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Surjective Function Theorems
1

Ning Sun 2 and Zaifu Yang3

Abstract: Given the unit sphere Sn, we prove the following theorem and

several extensions: For any continuous function f : Sn 7! Sn, if f has no �xed

point in Sn, then f must be surjective. Furthermore, there exists x� 2 Sn

such that f(x�) = �f(�x�).

Keywords: Surjective function, �xed point, anti�xed point, antipodal point,

sphere, manifold.

1 Main Results

A function f : D 7! I is said to be surjective (or f is said to map D onto I) if every

element of I is the image of some element of D under the function f , i.e., f(D) = I . f

is said to have a �xed point (an antipodal point) in D if there exists x 2 D such that

f(x) = x (f(x) = �f(�x)). In this Note we present several surjective function theorems

which are not only interesting on their own but also fundamental. Our approach is

a topological one. Now we introduce some notation: Let n � 2 denote any integer

number, IRn the n-dimensional Euclidean space, and x � y =
P

i xiyi the inner product

of vectors x and y. We write x 2 IRn+1 by x = (x0; x1; � � � ; xn) or x = (x0; x1; � � � ; xn)>.
Furthermore, de�ne Bn+1 = fx 2 IRn+1 j x � x � 1g (i.e. the (n + 1)-dimensional unit

ball), Bn = fx 2 Bn+1 j x0 = 0g, Sn = fx 2 IRn+1 j x �x = 1g (i.e. the n-dimensional unit

sphere), Sn�1 = fx 2 Sn j x0 = 0g, e0 = (1; 0; � � � ; 0) 2 IRn+1, and 0 = (0; � � � ; 0) 2 IRn+1.
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Theorem 1.1 For any continuous function f : Sn 7! Sn, if f has no �xed point in Sn,

then f must be surjective. Furthermore, there exists x� 2 Sn such that f(x�) = �f(�x�).

Proof: Suppose to the contrary that f is not surjective. Then there would exist some

y� 2 Sn which is not in f(Sn). Without loss of generality, we may assume that y� = e0.

Thus, it follows from the continuity of f on the compact set Sn that there exists a

positive � such that f0(x) � 1 � � for all x 2 Sn. Let C = fx 2 Sn j x0 � 1 � �g and

Cb = fx 2 Sn j x0 = 1� �g. We have that f(Sn) � C. De�ne the function g : C 7! Bn

by

g(x) =
1

2� �

s
1 + x0

1� x0
(0; x1; � � � ; xn)>:

Its inverse h = g�1 : Bn 7! C is given by for x 6= 0

hi(x) =

8><>:
(2� �)

p
x � x� 1; if i = 0;

(2� �)xi

r
2�(2��)

p
x�x

(2��)
p
x�x ; if i = 1; � � � ; n;

with h(0) = �e0. It is easy to see that h(x) converges to �e0 as x goes to 0. Thus, both

g and h are continuous functions. It may be di�cult to �gure out how g is constructed.

Geometrically, we can visualize the idea in the sphere S2 being imagined as the surface

of the earth. Given any point P on the arctic circle Cb, there is a unique longitude line

passing through P which links both the north pole e0 and the south pole �e0. This

longitude intersects the equator line Sn�1 uniquely at one point, say Q. Clearly, the

section of the longitude line between P and the south pole is homeomorphic to the straight

line between the core 0 and Q. Function g maps P to Q and the south pole to the core.

Consequently, we obtain a continuous function g � f �h mapping from the convex and

compact set Bn into itself. By using Brouwer's �xed point theorem, we know there exists

z� 2 Bn such that z� = g � f �h(z�). Setting x� = h(z�), we obtain x� = f(x�) 2 C. This

contradicts the hypothesis that f has no �xed point in Sn.

Now we prove the last part. Since f has no �xed point, it follows from Corollary 4

(c) of Whittlesey [3] or Milnor [2] that f must have an antipodal point. We complete the

proof. 2
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In term of equation theory, the above theorem states that for each y 2 Sn, the equation

f(x) = y has a solution.

Corollary 1.2 For any continuous function f : Sn 7! Sn, if x � f(x) � 0 for every

x 2 Sn, then f must be surjective.

Proof: Suppose to the contrary that f has a �xed point x 2 Sn. Then 0 < x � x =

x � f(x) � 0 which is impossible. 2

The above corollary is not so simple as it might appear. In fact we will show that it

is at least as powerful as the classic Brouwer's �xed point theorem is. We prove Brouwer

theorem via Corollary 1.2: If f : Bn 7! Bn is a continuous function, then there exists

x 2 Bn such that f(x�) = x�. Suppose to the contrary that Brouwer theorem is false.

Then it holds f(x)� x 6= 0 for every x 2 Bn. Let g(x) = f(x)� x. Then

x � g(x) = x � (f(x)� x) = x � f(x)� x � x = x � f(x)� 1 < 0

for all x 2 Bn \ Sn = Sn�1. We de�ne the function h : Sn 7! Sn as follows: For x 2 Sn,

let y(x) = (0; x1; � � � ; xn)>. Obviously, y(x) 2 Bn . If y(x) � g(y(x)) � 0, de�ne

h(x) =
g(y(x))p

g(y(x)) � g(y(x)):

If y(x) � g(y(x)) > 0, it is easy to see that
Pn

i=1 x
2
i < 1 and x0 6= 0. De�ne

z0 = �y(x) � g(y(x))
x0

; z = (z0; 0; � � � ; 0)> 2 IRn+1;

and

h(x) =
g(y(x)) + zp

(g(y(x)) + z) � (g(y(x))+ z)
:

Since y(x) � g(y(x)) is a continuous function in x on a compact set, then there exists some

� > 0 such that

y(x) � g(y(x))� ��

for all x 2 Sn�1. Furthermore, there exists a positive � such that y(x) �g(y(x))� 0 implies

j x0 j� �. Now it is readily veri�ed that h is a continuous function and x �h(x) � 0 for all
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x 2 Sn. So all conditions of Corollary 1.2 are met. Then h must be surjective. But it is

impossible since there does not exist any x 2 Sn such that h(x) = e0. 2

A function f : D 7! I is said to have an anti�xed point in D if there exists x 2 D

such that f(x) = �x.

Corollary 1.3 For any continuous function f : Sn 7! Sn, if f has no anti�xed

point in Sn, then f must be surjective. Furthermore, there exists x� 2 Sn such that

f(x�) = �f(�x�).

Proof: Let g(x) = �f(x) for all x 2 Sn. Clearly, g is continuous on Sn, g(Sn) � Sn,

and g has no �xed point in Sn. It follows from Theorem 1.1 that g is surjective and hence

so is f . 2

Corollary 1.4 For any continuous function f : Sn 7! Sn, if x � f(x) � 0 for every

x 2 Sn, then f must be surjective.

Proof: Suppose to the contrary that f has an anti�xed point y 2 Sn. Then 0 > �y � y =
f(y) � y � 0 which is impossible. By Corollary 1.3 f is surjective. 2

The coming result is Theorem 3 of Whittlesey [3]. Here we give an alternative proof

which is conceptually simpler than Whittlesey's.

Theorem 1.5 For any continuous function f : Sn 7! Sn, if f(x) = �f(�x) for every

x 2 Sn, then f must be surjective.

Proof: Suppose to the contrary that f is not surjective. Then there would exist some

y� 2 Sn which is not in f(Sn). Without loss of generality, we may assume that y� = e0.

By the assumption we know that there does not exist any x 2 Sn such that f(x) = �e0,
either. Now we de�ne the function g : Sn 7! Bn by

gi(x) =

8>><>>:
0; if i = 0;

fi(x)qPn

j=1
f2j (x)

; if i = 1; � � � ; n:



5

It follows from the assumption that g(x) = �g(�x) for every x 2 Sn. Clearly, g is a

continuous function. This is impossible according to Borsuk-Ulam theorem (see [1, 4])

which says that if l : Sn 7! Bn is a continuous function, then there exists x 2 Sn such

that l(x) = l(�x). 2

It will be shown that Theorem 1.5 is actually equivalent to Borsuk-Ulam theorem.

Suppose that the latter theorem is false. Let g(x) = f(x) � f(�x). Then g(x) 6= 0 and

g(x) = �g(�x) for all x 2 Sn. De�ne the function h : Sn 7! Sn by

h(x) =
g(x)p

g(x) � g(x):

Clearly, all conditions of Theorem 1.5 are satis�ed. Then h must be surjective. But it is

impossible since h0(x) = 0 for all x 2 Sn. 2

Now we proceed to prove one more result. De�ne

Sn
+ = fx 2 Sn j x0 > 0 g and Sn

� = fx 2 Sn j x0 < 0 g:

Theorem 1.6 For any continuous function f : Sn 7! Sn, if it satis�es that

f0(0; x1; � � � ; xn) = 0

fi(0; x1; � � � ; xn) = �fi(0;�x1; � � � ;�xn); i = 1; � � � ; n

for all (0; x1; � � � ; xn) 2 Sn�1, then either Sn
+ � f(Sn) or Sn

� � f(Sn) or both.

Proof: Suppose to the contrary that there exist two points �y = (�y0; �y1; � � � ; �yn) 2 Sn
+ and

~y = (~y0; ~y1; � � � ; ~yn) 2 Sn
� neither of which belongs to f(Sn). We de�ne h : Bn 7! Sn by

h(0; x1; � � � ; xn) = (�p1� x � x; x1; � � � ; xn);

h�1 : Sn 7! Bn by

h�1(x0; x1; � � � ; xn) = (0; x1; � � � ; xn);

�g : Bn n fh�1(�y)g 7! Sn�1 with �g(x) equal to the intersection point of the straight line

going through x and h�1(�y) on Sn�1;
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bg : Bn n fh�1(~y)g 7! Sn�1 with bg(x) equal to the intersection point of the straight line

going through x and h�1(~y) on Sn�1.

It is easy to verify that h, h�1, �g, and bg are continuous functions. Now we construct

the function F : Bn 7! Sn�1 by

F (0; x1; � � � ; xn) =

8>>>><>>>>:
�g � h�1 � f � h(0; x1; � � � ; xn); if f0 � h(0; x1; � � � ; xn) > 0;

bg � h�1 � f � h(0; x1; � � � ; xn); if f0 � h(0; x1; � � � ; xn) < 0;

f � h(0; x1; � � � ; xn); if f0 � h(0; x1; � � � ; xn) = 0:

Note that h�1(x) = �g(x) = bg(x) = x for all x 2 Sn�1. Then for any x 2 Bn with

f0 � h(x) = 0, it holds that

�g � h�1 � f � h(x) = bg � h�1 � f � h(x) = f � h(x):

From the continuity of h, h�1, �g, and bg, F is a continuous function and furthermore it

satis�es that

F (0; x1; � � � ; xn) = f � h(0; x1; � � � ; xn) = f(0; x1; � � � ; xn) =
�f(0;�x1; � � � ;�xn) = �F (0;�x1; � � � ;�xn)

for all (0; x1; � � � ; xn) 2 Sn�1. This contradicts an equivalent form of Borsuk-Ulam the-

orem which says that there does not exist any continuous function l : Bn 7! Sn�1 such

that l(x) = �l(�x) for every x 2 Sn�1. 2
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