C, with

respect to toplogy T (C; int(C�)).
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The following proposition follows directly from Lemma 1.26 and the fact that every linear

functional [(p1; p2)] 2 V [C�] can be written as [(p1; p2)] = [(p1; 0)] � [(p2; 0)].

Proposition 1.28 Let C be a salient half-space for which C� separates C, and for which

int(C�) 6= ;. Then every linear functional [(p1; p2)] 2 V [C�] is continuous with respect to

T (V [C]; int(C�)).

Proposition 1.29 Let X be an in�nite-dimensional normed vector space. Then there is

an unbounded linear functional F : X ! IR.

Proof

Let H = fhi j i 2 INg be a maximal linearly independent subset, or Hamel basis (cf. [2]),

in X, such that 8i 2 IN : k hi k = 1, and for every x 2 X, let the function Hx : H ! IR

be de�ned by x =
P

i2IN
Hx(hi)hi. Now de�ne the linear functional F : X ! IR by

F(x) :=
X
i2IN

iHx(hi):

Since for every i 2 IN we �nd F(hi) = i, we conclude that F is unbounded. 2

Let C be a salient half-space for which C� separates C, and for which int(C�) 6= ;, and

V [C�] = (V [C])�. Then every linear functional on V [C] is continuous with respect to

T (V [C]; int(C�)), hence V [C], and therefore also C, is �nite-dimensional.

Conversely, at the end of the previous subsection, we have seen that if C is a �nite-

dimensional salient half-space for which C� separates C, then V [C�] = (V [C])�. Hence,

we �nd the following corollary.

Corollary 1.30 Let C be a salient half-space for which C� separates C. Then

V [C�] = (V [C])�

int(C�) 6= ;

)
() C is �nite-dimensional:

Lemma 1.31 Let C be a re
exive salient half-space. Let p0 2 int(C�) and let (xn)n2IN
be a Cauchy sequence in C with respect to metric dp0 . Then

9x 2 C 8q 2 C� : lim
n!1

[xn; q] = [x; q]:

Proof

By Lemma 1.26, for all q 2 C�, ([xn; q])n2IN is a Cauchy sequence in IR+. De�ne the

function F : C� ! IR+ by F(q) := lim
n!1

[xn; q]. Since C is re
exive, 9x 2 C 8q 2 C� :

F(q) = [x; q]. 2

Corollary 1.32 Let C be a �nite-dimensional re
exive salient half-space. Then the metric

space C is complete.

Proof

On the one hand, given a Cauchy sequence (xn)n2IN in C, with metric dp0 , there is

y 2 V [C] such that lim
n!1

k xn � y kp0 = 0. On the other hand, 9x 2 C 8q 2 C� : [x; q] =

lim
n!1

[xn; q]. We conclude x = y. 2
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Corollary 1.33 Let C be a �nite-dimensional salient half-space for which C� separates

the elements of C. Then C is re
exive if and only if C is closed in V [C].

In the remainder of this paper, we use a �nite-dimensional re
exive salient half-space to

model the set of all economy bundles. In this section, we have seen that every �nite-

dimensional re
exive salient half-space is a complete metric space, where the metric is

generated by any element of the (non-empty) interior of the half-dual space. The following

statements will be needed in the proof of the main theorem of this paper.

Corollary 1.34 Let C be a �nite-dimensional, re
exive salient half-space.

a) Let p0 2 int(C�) and let (xn)n2IN be a sequence in C. Then (xn)n2IN converges to 0

with respect to the relative topology T (C; int(C�)) if and only if lim
n!1

[xn; p0] = 0.

b) Let S be a subset of C and let p0 2 int(C�). Then S is bounded if and only if the set

f[x; p0] j x 2 Sg is bounded.

c) For all p0 2 int(C�), the sets fx 2 C j [x; p0] � 1g and fx 2 C j [x; p0] = 1g are

compact.

Lemma 1.35 Let C be a salient half-space for which C� separates C and int(C�) 6= ;,

let S be a subset of C, and let u0 2 int(C). Then S is bounded if 9� � 0 : S � fx 2 C j

x �C �u0g. If, in addition, C is re
exive and �nite-dimensional, then boundedness of S

implies S � fx 2 C j x �C �u0g, for some � � 0.

Proof

Suppose 9� � 0 8x 2 S : x �C �u0. Let p0 2 int(C�), then 8x 2 S : [x; p0] � �[u0; p0],

hence S is bounded.

Now, suppose 8� � 0 9x 2 S : :(x �C �u0), i.e., 8� � 0 9x 2 S 9p 2 fq 2 C� j [u0; q] =

1g : [x; p] > �[u0; p]. Then, for every n 2 IN there is xn 2 S and pn 2 fq 2 C� j [u0; q] = 1g

such that 1

n
[xn; pn] > [u0; pn]. To prove the lemma, we show that the sequence (xn)n2IN

is unbounded. Suppose (xn)n2IN is bounded. Since C is assumed to be �nite-dimensional

and re
exive, we may assume that the sequence (xn)n2IN is convergent with limit x 2 C,

and the sequence (pn)n2IN is convergent with limit p 2 fq 2 C� j [u0; q] = 1g. This implies

0 = lim
n!1

1

n
[xn; pn] � 1. We conclude that S is unbounded. 2

Next, we present a salient half-space related characterisation of int(C).

Lemma 1.36 Let C be a �nite-dimensional salient half-space and let x 2 C. Then x 2

int(C) if and only if 8q 2 C� n f0g : [x; q] > 0.

Proof

Let x 2 int(C) and let q 2 C� n f0g. There is y 2 C with [y; q] > 0. Since x is internal

point of C, there is " > 0 and z 2 C such that x = "y + z. We conclude [x; q] > 0.

For the converse, suppose x 2 bd(C) n f0g. Since C is a convex cone, int(C) is a convex

set. By the Weak Separation Theorem of Minkowski ([8, p.60])

9 p 2 (V [C])� n f0g 9 � 2 IR :

(
8 � � 0 : p(�x) � �

8 u0 2 int(C) : p(u0) � �:
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Choosing � equal to 0, and choosing a sequence in int(C) converging to 0, we �nd � = 0.

As a consequence p 2 C� n f0g. By subsequently choosing � equal to 1, we �nd [x; p] � 0.

2

Note, that as a consequence of this lemma, we �nd (int(C))� = C�.

Let C be a �nite-dimensional, re
exive salient half-space and let x0 2 int(C). Then

by Corollary 1.34.c, the set L := fp 2 C� j [x0; p] = 1g is compact. When we de�ne

Ux0 : C ! IR+ and Lx0 : C ! IR+ by

Ux0(x) := maxf[x; p] j p 2 Lg

Lx0(x) := minf[x; p] j p 2 Lg;

then Lx0(x) � [x; p] � Ux0(x) for all p 2 L and x 2 C. Clearly, Lx0(x) > 0 if x 2 int(C).

Note, that this also proves that every x0 2 int(C) is an order unit.

Lemma 1.37 Let C be a �nite-dimensional, re
exive salient half-space, and let (xn)n2IN
be a sequence in int(C), with limit x0 2 int(C). Then, the functions Ux0 : C ! IR+ and

Lx0 : C ! IR+ satisfy

8n 2 IN : Lx0(xn)x0 �C xn �C Ux0(xn)x0 and lim
n!1

Lx0(xn) = lim
n!1

Ux0(xn) = 1:

Proof

Using the de�nition of L, Ux0 and Lx0 , given above, let p 2 L satisfy [x0; p] = Ux0(x0) = 1

and, similarly, for all n 2 IN , let pn 2 L satisfy [xn; pn] = Ux0(xn). Since, for all n 2

IN : Ux0(xn) � [xn; p], we �nd that lim inf
n!1

Ux0(xn) � [x0; p] = 1. Let (xnk)k2IN be

a subsequence of (xn)n2IN , satisfying lim sup
n!1

Ux0(xn) = lim
k!1

Ux0(xnk). The sequence

(pnk)k2IN lies in the compact set L, so (pnk)k2IN can be assumed convergent with limit

q 2 L. Now, we �nd

lim sup
n!1

Ux0(xn) = lim
k!1

Ux0(xnk) = lim
k!1

[xnk; pnk] = [x0; q] = 1 � lim inf
n!1

Ux0(xn):

A similar argument can be used to prove lim
n!1

Lx0(xn) = 1. 2

The proof of the main theorem of this paper makes use of a cone-related �xed point the-

orem, which is a corollary of the well known �xed point theorem of Brouwer.

Brouwer's Fixed Point Theorem ([2, Theorem V.9.1])

Let K be a non-empty compact convex subset of a �nite-dimensional normed vector space

X and let F : K ! K be a continuous function, then there exists x 2 K such that

F(x) = x, i.e., F has a �xed point in K.

Brouwer's Fixed Point Theorem has the following consequence for continuous functions

on a salient half-space.

Proposition 1.38 Let C be a salient half-space satisfying V [C] is �nite-dimensional and

C�� = C. Let G : C n f0g ! C be a continuous function. Then there exists an x 2 C n f0g

such that G(x) = �x for some � � 0. In fact, for all p0 2 int(C�) there is x 2 C such that

G(x) = [G(x); p0]x.
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Proof

Let p0 2 int(C�). The set L1(p0) := fx 2 C j [x; p0] = 1g is non-empty, convex, and

compact by Corollary 1.34.c. De�ne the function F : L1(p0)! L1(p0) by

F(x) :=
x+ G(x)

1 + [G(x); p0]
:

Then F is a continuous function. By the preceding theorem the function F has a �xed

point x in L1(p0), so x = F(x) =
x+G(x)

1+[G(x);p0]
. 2
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2 Introduction of the model

As mentioned in the introduction, all aspects of the model of a private ownership economy,

described in this paper, resemble those of the model presented in [11], except for a slight

alteration in the de�nition of production technology and the fact that we assume that the

preference relations of the agents are de�ned only on the set of consumption bundles.

A recapitulation of the model of [11] with these adaptions, and the de�nition of an equi-

librium concept analogous to the concept of Walrasian equilibrium in this setting, are the

main items of this section.

Economy bundles and pricing functions

Both this model and the model of a private ownership economy, presented in [11], di�er

from the neo-classical models in the following two aspects.

� The model recognises production and consumption as two di�erent features in an

economy. Thus, two di�erent types of economy bundles occur: production bundles

and consumption bundles. Production bundles are used as input for production

processes. The output of a production process is always a consumption bundle.

Agents have an initial endowment which may contain bundles of both types, their

preference relation, however, is de�ned only on the set of consumption bundles.

� Also, we follow the idea of [9], where a mathematical model of a pure exchange econ-

omy is presented in which commodities are not assumed to occur separately. Instead

of introducing the commodity space (IRn)+ describing n di�erent commodities, only

appearance of so called economy bundles is assumed. Here, the term \economy bun-

dle" is used to describe exchangable objects in the economy. Thus, economy bundles

can represent single commodities, bundles of commodities or �xed combinations of

commodities.

The above described situation is incorporated as follows.

Firstly, considering economy bundles instead of separate commodities, we model the set

of all economy bundles by a salient half-space C, re
ecting that the only possible ma-

nipulations with these bundles are adding and scaling over IR+. If x; y 2 C represent

two economy bundles then we can speak of the sum x + y of x and y, and if � � 0 we

can speak of the scaled version �x of x. Both x + y and �x are economy bundles in C.

Requiring the economy bundle set C to be salient (Condition 1.1.a) describes the fact that

it is impossible for two economy bundles to cancel each other out after addition.

Secondly, considering two types of economy bundles, production and consumption bundles,

we assume that C is the direct sum of two salient half-spaces Cprod and Ccons, where Cprod

consists of all production bundles and Ccons consists of all consumption bundles. Both

Cprod and Ccons are assumed to be non-trivial, i.e., assumed to be not equal to f0prodg

and f0consg, where 0prod and 0cons denote the vertex of Cprod and Ccons, respectively. So,

C is also non-trivial. In every economy bundle x 2 C, each of the two types is uniquely

represented: x = (xprod; xcons) with xprod 2 Cprod and xcons 2 Ccons.

At the moment, no further mathematical conditions are imposed on the salient half-

space C.
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Since in our model commodities are not assumed to occur separately, the price of a single

commodity is not a meaningful concept. Instead, we speak of the value of an econ-

omy bundle, which will be determined on the basis of \pricing functions". These pricing

functions are described by positive half-linear functionals on C. The set of all such func-

tionals has been introduced in Section 1 as the half-dual space C� and we have seen that

C� = C�
prod

�C�
cons

. So, for x 2 C and p 2 C�, the value V(x; p) of economy bundle x with

respect to the pricing function p equals

V(x; p) := [x; p] = [xprod; pprod]prod + [xcons; pcons]cons:

Economic agents

The features of an economic agent are an economy bundle w = (wprod; wcons) 2 C, mod-

elling his initial endowment, a preference relation � de�ned on Ccons, modelling his taste,

and share rates, to be de�ned in the subsection titled \Equilibrium". By xcons � ycons we

denote that the agent considers consumption bundle xcons to be at least as preferable as

bundle ycons. By xcons � ycons we mean xcons � ycons and :(ycons � xcons). This preference

relation � on Ccons satis�es re
exivity, transitivity and completeness. The budget set

B(pcons; �) := fxcons 2 Ccons j [x
cons; pcons]cons � �g;

consists of all consumption bundles that can be a�orded at a given value � � 0 and given

pricing function pcons 2 C�
cons

.

There are I agents in the economy, indexed by i 2 f1; : : : ; Ig, with initial endowment wi 2

C and preference relation �i de�ned on Ccons. The set

Di(p
cons; �i) := fxcons 2 B(pcons; �i) j 8y

cons 2 B(pcons; �i) : x
cons �i y

consg

is called the demand set of agent i at given value �i and pricing function pcons. Later on,

for each agent i the value, or income, �i at pricing function p 2 C� will be de�ned as being

the value V(wi; p) of his initial endowment plus his shares in the pro�ts of production.

Production processes and technologies

Since we deal with an exchange economy with production, we have to model so called

production processes which we regard as processes that incorporate the possibility of

converting production bundles into consumption bundles. In our model, the production

process that converts production bundle xprod 2 Cprod into consumption bundle xcons 2

Ccons, is uniquely represented by the economy bundle x = (xprod; xcons) 2 C.

A production technology T � C will be de�ned as a collection of production processes,

that satis�es

� the production process \no production" belongs to T ,

� a production process in T with zero input has zero output,

� the free disposal properties.

The following concepts, related to a direct sum of salient half-spaces, are needed in the

formal de�nition of production technology.
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De�nition 2.1 For all x 2 Cprod � Ccons the set Fx is given by

Fx := fz 2 C j xprod �prod z
prod and zcons �cons x

consg:

Let T � C. For all x 2 T the set Rx(T ) is given by

Rx(T ) := fz 2 T j x 2 Fz and Fz � Tg:

Furthermore, the set E(T ) is given by

E(T ) := fe 2 T j Re(T ) = fegg:

The following three properties immediately follow from the above de�nition.

Lemma 2.2 Let x 2 C. Then

� x 2 Rx(T )() Fx � T .

� 8y 2 Fx : Fy � Fx.

� y 2 Fx and x 2 Fy () x = y.

Note that the set Fx is closely connected with the notion of \free disposal of commodities".

Later, we show that the set E(T ) describes the set of all e�cient elements of a set T of

production processes.

First, we give the de�nition of a production technology. Note that it is di�erent from the

de�nition used in [11].

De�nition 2.3 A set T � C is a production technology if

a) (0prod; 0cons) 2 T ,

b) If (0prod; xcons) 2 T then xcons = 0cons,

c) T =
S

e2E(T )

Fe.

A production process (xprod; xcons) in a production technlogy T is said to be e�cient, if at

least xprod is needed to produce xcons, and if it is not possible to produce more than xcons

out of xprod. Mathematically speaking, this boils down to the following de�nition.

De�nition 2.4 For a production technology T , a production process e 2 T is e�cient if

8x 2 T :
xprod �prod e

prod

econs �cons x
cons

)
=) x = e:

Put di�erently, e 2 T is e�cient if and only if e 2 E(T ) (cf. De�nition 2.1). Note that

(0prod; 0cons) 2 E(T ).

Given a pricing function p 2 C� and a production process x 2 C, we de�ne the pro�t or

gain G(x; p) by

G(x; p) := [xcons; pcons]cons� [xprod; pprod]prod:

Note that the following two properties are a direct consequence of the de�nition of G and

Fx.
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� Let x 2 C, p 2 C� and y 2 Fx, then G(x; p) � G(y; p).

� Let x 2 C, p 2 int(C�) and let y 2 Fx satisfy y 6= x, then G(x; p) > G(y; p).

So, for every pair (x; p) 2 C �C� we can speak both of its value, where x is considered as

an economy bundle, and of its gain, where x is considered as a production process. Note

that V(x; p) 2 IR+ and G(x; p) 2 IR.

There are J production technologies in the economy, denoted by Tj , j 2 f1; : : : ; Jg. Given

p 2 C�, the (possibly empty) set of all gain maximizing production processes in Tj is called

the supply set Sj(p) of Tj, i.e.,

Sj(p) = fx 2 Tj j 8y 2 Tj : G(x; p) � G(y; p)g:

Equilibrium

For agent i, i 2 f1; : : : ; Ig, �ijG(xj ; p) is the share in the pro�t of production technology

Tj, j 2 f1; : : : ; Jg, when production process xj 2 Tj is executed at pricing function p.

For all i 2 f1; : : : ; Ig and j 2 f1; : : : ; Jg the share rates satisfy �ij � 0. Furthermore,
IP

i=1

�ij = 1, for all j 2 f1; : : : ; Jg.

Given pricing function p 2 C� and production processes xj 2 Tj for all j 2 f1; : : : ; Jg, the

value �i(p;x1; : : : ; xJ) of agent i, i 2 f1; : : : ; Ig, is

�i(p;x1; : : : ; xJ) := V(wi; p) +
JX

j=1

�ijG(xj ; p):

In this setting, an equilibrium concept analogous to that of the neo-classical Walrasian

equilibrium can be introduced.

De�nition 2.5 An element peq 2 C� is a (Walrasian) equilibrium pricing function if

8j 2 f1; : : : ; Jg 9sj 2 Sj(peq) 8i 2 f1; : : : ; Ig 9d
cons

i 2 Di(peq; �i(peq; s1; : : : ; sJ)) :

IX
i=1

(0prod; dconsi ) +
JX

j=1

(sprodj ; 0cons) �C

IX
i=1

wi +
JX

j=1

(0prod; sconsj );

i.e., 8>>><
>>>:

JP
j=1

sprodj �prod

IP
i=1

wprod

i ;

IP
i=1

dconsi �cons

IP
i=1

wcons

i +
JP

j=1

sconsj :
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3 From production technology to supply

In this section, we derive some properties of production technologies, and introduce some

new related items. Thereafter, we show that under Assumption 3.6, stated below, for each

j 2 f1; : : : ; Jg and for every pricing function p, taken from some speci�c set Domain[j] �

C� (c.f. De�nition 3.4), the supply set Sj(p) = fx 2 Tj j 8y 2 Tj : G(x; p) � G(y; p)g

consists of exactly one element. Furthermore, we show that Assumption 3.6 implies that

the supply function Sj, de�ned on the set Domain[j], such that Sj(p) = fSj(p)g for all

p 2 Domain[j], is continuous. Finally, for each j 2 f1; : : : ; Jg, the behaviour of the

supply function Sj is investigated regarding a sequence (pn)n2IN 2 Domain[j] with limit

p 62 Domain[j].

Before we make several assumptions for every production technology, note that the fol-

lowing lemma is a direct consequence of the de�nition of production technology and of the

continuity of the order relations �prod and �cons.

Lemma 3.1 Let Tj be a production technology and let (xn)n2IN be a convergent sequence

in Tj, with limit x 2 C. Let (en)n2IN be a sequence in E(Tj) satisfying 8n 2 IN : xn 2 Fen .

If (en)n2IN is convergent with limit e 2 E(Tj), then x 2 Fe � Tj.

The following lemma implies that if a production technology Tj satis�es 8e; f 2 E(Tj) 8� 2

[0; 1] : �e+ (1� �)f 2 Tj , then Tj is convex.

Lemma 3.2 Let S be a subset of the salient half-space C = Cprod � Ccons. Assume S =S
e2E(S)

Fe and assume 8e; f 2 E(S) 8� 2 [0; 1] : �e+(1��)f 2 S: Then the set S is convex.

Proof

Let x; y 2 S and � 2 [0; 1]. By the �rst property of S, there exist e; f 2 E(S) such that

x 2 Fe and y 2 Ff . Thus,(
9~xprod 2 Cprod : x

prod = eprod + ~xprod

9~xcons 2 Ccons : e
cons = xcons + ~xcons

and

(
9~yprod 2 Cprod : y

prod = fprod + ~yprod

9~ycons 2 Ccons : f
cons = ycons + ~ycons:

To prove convexity of S we shall show that �x + (1 � �)y 2 F(�e+(1��)f). Indeed, this

proves the assertion since both properties of S, combined with the second property of

Lemma 2.2, yield F(�e+(1��)f) � S.

Firstly, note that

�xprod + (1� �)yprod = �(eprod + ~xprod) + (1� �)(fprod + ~yprod)

= (�eprod + (1� �)fprod) + (� ~xprod + (1� �)~yprod);

and secondly,

(�xcons + (1� �)ycons) + (� ~xcons + (1� �)~ycons) = �econs + (1� �)f cons:

Since � ~xprod + (1 � �)~yprod 2 Cprod and � ~xcons + (1 � �)~ycons 2 Ccons, we conclude that

�x+ (1� �)y 2 F(�e+(1��)f). 2

In order to de�ne the above mentioned sets Domain[j], j 2 f1; : : : ; Jg, we need the fol-

lowing de�nition.
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De�nition 3.3 For every production technology Tj, j 2 f1; : : : ; Jg, the extended real

function �j : C
� ! [0;1] is given by

�j(p) := sup
x2Tj

G(x; p) = sup
e2E(Tj)

G(e; p):

Note that for every j 2 f1; : : : ; Jg, the function �j is convex, i.e.,

8p1; p2 2 C� 8� 2 [0; 1] : �j(�p1 + (1� �)p2) � ��j(p1) + (1� �)�j(p2):

De�nition 3.4 For every j 2 f1; : : : ; Jg the set Domain[j] is given by

Domain[j] := fq 2 C� n f0g j 9xq 2 Tj : G(xq; q) = �j(q)g:

With this de�nition, the supply set Sj(q) is, for every q 2 Domain[j], is given by

Sj(q) = fx 2 Tj j G(x; q) = �j(q)g:

For every q 62 Domain[j] we �nd Sj(q) = ;.

Note that 8j 2 f1; : : : ; Jg 8q 2 Domain[j] : Sj(q) \E(Tj) 6= ;.

In order to state the assumptions concerning production technology Tj , j 2 f1; : : : ; Jg,

which are needed in the proof of the main theorem of this paper, we need a topology on the

salient half-space C. Furthermore, since some of the statements in this section make use

of the compactness of bounded, closed subsets of C, we make the following assumption,

which will be one of the conditions of the main theorem of this paper.

Assumption 3.5 The salient half-space C, used in the model of a private ownership

economy of Section 2 to model the set of all economy bundels, is �nite-dimensional and

re
exive.

Under this assumption, C can be endowed with the topology T (C; int(C�)), de�ned in

Section 1. For the remainder of this section, let d be a metric on C, corresponding with

topology T (C; int(C�)).

Next, we lay assumptions on the production technologies Tj, j 2 f1; : : : ; Jg. These as-

sumptions imply that we can deal with continuous supply functions Sj : Domain[j]! C,

and will be part of the conditions of the main theorem.

Assumption 3.6 Every production technology Tj � C, j 2 f1; : : : ; Jg satis�es

a) if e1; e2 2 E(Tj), e1 6= e2, � 2 (0; 1) then �e1 + (1� �)e2 2 int(Tj),

b) E(Tj) is closed with respect to the topology T (C; int(C�)).

Note that these assumptions on the production technologies of our model are di�erent

from the corresponding ones concerning production technologies in [11]. Firstly, part a is

related to the concept of internal point, introduced in Section 1, where the former version

was not. Secondly, part b only requires closedness of E(Tj) instead of closedness of Tj .

The connection between closedness of Tj and E(Tj) is investigated below. Also, note that

under these assumptions, every production technology is convex.
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Lemma 3.7 Let Tj be a production technology, let aprod 2 Cprod and let Ccons satisfy

int(Ccons) 6= ;. If Tj is closed, then the set fxcons 2 Ccons j (a
prod; xcons) 2 Tjg is bounded.

Proof

Let b0 2 int(Ccons). Suppose the set fx
cons 2 Ccons j (a

prod; xcons) 2 Tjg is unbounded, then,

by Lemma 1.35, for every n 2 IN there exists xcons

n 2 Ccons such that(
(aprod; xcons

n ) 2 Tj
xcons

n �cons nb
cons

0
:

By De�nition 2.3.c we �nd (aprod; nbcons
0

) 2 Tj for all n 2 IN . Since Tj is convex and

contains (0prod; 0cons) (De�nition 2.3.a), we �nd 8n 2 IN : ( 1
n
aprod; bcons

0
) 2 Tj. Taking the

limit for n!1, the clossedness of Tj implies (0prod; bcons
0

) 2 Tj , which is in contradiction

with De�nition 2.3.b. 2

Lemma 3.8 Let Tj be a production technology and let S � Tj satisfy 9aprod 2 Cprod 8x

2 S : xprod �prod a
prod. If Tj is closed, then S is bounded.

Proof

Let x 2 S. By De�nition 2.3.c, we �nd that xprod �prod a
prod implies (aprod; xcons) 2 Fx � Tj ,

so S � fy 2 C j (aprod; ycons) 2 Tjg. By the previous lemma we �nd that S is bounded. 2

Lemma 3.9 Let Tj be a production technology, satisfying E(Tj) is closed, and assume

every sequence (en)n2IN in E(Tj) satis�es

(eprodn )
n2IN is bounded =) (en)n2IN is bounded:

Then Tj is closed.

Proof

Let (xn)n2IN be a convergent sequence in Tj with limit x 2 C. By De�nition 2.3.c we �nd

a sequence (en)n2IN in E(Tj) satisfying 8n 2 IN : xn 2 Fen . Hence, 8n 2 IN : xprod

n �prod

eprodn . Since the sequence (eprodn )
n2IN is bounded, the assumption implies that (en)n2IN is

bounded. Without loss of generality, we may assume that (en)n2IN is convergent with limit

e 2 E(Tj). By the continuity of the order relations �prod and �cons, and by De�nition 2.3.c

we �nd x 2 Fe � Tj . 2

In case int(Ccons) 6= ;, the previous three lemmas imply that for a production technology Tj
satisfying E(Tj) is closed, the following two statements are equivalent:

� Tj is closed,

� \bounded input yields bounded output".

Next, we show that Assumptions 3.5 and 3.6, indeed imply that we can deal with contin-

uous supply functions Sj, de�ned on the set Domain[j], j 2 f1; : : : ; Jg. For the remainder

of this section, let j be any �xed element of f1; : : : ; Jg, and assume Domain[j] 6= ;. Before

we are able to de�ne the supply function Sj , we need uniqueness of the supply, for every

p 2 Domain[j]. This, combined with some properties of the unique element of the supply

set, is proved in the following lemma.
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Lemma 3.10 Let p 2 Domain[j]. Then there is a unique ep 2 E(Tj) such that G(ep; p) =

�j(p). Furthermore, ep satis�es 8x 2 Sj(p) : x 2 Fep. Finally, if p 2 Domain[j]\ int(C�),

then ep is the unique element of supply set Sj(p).

Proof

Since p 2 Domain[j], the set Sj(p) \ E(Tj) is non-empty. Suppose e1; e2 2 Sj(p) \ E(Tj)

and e1 6= e2. Then by Assumption 3.6.a, x := �e1 + (1 � �)e2 is an internal point of Tj .

Hence, for a �xed order unit u0 of C there exists " > 0 such that (xprod; xcons + "ucons

0
) 2

("uprod

0
; 0cons) + Tj. Let y 2 Tj satisfy ("uprod

0
; 0cons) + y = (xprod; xcons + "ucons

0
). Since

p 6= 0, we �nd G(y; p) > G(x; p) which is in contradiction with the optimality of e1 and

e2. We conclude that there is a unique ep 2 Sj(p)\E(Tj), maximising G(e; p), e 2 E(Tj).

Furthermore, 8x 2 Sj(p) : x 2 Fep .

Let p 2 Domain[j] \ int(C�) and let x 2 Tj n E(Tj). Then 9ex 2 E(Tj) : x 2 Fex . Since

p 2 int(C�) and x 6= ex we �nd G(x; p) < G(ex; p) � G(ep; p). 2

De�nition 3.11 The supply function Sj : Domain[j]! E(Tj) is given by Sj(q)\E(Tj) =

fSj(q)g, for all q 2 Domain[j]

Lemma 3.12 Let (pn)n2IN be a sequence in Domain[j], with limit p 6= 0. If the sequence

(Sj(pn))n2IN is convergent with limit s 2 C, then p 2 Domain[j] and s = Sj(p).

Proof

Since 8n 2 IN 8x 2 Tj : G(Sj(pn); pn) � G(x; pn), continuity of G guarantees 8x 2 Tj :

G(s; p) � G(x; p). Since E(Tj) is closed (Assumption 3.6.b), s 2 E(Tj), so p 2 Domain[j].

Furthermore, Lemma 3.10 implies s = Sj(p). 2

Lemma 3.13 The supply function Sj : Domain[j] ! E(Tj) is continuous with respect to

the relative topology on Domain[j].

Proof

Let (pn)n2IN be a sequence in Domain[j], with limit p 2 Domain[j]. Suppose (Sj(pn))n2IN
does not converge to Sj(p). Without loss of generality, we may assume 9" > 0 8n 2 IN :

d(Sj(pn);Sj(p)) > ". De�ne xn := �nSj(pn) + (1 � �n)Sj(p), with �n := "
d(Sj(pn);Sj(p))

2

(0; 1). Then d(xn;Sj(p)) = " and by Assumption 3.6.a we �nd that xn is an internal point

of Tj. Both the sequences (�n)n2IN and (xn)n2IN are bounded. Without loss of generality

assume lim
n!1

�n = � and lim
n!1

xn = x 2 C. Note that x 6= Sj(p) implies � > 0. Since

G(xn; pn) � minfG(Sj(pn); pn);G(Sj(p); pn)g = G(Sj(p); pn), the continuity of G implies

G(x; p) � G(Sj(p); p). Since 8n 2 IN : G(xn; p) � �j(p), we �nd G(x; p) = �j(p).

Since for all n 2 IN : xn = �nSj(pn) + (1 � �n)Sj(p), the sequence (Sj(pn))n2IN in E(Tj)

is convergent with limit e 2 E(Tj) satisfying x = �e+ (1� �)Sj(p)). Note that x 6= Sj(p)

implies e 6= Sj(p). However, G(e; p) =
1

�
(G(x; p) � (1 � �)G(Sj(p); p)) = �j(p). This is in

contradiction with Sj(p) being the unique element of the set Sj(p) \E(Tj). 2

Corollary 3.14 The function �j is continuous on Domain[j].
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The continuity of the supply function is proved, so we can now concentrate on some other

properties of this function. First, we derive some limit behaviour, especially regarding a

sequence (pn)n2IN 2 Domain[j], with limit p 62 Domain[j]. Also, we will investigate the

set Domain[j] in more detail.

Lemma 3.15 Let Cprod satisfy int(Cprod) 6= ;, let p0 2 int(C�), let � 2 IR, and let

fx 2 Tj j G(x; p0) � �g be an unbounded subset of C. Then the set fx 2 Tj j G(x; p0) = �g

is unbounded.

Proof

Let uprod

0
2 int(Cprod). Then, by the free-disposal property of Tj , for every y 2 fx 2 Tj j

G(x; p0) � �g there is � > 0 such that (yprod + �uprod

0
; ycons) 2 fx 2 Tj j G(x; p0) = �g. 2

Lemma 3.16 Let p0 2 int(C�), let � 2 IR satisfy � < �j(p0) and let fx 2 Tj j G(x; p0) =

�g be a bounded set. Then �j(p0) <1.

Proof

Let (en)n2IN be a sequence in E(Tj), satisfying sup
n2IN

G(en; p0) = �j(p0). By Lemma 3.15,

the set fx 2 Tj j G(x; p0) � �g is bounded, so (en)n2IN has a convergent subsequence

with limit e 2 E(Tj) \ Sj(p0). 2

Corollary 3.17 Let p0 2 int(C�) and let � 2 IR. If �j(p0) = 1 then the set fx 2 Tj j

G(x; p0) = �g is unbounded.

Lemma 3.18 Let p0 2 Domain[j] \ int(C�). Then there is a T (C; int(C�))-open neigh-

bourhood O of p0 such that every q 2 O satis�es �j(q) <1.

Proof

Let (qn)n2IN be a sequence in int(C�), converging to p0, such that 8n 2 IN : �j(qn) =1.

By the previous corollary, for all n 2 IN , the set Ln := fz 2 Tj j G(z; qn) = G(Sj(p0); qn)g

is unbounded, so 8n 2 IN 9yn 2 Ln : V(yn; p0) > 1 + V(Sj(p0); p0). Since Ln is convex,

and contains Sj(p0), for all � 2 [0; 1] we �nd �yn + (1 � �)Sj(p0) 2 Ln. Now choose

�n := 1

V(yn;p0)�V(Sj(p0);p0)
2 (0; 1) then xn := �nyn + (1 � �n)Sj(p0) 2 Ln \ U where

U := fz 2 C j V(z; p0) = 1 + V(Sj(p0); p0)g. Since U is compact (Corollary 1.34.c),

we may as well assume that (xn)n2IN is convergent, with limit x 2 C. Note that the

continuity of G implies G(x; p0) = �j(p0).

By De�nition 2.3.c, there is a sequence (en)n2IN in E(Tj) satisfying 8n 2 IN : xn 2

Fen . Hence, G(xn; p0) � G(en; p0) � �j(p0) and xprod

n �prod eprodn . So, the sequence

(G(en; p0))n2IN is convergent with limit �j(p0), and the sequence (eprodn )
n2IN is bounded.

Moreover, [econsn ; pcons
0

]cons � �j(p0)+[eprodn ; pprod
0

]prod, so the sequence (e
cons

n )
n2IN is bounded.

Without loss of generality, we assume that (en)n2IN is convergent. Let e 2 E(Tj) be its

limit, so G(e; p0) = �j(p0). By Lemma 3.10 we �nd e = Sj(p0). Continuity of �prod and

�cons implies x 2 Fe � Tj . Now, x 2 Tj and G(x; p0) = �j(p0) imply that x is an element

of the supply set Sj(p0). Since x 2 U implies x 6= Sj(p0), we arrive at a contradiction since

p0 2 Domain[j] \ int(C�) combined with Lemma 3.10 implies that Sj(p0) is the unique

element of the supply set Sj(p0). 2
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Lemma 3.19 Let p0 2 int(C�), let � 2 IR, and let fx 2 Tj j G(x; p0) � �g be an

unbounded set. Then p0 62 Domain[j].

Proof

Let (xn)n2IN be an unbounded sequence in fx 2 Tj j G(x; p0) � �g. Let 0 < " � 1

and de�ne p" := ((1 � ")pprod
0

; (1 + ")pcons
0

). Since for all n 2 IN the gain G(xn; p") equals

G(xn; p0) + "[xprod

n ; pprod
0

]prod+ "[xcons

n ; pcons
0

]cons, the sequence (G(xn; p"))n2IN is unbounded.

Hence, 8" 2 (0; 1] : �j(p") =1. Using Lemma 3.18, we conclude p0 62 Domain[j]. 2

Corollary 3.20 Let p0 2 int(C�). If p0 2 Domain[j], then for all � 2 IR, the set fx 2

Tj j G(x; p0) � �g is compact.

Corollary 3.21 Let (pn)n2IN be a convergent sequence in Domain[j], with limit p 2 C� n

Domain[j]. Then 8p0 2 Domain[j] \ int(C�) : lim sup
n!1

G(Sj(pn); p0) = �1.

Proof

The sequence (Sj(pn))n2IN does not have a point of accumulation, since existence of such

a point would lead to a contradiction with Lemma 3.12. Let p0 2 Domain[j]\ int(C�). For

all � 2 IR, the set fx 2 Tj j G(x; p0) � �g is compact (Corollary 3.20), and so we �nd that

8� 2 IR 9N 2 IN 8n > N : G(Sj(pn); p0) � �. We conclude lim sup
n!1

G(Sj(pn); p0) = �1.

2

Proposition 3.22 Domain[j] \ int(C�) = int(Domain[j]):

Proof

We only have to prove Domain[j]\int(C�) � int(Domain[j]). Let p0 2 Domain[j]\int(C�).

By Lemma 3.18, there is a T (C; int(C�))-open neighbourhood O of p0 such that every

q 2 O satis�es �j(q) <1. Let q 2 O. We shall prove that 9e 2 E(Tj) : G(e; q) = �j(q).

Let (en)n2IN be a sequence in E(Tj) satisfying lim
n!1

G(en; q) = �j(q) < 1. Then, for

� 2 IR chosen su�ciently small, (en)n2IN is a sequence in fx 2 Tj j G(x; q) � �g.

So, by Corollary 3.20, without loss of generality, we may assume (en)n2IN is convergent

with limit e 2 E(Tj) � Tj (Assumption 3.6.b). Since G(e; q) = �j(q), we conclude that

q 2 Domain[j]. 2

Corollary 3.23 The set int(Domain[j]) [ f0g is a subcone of C�.

Proof

Since the function G : C�C� ! IR is homogeneous of degree one, Domain[j][f0g is closed

under scalar multiplication over IR+. Let p1; p2 2 int(Domain[j]) and let � 2 (0; 1). We

prove that q := �p1+(1� �)p2 2 Domain[j]. We �rst note that p1; p2 2 Domain[j] implies

�j(q) � ��j(p1) + (1 � �)�j(p2). Since there is nothing to prove in case G(Sj(p1); q) =

�j(q), we may as well assume that 9" > 0 such that G(Sj(p1); q) < �j(q) � " De�ne

U := fx 2 Tj j G(x; p2) � G(Sj(p1); p2)g, then U is compact (Lemma 3.20). Let (en)n2IN
be a sequence in E(Tj) satisfying sup

n2IN
G(en; q) = �j(q).
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Let n 2 IN . If en 62 U , i.e., if G(en; p2) < G(Sj(p1); p2) then G(en; q) = �G(en; p1) + (1 �

�)G(en; p2) < �G(Sj(p1); p1)+(1��)G(Sj(p1); p2) = G(Sj(p1); q) < �j(q)�". We conclude

that 9N 2 IN 8n > N : en 2 U . Since U is compact, q 2 Domain[j]. 2

We conclude this section on production technologies and their corresponding supply func-

tions, with the de�nition of the total supply function, on the set Domain � C�, where

Domain is de�ned by

Domain :=
\

j2f1;:::;Jg

Domain[j]:

One of the conditions of the main theorem of this paper, will imply that Domain 6= ;.

De�nition 3.24 The total supply function S : Domain! C is given by

S(p) :=
JX

j=1

Sj(p):

Corollary 3.25 Let (pn)n2IN be a sequence in Domain, convergent to p 2 C� n Domain.

Then lim sup
n!1

G(S(pn); p0) = �1 for all p0 2 Domain \ int(C�).

Proof

Let p0 2 Domain \ int(C�). For all j 2 f1; : : : ; Jg we �nd that either p 2 Domain[j] and

lim sup
n!1

G(Sj(pn); p0) is �nite (Lemma 3.13), or p 62 Domain[j] and lim sup
n!1

G(Sj(pn); p0) =

�1 (Corollary 3.21). Since there exists j0 2 f1; : : : ; Jg such that p 62 Domain[j0], we �nd

lim sup
n!1

G(S(pn); p0) = �1. 2
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4 From agent to demand

As mentioned in Section 2, an agent i, i 2 f1; : : : ; Ig is characterised by

� initial endowment wi = (wprod

i ; wcons

i ) 2 C,

� preference relation �i de�ned on Ccons,

� share rates �ij 2 [0; 1], i 2 f1; : : : ; Ig, j 2 f1; : : : ; Jg, satisfying
JP

j=1

�ij = 1.

In this section, analogous to the situation in the previous section, we introduce assump-

tions that allow for the de�nition of demand functions on a suitable domain. Also, the

continuity of these demand functions is proved, the limit behaviour of these functions is

examined and the total demand function is de�ned. As mentioned in the introduction,

the main di�erence between this section and the corresponding section of [10], is the re-

striction of most concepts to the salient half-space Ccons of all consumption bundles.

Similar to Assumption 3.6, Assumption 4.1 is stated in a topological setting. Also, some

statements of this section will use the fact that every closed and bounded subset of C is

compact. Hence, we continue Assumptions 3.5 of the previous section. Recall that under

this assumption, the salient half-space C can be endowed with the topology T (C; int(C�)),

as de�ned in Section 1. Furthermore, int(C) 6= ; and for all p0 2 int(C�), the sets

fx 2 C j [x; p0] � 1g and fx 2 C j [x; p0] = 1g are compact.

Assumption 4.1 For every i 2 f1; : : : ; Ig, preference relation �i is

a) monotone: 8 xcons; ycons 2 Ccons : x
cons �cons y

cons implies ycons �i x
cons,

b) strictly convex: 8xcons; ycons 2 Ccons, � 2 (0; 1) : xcons �i y
cons and xcons 6= ycons imply

�xcons + (1� �)ycons �i y
cons,

c) continuous: 8ycons 2 Ccons the sets fxcons 2 Ccons j x
cons �i y

consg and fxcons 2 Ccons j

ycons �i x
consg are closed in Ccons, with respect to topology T (Ccons; int(C

�
cons

)).

We have seen that for given �i � 0, i 2 f1; : : : ; Ig, and pcons 2 C�
cons

, the budget set

B(pcons; �i) and the demand set Di(p
cons; �i) are given by

B(pcons; �i) := fxcons 2 Ccons j [x
cons; pcons]cons � �ig;

Di(p
cons; �i) := fxcons 2 B(pcons; �i) j 8y

cons 2 B(pcons; �i) : x
cons �i y

consg:

We start with the derivation of some properties of the budget and the demand sets. These

properties will be needed to prove the continuity and the limit behaviour of the demand

functions as well as for the proof of Walras' Law. For the remainder of this section, let i

be any �xed element of f1; : : : ; Ig.

Lemma 4.2 Let �i � 0 and pcons 2 C�
cons

. Then demand set Di(p
cons; �i) consists of at

most one element.

Proof

This is a direct consequence of Assumption 4.1.b. 2
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Lemma 4.3 Let �i � 0, pcons 2 C�
cons

, xcons 2 Ccons and suppose fdconsg = Di(p
cons; �i)

with xcons >cons d
cons. Then xcons 62 B(pcons; �i).

Proof

Due to the monotony of the preference relation (Assumption 4.1.a), xcons >cons d
cons implies

xcons �i d
cons. Since xcons 6= dcons and the demand set Di(p

cons; �i) consists of at most one

element, we arrive at a contradiction. 2

Lemma 4.4 Let �i � 0 and let pcons 2 C�
cons

. Then pcons 2 int(C�
cons

)() Di(p
cons; �i) 6= ;.

Proof

Suppose pcons 2 int(Ccons). By Lemma 1.34.c, the budget set B(pcons; �i) is compact in Ccons.

For every bcons 2 B(pcons; �i), de�ne the set G(b
cons) := fxcons 2 B(pcons; �i) j b

cons �i x
consg.

The preference relation �i is continuous (Assumption A4.(c)), so every set G(bcons) is

T (C; int(C�))-open. Suppose the demand set at value functional pcons and value �i were

empty, then every element of B(pcons; �i) is element of at least one G(bcons). The collection

fG(bcons) j bcons 2 B(pcons; �i)g is an open cover of the compact set B(pcons; �i), so there is

a �nite subset F � B(pcons; �i) such that B(pcons; �i) =
S

fcons2F

G(f cons). The preference

relation �i being transitive, F has a maximal element f cons

1
2 F . Since, f cons

1
2 G(f cons

2
)

for some f cons

2
2 F , f cons

2
6= f cons

1
, we arrive at a contradiction.

For the converse, suppose pcons 2 bd(C�
cons

). Then there is an element xcons 2 Ccons n f0g,

such that [xcons; pcons]cons = 0cons. Since 8ycons 2 B(pcons; �i) : y
cons + xcons 2 B(pcons; �i),

and since ycons + xcons >cons y
cons, Lemma 4.3 yields that B(pcons; �i) does not contain a

maximal element with respect to �i. 2

Lemma 4.5 Let �i � 0, let pcons 2 int(C�
cons

) and let fdconsg = Di(p
cons; �i). Then

[dcons; pcons]cons = �i.

Proof

In case �i = 0, the budget set B(pcons; �i) equals f0consg, and thus [dcons; pcons]cons =

[0cons; pcons]cons = 0. Now, suppose �i > 0 and [dcons; pcons]cons < �i, then there is xcons

0
2

int(Ccons) such that xcons

0
>cons d

cons and [xcons

0
; pcons]cons > �i. Consider the convex combi-

nation �xcons

0
+(1� �)dcons with � 2 (0; 1) so small that [�xcons

0
+(1� �)dcons; pcons]cons � �i.

Then �xcons

0
+(1� �)dcons 2 B(pcons; �i) and �x

cons

0
+(1� �)dcons >cons d

cons. By Lemma 4.3,

we come to a contradiction. 2

Lemma 4.6 Let pcons 2 C�
cons

, �i > 0, xcons 2 Ccons, and suppose xcons �i b
cons for all

bcons 2 Ccons satisfying [bcons; pcons]cons < �i. Then xcons �i b
cons for all bcons 2 B(pcons; �i).

Proof

We have to prove that xcons �i b
cons for all bcons 2 Ccons satisfying [bcons; pcons]cons = �i.

Clearly, such a bcons satis�es bcons 6= 0cons. Hence, for all � 2 [0; 1) we have [�bcons; pcons]cons <

�i and so xcons �i �b
cons. By Assumption 4.1.c, the preference relation �i is continuous,

so xcons �i b
cons. 2
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In Section 2, we already mentioned that the value, or budget, �i at pricing function

p 2 C� will be the value of the initial endowment of agent i, plus his shares in the pro�ts

of production. Since the pro�ts of production are determined by the supply functions, we

�nd the following formal de�nition of the value function.

De�nition 4.7 The value function Ki : Domain! IR+

0
is given by

Ki(p) := V(wi; p) +
JX

j=1

�ijG(Sj(p); p):

For every p 2 Domain the budget set Bi(p) and demand set Di(p) are given by

Bi(p) := B(pcons;Ki(p));

and

Di(p) := Di(p
cons;Ki(p)):

Lemma 3.13 implies that value function Ki is continuous on the set Domain.

Let Domain� be de�ned by

Domain� := Domain
\
fp 2 C� j pcons 2 int(C�

cons
)g:

Note that Domain� [ f0g is a subcone of C� and that int(Domain�) = int(Domain).

On the set Domain�, we are able to construct the demand function Di from the demand

sets Di(p), where p 2 Domain�.

De�nition 4.8 The demand function Di : Domain� ! Ccons is, for all p 2 Domain�, given

by Di(p) = fDi(p)g.

We conclude this section on the agents by deriving the continuity and some other properties

of the demand functions. Again, let i be any �xed element of f1; : : : ; Ig.

Lemma 4.9 Let (pn)n2IN be a sequence in Domain� convergent to p0 2 Domain�. Then

the following two properties hold.

a) If bconsn 2 Bi(pn) for each n 2 IN , then there is a subsequence
�
bconsnk

�
k2IN

that converges

to some bcons 2 Bi(p0).

b) For each bcons 2 Bi(p0) there exists a convergent sequence (bconsn )
n2IN with limit bcons,

such that bconsn 2 Bi(pn) for all n 2 IN .

Proof

a) Since pcons
0

2 int(C�
cons

) is an order unit, Lemma 1.37 implies that the function Lpcons
0

:

C�
cons

! IR+ satis�es

lim
n!1

Lpcons
0

(pconsn ) = 1 and 8 n 2 IN : Lpcons
0

(pconsn )pcons
0

�cons p
cons

n :
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Because bconsn 2 Bi(pn) for all n 2 IN , we �nd

Lpcons
0

(pconsn )[bconsn ; pcons
0

]cons � [bconsn ; pconsn ]cons � Ki(pn):

Since the function Ki : Domain� ! IR+ is continuous, the sequence (Ki(pn))n2IN
is convergent. And since pcons

0
2 int(C�

cons
), boundedness of [bconsn ; pcons

0
]cons implies

that the sequence (bconsn )
n2IN is bounded (Lemma 1.34.b). So, (bconsn )

n2IN has a

convergent subsequence
�
bconsnk

�
k2IN

with limit bcons 2 C. Since for every k in IN ,

Lpcons
0

(pconsn )[bconsnk
; pcons

0
]cons � Ki(pnk), the limit bcons belongs to Bi(p0).

b) Let bcons 2 Bi(p0). If [b
cons; pcons

0
]cons < Ki(p0) then 9N 2 IN 8n > N : [bcons; pconsn ]cons <

Ki(pn), and so, if we choose bconsn := bcons for all n > N , we are done. Therefore,

we may as well assume [bcons; pcons
0

]cons = Ki(p0). For every n 2 IN , de�ne �n :=
Ki(pn)

[bcons;pconsn ]cons
. Note that lim

n!1
�n = 1. Now put bconsn := �nb

cons, then 8n 2 IN :

[bconsn ; pconsn ]cons = Ki(pn) and lim
n!1

bconsn = bcons.

2

Lemma 4.9 expresses the type of continuity that we need in order to prove the continuity

of the individual demand function Di.

Lemma 4.10 The demand function Di is continuous on Domain�.

Proof

Let (pn)n2IN be a sequence in Domain� converging to some p0 2 Domain�. Suppose

the sequence (Di(pn))n2IN does not converge to Di(p0), then without loss of generality

any subsequence of (Di(pn))n2IN does not converge to Di(p0). By (a) of the preceding

lemma, the sequence (Di(pn))n2IN has a subsequence (Di(pnk))k2IN that converges to

some bcons 2 Bi(p0). Now, the proof is done if we can show that bcons = Di(p0). Let

xcons 2 Bi(p0). By (b) of the preceding lemma, for all n 2 IN there is xcons

n 2 Bi(pn)

satisfying lim
n!1

xcons

n = xcons. Since the preference relation �i is continuous (Assumption

A4.(c)), we �nd that if 8n 2 IN : Di(pn) �i x
cons

n , then bcons �i x
cons. So, bcons = Di(p0). 2

Next, the continuity of the demand function Di being proved, we derive some properties

of this function concerning its behaviour regarding a sequence (pn)n2IN 2 Domain� with

limit p 2 C� n f0g.

Lemma 4.11 Let (pn)n2IN be a convergent sequence in Domain� with limit p 2 C� n f0g,

and assume the sequence (Ki(pn))n2IN is convergent with limit �i > 0. If the sequence

(Di(pn))n2IN is bounded, then pcons 2 int(C�
cons

).

Proof

We may as well assume that the sequence (Di(pn))n2IN is convergent with limit dcons. Us-

ing Lemma 4.6, we shall prove that fdconsg = Di(p
cons; �i). Indeed, let b

cons 2 B(pcons; �i)

satisfy [bcons; pcons]cons < �i. Then there is N 2 IN such that 8 n > N : [bcons; pconsn ]cons <

Ki(pn). So, Di(pn) �i b
cons for all n > N . Continuity of the preference relation (Assump-

tion 4.1.c) yields dcons �i b
cons. So, by Lemma 4.6 we conclude that fdconsg = Di(p

cons; �i).

2
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Corollary 4.12 A convergent sequence in Domain� with limit p 2 C, satisfying pcons 2

bd(C�
cons

), and lim inf
n!1

Ki(pn) > 0, yields an unbounded sequence (Di(pn))n2IN .

We end this section on agents and their corresponding demand functions by de�ning the

total demand function and stating a property of this function which we will need in the

proof of the existence theorem in Section 5.

De�nition 4.13 The total demand function D : Domain� ! Ccons is given by

D(p) :=
IX

i=1

Di(p):

Just like Assumptions 3.5, 3.6 and 4.1, the following assumption will be one of the require-

ments of the equilibrium existence theorem.

Assumption 4.14 For every convergent sequence (pn)n2IN in Domain� with limit p 2 C�

such that pcons 2 bd(C�
cons

) n f0g, there is i0 2 f1; : : : ; Ig such that lim inf
n!1

Ki0(pn) > 0.

A combination of the above assumption and Corollary 4.12, has the following consequence

for the total demand function.

Corollary 4.15 Let (pn)n2IN be a sequence in Domain� with limit p 2 C� satisfying

pcons 2 bd(C�
cons

) n f0g. Then the sequence (D(pn))n2IN is unbounded.

In Lemma 4.5, we have seen that 8i 2 f1; : : : ; Ig 8p 2 Domain� :

[Di(p); p
cons]cons = Ki(p) = V(wi; p) +

JX
j=1

�ijG(Sj(p); p):

So, as a consequence of this lemma, we �nd an adapted version of Walras' law, namely

that for all p 2 Domain�:

[D(p); pcons]cons = V(wtotal; p) + G(S(p); p); (1)

where the total initial endowment wtotal 2 C is de�ned by wtotal :=
IP

i=1

wi.
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5 Equilibrium

Finally, we come to the main theorem of this paper. The remainder of this section will be

devoted to the proof of the following theorem.

Equilibrium Existence Theorem

The model of a private ownership economy, described in Section 2, admits a Walrasian

equilibrium pricing function, under the following assumptions:

Assumption A C = Cprod � Ccons is a �nite-dimensional, re
exive salient half-space.

Assumption B For every j 2 f1; : : : ; Jg, production technology Tj satis�es

1) if e1; e2 2 E(Tj), e1 6= e2, � 2 (0; 1) then �e1 + (1� �)e2 2 int(Tj),

2) E(Tj) is closed with respect to topology TC .

Assumption C For every i 2 f1; : : : ; Ig, preference relation �i is

1) monotone: 8 xcons; ycons 2 Ccons : x
cons �cons y

cons implies ycons �i x
cons,

2) strictly convex: 8xcons; ycons 2 Ccons, � 2 (0; 1) : xcons �i y
cons and xcons 6= ycons

imply �xcons + (1� �)ycons �i y
cons,

3) continuous: 8ycons 2 Ccons the sets fxcons 2 C j xcons �i y
consg and fxcons 2 C j

ycons �i x
consg are closed in Ccons.

Assumption D The set Domain� satis�es

1) int(Domain�) 6= ;,

2) for every sequence (pn)n2IN in Domain� with limit in C� n f0g, there is i0 2

f1; : : : ; Ig such that lim inf
n!1

Ki0(pn) > 0.

Note that the assumption that C is �nite-dimensional, implies that C� separates the ele-

ments of C, and that int(C) 6= ;. As a consequence, C can be endowed with the topology

T (C; int(C�)), induced by any element p0 2 int(C�). Hence, Assumptions B, C and D,

which make use of topological features, are properly stated.

The rather technical Assumption D.2 is related to the minimum income hypothesis. It is

obvious that Assumption D.2 is implied by
PI

i=1
wi 2 int(C). However, we will show that

this assumption is implied by the following weaker assumption, stating that
PI

i=1
wprod

i is

an element of int(Cprod) and that if (0prod; pcons) 2 C� n f0g adds zero value to the total

initial endowment, then there is a production technology which can produce something

with positive value.

Assumption 5.1
IP

i=1

wprod

i 2 int(Cprod), and for all pcons 2 C�
cons

n f0g satisfying 8i 2

f1; : : : ; Ig : [wcons

i ; pcons]cons = 0, there is j0 2 f1; : : : ; Jg and x 2 Tj0 such that [x
cons; pcons]cons

> 0.

Lemma 5.2 Assumption 5.1 implies Assumption D.2 of the Equilibrium Existence The-

orem.
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Proof

Let (pn)n2IN be a sequence in Domain� with limit p 2 C� n f0g. We have to prove

9i0 2 f1; : : : ; Ig : lim inf
n!1

([wprod

i0
; pprodn ]prod| {z }
�0

+ [wcons

i0
; pconsn ]cons| {z }
�0

+
JX

j=1

�i0j G(Sj(pn); pn)| {z }
�0

) > 0:

If there exists i0 2 f1; : : : ; Ig such that [wi0 ; p] > 0, there is nothing to prove. So,

assume 8i 2 f1; : : : ; Ig : [wi; p] = 0. Since
IP

i=1

wprod

i 2 int(Cprod), we may as well assume

pprod = 0prod. Note, that this implies pcons 6= 0cons. Furthermore, we may as well assume

that 8i 2 f1; : : : ; Ig : [wcons

i ; pcons]cons = 0. By Assumption 5.1, 9j0 2 f1; : : : ; Jg 9x 2 Tj0 :

G(x; p) > 0. The continuity of the function G yields 9N 2 IN 8n > N : G(Sj0(pn); pn) �

G(x; pn) >
1

2
G(x; p) > 0. Take i0 2 f1; : : : ; Ig such that �i0j0 6= 0 and the proof is done.

2

Before giving the proof of the main theorem, we introduce the continuous function Z on

Domain� � C� by

Z(p; q) := [D(p); qcons]cons � G(S(p); q) � V(wtotal; q): (2)

Walras' law (1) reads

8p 2 Domain� : Z(p; p) = 0: (3)

In this seting, the equilibrium concept analogous to that of the neo-classical Walrasian

equilibrium, introduced in De�nition 2.5 can be characterised as follows.

Proposition 5.3 Let peq 2 Domain�. Then peq is a Walrasian equilibrium pricing func-

tion if and only if

(0prod;D(peq)) + (S(peq)
prod; 0cons) �C wtotal + (0prod;S(peq)

cons);

i.e., if and only if Z(peq; q) � 0 for all q 2 C�.

In order to prove existence of such equilibrium pricing functions, and thus prove the

main theorem, we construct an auxiliary function F from the salient half-space C� to C�,

satisfying

� 8p 2 C� n f0g : (9� � 0 : F(p) = �p) () (8q 2 C� : Z(p; q) � 0).

� F is continuous on C� n f0g.

Obviously, once such a function is obtained, Proposition 1.38 yields the desired result.

In Section 1, it is shown that, under the assumptions of the main theorem, the section

L(x0) := fq 2 C� j V(x0; q) = 1g is compact for every x0 2 int(C). For the rather standard

way of de�ning the Lebesgue measure � on such a section, we also refer to [10].

The �nite-dimensionality of C (Assumption A) implies that int(C) 6= ;. Given some �xed

x0 2 int(C), the function F0 : Domain� ! C� is de�ned by

F0(p) :=

Z
L(x0)

maxf0;Z(p; q)gqd�(q): (4)
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Note that

Z(p;F0(p)) � 0: (5)

We extend F0 to the whole of C� as follows. The function F : C� ! C� is de�ned by

F(p) :=

(
(1� �(Z(p; p0)))F0(p) + �(Z(p; p0))p0 p 2 Domain�

p0 p 2 C� n Domain�;
(6)

where p0 is any �xed element of int(Domain�) (cf. Assumption D) and where � is the

sigma-oidal function de�ned by

�(�) :=

8><
>:

0 if � � 0

� if 0 < � < 1

1 if 1 � �:

(7)

Note that

8� 2 IR : ��(�) � 0; and (8)

��(�) = 0 if and only if � � 0 (9)

Lemma 5.4 Let p 2 C�. Then (9 � � 0 : F(p) = �p) () p is an equilibrium pricing

function.

Proof

Let p 2 Domain� be an equilibrium pricing function. By Lemma 5.3, we �nd 8q 2 C� :

Z(p; q) � 0. Hence, by (4), F0(p) = 0, and by (7), �(Z(p; p0)) = 0. By (6), we conclude

that F(p) = 0.

For the converse, suppose F(p) = �p for some � � 0. From (6) and the fact that

Domain� [ f0g is a cone, it follows that p 2 Domain�. Walras' law (equation (3)) yields

Z(p;F(p)) = �Z(p; p) = 0:

By (6), (5) and (8) , we �nd

0 = Z(p;F(p)) = (1� �(Z(p; p0)))Z(p;F0(p))| {z }
�0

+ �(Z(p; p0))Z(p; p0)| {z }
�0

:

Clearly,

(1� �(Z(p; p0)))Z(p;F0(p)) = 0 (10)

and

�(Z(p; p0))Z(p; p0) = 0: (11)

By (11) and (9) we �nd Z(p; p0) � 0, hence, using the de�nition of �, (10) implies

0 = Z(p;F0(p)) =

Z
L(x0)

maxf0;Z(p; q)gZ(p; q)d�(q):

So, for all q 2 L(x0) : Z(p; q) � 0. We conclude that p is an equilibrium price functional.

2
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In order to prove that the auxiliary function F is continuous, we need the following lemma.

Lemma 5.5 The function F0 is continuous on Domain�.

Proof

Recall the de�nition of x0 and L(x0) in the de�nition of the auxiliary function F . Impose

on C� the norm k : kx0 , and let k : k be the norm on C, dual to the norm k : kx0
(cf. [10]). Thus, by de�nition, for all q 2 L(x0) we have k q kx0 = 1. And so, for all

p1; p2 2 Domain� and q 2 C� we �nd

j Z(p1; q)�Z(p2; q) j

= j[D(p1); q
cons]cons � G(S(p1); q)� [D(p2); q

cons]cons + G(S(p2); q)j

� k D(p1)�D(p2) k + k Scons(p1)� S
cons(p2) k + k Sprod(p1)� S

prod(p2) k :

From this, and the fact that for all �; � 2 IR : jmaxf0; �g �maxf0; �gj � j�� �j, we �nd

k F0(p1)�F0(p2) k �
R

L(x0)

j maxf0;Z(p1; q)g � maxf0;Z(p2; q)g j d�(q) �

( k D(p1)�D(p2) k + k Scons(p1)� S
cons(p2) k + k Sprod(p1)� S

prod(p2) k )�(L(x0)):

Since D and S are continuous on Domain�, it follows that F0 is continuous on Domain�.

2

Proposition 5.6 The function F : C� n f0g ! C� is continuous.

Proof

The function q 7! �(Z(q; p0)) is continuous on Domain�, and F0 is continuous on Domain�,

so the function F is continuous on Domain�. Remains to prove the continuity of F on

C�n(Domain�[f0g). By de�nition, F(p) = p0 for all p 2 C�nDomain�, so we only have to

consider a sequence (pn)n2IN in Domain� with limit p 62 Domain�[f0g. Now, suppose the

sequence (F(pn))n2IN does not converge to p0. Taking a subsequence if necessary, we may

assume F(pn) 6= p0, for all n 2 IN . Note that p 62 Domain� means either pcons 2 bd(C�
cons

)

or pcons 2 int(C�
cons

) and 9j0 2 f1; : : : ; Jg : p 62 Domain[j0].

In the �rst situation, Corollary 4.15 and Lemma 1.34.b imply lim inf
n!1

([D(pn); p
cons

0
]cons) =

1.

In the second situation, Corollary 3.25 implies lim sup
n!1

G(S(pn); p0) = �1.

Either way, we conclude

lim inf
n!1

Z(pn; p0) = lim inf
n!1

([D(pn); p
cons

0
]cons � G(S(pn); p0)� V(wtotal; p0)) =1:

Hence, 9n0 2 IN : Z(pn0 ; p0) � 1. So, by (6) and (7), F(pn0) = p0. This is in contradiction

with the assumption that F(pn) 6= p0 for all n 2 IN . 2

Herewith, applying Proposition 1.38 and Lemma 5.4, we have proved the Existence The-

orem.
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