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Fissioned triangular schemes via the cross-ratio

D. de Caen and E.R. van Dam

Abstract

A construction of association schemes is presented; these are fission schemes

of the triangular schemes T (n) where n = q + 1 with q any prime power. The

key observation is quite elementary, being that the natural action of PGL(2, q)

on the 2-element subsets of the projective line PG(1, q) is generously transitive.

Also some observations on the intersection parameters and fusion schemes of these

association schemes are made.
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1 The construction

This paper is a sequel to [4]. In that paper, it was observed that almost all known self-

dual classical association schemes have natural fission schemes (fissioning the maximum-

distance relation only); whereas in the non-self-dual case there seemed to be no analogous

fission schemes. Subsequently, we found that there is at least one such non-self-dual clas-

sical association scheme that admits an interesting fission scheme, namely the triangular

scheme T (n) = J(n, 2) where n = q+1 with q any prime power; this is the object of the

present work. For terminology and background, we refer to Bannai and Ito [2] for asso-

ciation schemes and Hirschfeld [7] for finite geometry. Recall that the group PGL(2, q)

acts (as Möbius transformations) on the projective line PG(1, q); this action is (sharply)

3-transitive. There is a natural induced action on the 2-element subsets of the projective

line, namely M({x, y}) := {M(x),M(y)} for each M in PGL(2, q). In the proof below

we apply the basic fact (cf. [7], p. 135) that the cross-ratio

ρ(a, b, c, d) :=
(a− c)(b− d)

(a− d)(b− c)

is a complete invariant for ordered quadruples of distinct points on the projective line,

i.e. one quadruple may be mapped to another quadruple (via a Möbius transformation)

if and only if they have the same cross-ratio.

Theorem. The action of PGL(2, q) on the two-element subsets of PG(1, q) is gener-

ously transitive.

Proof. Given intersecting 2-sets {a, b} and {a, c}, there is some M in PGL(2, q) that

swaps them, since the group is triply transitive. And given disjoint 2-sets {a, b} and

{c, d}, there is also some Möbius transformation that interchanges them, because the

ordered quadruples (a, b, c, d) and (c, d, a, b) have the same cross-ratio. 2

Given any transitive permutation group G acting on a set Ω, the orbitals are the

orbits in Ω × Ω under the natural action of G on pairs. If G is generously transitive,

then the orbitals form the relations (associate classes) of a symmetric association scheme

(cf. [2], p. 54). In our case, the relations can be described as follows. One relation, say

R1, is the line-graph of the complete graph (i.e. one relation of the triangular scheme

T (q + 1) has remained unfissioned). Next, for each reciprocal pair {s, s−1} of elements

in GF (q)\{0, 1}, there is a relation R{s,s−1} where {a, b} and {c, d} are in this relation
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when ρ(a, b, c, d) equals s or s−1. Note that ρ(b, a, c, d) = ρ(a, b, c, d)−1 so this makes

sense as a definition for unordered pairs {a, b}. Henceforth we will write Rs instead of

R{s,s−1} for typographical reasons; note that since the field element 1 cannot occur as a

cross-ratio, this notation will not conflict with that of relation R1 above.

We now easily find that this fissioned triangular scheme, which we shall denote by

FT (q+1), has 1
2
(q+1) associate classes if q is odd and 1

2
q classes if q is even. When q is

odd the field element−1 is equal to its own reciprocal; thus the relation R−1 has valency
1
2
(q − 1) which is half the valency of the other relations Rs with s in GF (q)\{0, 1,−1}.

The relation R1 has valency 2(q − 1).

We remark that for small odd q the relation R−1 is a familiar object: for q = 5 it is

the line-graph of Petersen’s graph; for q = 7 it is the Coxeter graph (this was apparently

known to Coxeter himself, cf. p. 122 in [6]); for q = 9 it is the line-graph of Tutte’s

8-cage. There seem to be some other such “sporadic isomophisms”: for example when

q = 11 the relation R2 = R{2,6} is the line-graph of the point-block incidence graph

of the (unique) symmetric (11, 6, 3)-design; and when q = 9 and {s, s−1} is the pair

of primitive fourth roots of unity, then Rs is the second subconstituent of the Gewirtz

graph (cf. [5], page 106).

2 Intersection parameters

It is possible to give explicit formulas for the intersection parameters pkij of the associa-

tion scheme FT (q+1); we now sketch the main points of the derivation. The cases q odd

and q even are similar, with the latter case being slightly cleaner since the exceptional

case “ρ = −1” doesn’t occur. So we will only present the case q even; besides, this case

is the more pertinent one in the discussion of fusion schemes in Section 3.

So let q = 2e be any power of two. The scheme FT (2e + 1) has 2e−1 classes. The

relation R1 has valency 2(q − 1) and each of the other relations Rs = R{s,s−1} (for s

in GF (q)\{0, 1}) has valency q − 1. The intersection parameters involving R1 are easy

to work out and we list them without proof: for distinct r and s (and s 6= r−1) in

GF (q)\{0, 1}, p1
11 = q − 1, pr11 = 4, p1

1r = 2, p1
rr = 1, and p1

rs = 2.

Now let the symbols r, s and t represent three (not necessarily distinct) elements of

GF (q)\{0, 1}; we aim at a formula for prst. What one has to do is fix a pair of 2-sets
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{a, b} and {c, d} in relation Rr, and count the number of 2-sets {x, y} such that {a, b} and

{x, y} are in relation Rs and {c, d} and {x, y} are in relation Rt. The triple transitivity

of PGL(2, q) is useful here, since it implies that we may take, without loss of generality,

{a, b} = {∞, 0} and {c, d} = {1, r}. For the unknown pair {x, y} we then get the two

equations

s or s−1 =
(∞− x)(0− y)

(∞− y)(0− x)
=
y

x
(1)

and

t or t−1 =
(1− x)(r − y)

(1− y)(r − x)
(2)

The equations (1) and (2) together involve two essentially different cases, not four, since

{y, x} = {x, y}; thus we may fix the left-hand side of (1) as being s, and examine the

two cases for (2) in turn. In the first case we have y = sx and

t =
(1− x)(r − y)

(1− y)(r − x)
=

(1− x)(r − sx)

(1− sx)(r − x)

This leads to the following quadratic for x (after changing all minus signs to plus signs,

as we may since we are in characteristic two):

s(t+ 1)x2 + (rst+ r + s+ t)x+ r(t+ 1) = 0 (3)

The other case (when the left-hand side of (2) is t−1) leads to the similar quadratic

s(t+ 1)x2 + (rs + rt+ st+ 1)x + r(t+ 1) = 0 (4)

Note that since r, s and t are all in GF (q)\{0, 1}, the equations (3) and (4) are

genuine quadratics, with non-zero quadratic and constant terms. The linear coefficient

(rst+ r+s+ t) in (3) could equal 0, in which case the unique solution for x is the square

root of r
s
. If rst+ r + s+ t 6= 0, then (3) has (two) solutions x if and only if

Tr

[
rs(t+ 1)2

(rst+ r + s+ t)2

]
= 0 (5)
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where Tr(z) is the trace map from GF (2e) onto GF (2). Similarly, if rs+ rt+ st+1 6= 0

then (4) has (two) solutions x if and only if

Tr

[
rs(t+ 1)2

(rs+ rt + st+ 1)2

]
= 0 (6)

Thus prst has a value of anywhere from 0 to 4. A reasonably concise formula is the

following: let A = A(r, s, t) be the expression for the argument of the trace map in (5),

and B = B(r, s, t) the one for (6). Then, when rst+r+s+ t 6= 0 and rs+rt+st+1 6= 0

prst = 2 + (−1)Tr[A] + (−1)Tr[B] (7)

with the obvious modifications being made in the other cases. Incidentally, it is easy to

check that (rst+ r + s + t) and (rs + rt+ st+ 1) cannot simultaneously equal 0.

We make one more remark concerning the form of the intersection parameters. The

expressions A(r, s, t) and B(r, s, t) are not symmetric in s and t, hence the fomula (7)

for prst appears not to be symmetric either. This may seem strange, since we know from

general principles that prst = prts. An explanation for this is the following. A(r, s, t) has

the same trace as C(r, s, t) := rs+rt+st
(rst+r+s+t)2 since their sum is of the form xy

x2+y2 and such

field elements, in characteristic two, must have trace 0 (exercise for the reader). Similarly

B(r, s, t) has the same trace as D(r, s, t) := rst(r+s+t)
(rs+rt+st+1)2 . Thus we may replace A by C

and B by D in (7) without changing the value of the right-hand side; and C and D are

both symmetric functions of the three variables r, s and t. This confirms the fact that,

since the valencies nr are the same for all r in GF (q)\{0, 1}, the intersection parameter

prst is symmetric in all three variables.

It would be interesting to find explicit formulas for the entries of the eigenmatrix

(character table) of FT (q + 1). One strategy for doing this (used by Bannai and his

co-workers in several papers; see [1] for a survey) is the following. First calculate all of

the intersection parameters; it is usually feasible to do this, at least in some reasonable

algebraic form perhaps involving character sums. This tells us what the intersection

matrices Bi(k, j) := pkij are. Secondly, from these Bi’s (at small values of q) it may

be possible to guess what the eigenmatrix P should be. Once the right guess has been

made it is usually straightforward to actually prove the result, using Theorem II.4.1 in

[2]. Unfortunately, we have been unable so far to guess the general shape of P for our



6

schemes FT (q+1); we generated by computer these character tables for all prime powers

q less than 40, and they seem to have a very complicated form.

3 Fusion schemes

Given any association scheme, it is of interest to determine all of its fusion schemes (also

called subschemes). This is in general a very hard problem that has not been worked out

completely even for quite classical examples such as the Johnson schemes (cf. [8]). In the

case of the schemes FT (q+1), there is of course the original two-class triangular scheme

T (q+ 1). Observe also that if q = pe is a proper power of a prime p, then the Frobenius

map x 7→ xp (and its iterates) gives a fusion scheme. In other words PΓL(2, q) is an

overgroup of PGL(2, q), and the orbitals under PΓL(2, q) constitute a fusion scheme of

FT (q+ 1).

Limited computational evidence suggests that FT (q + 1) has no other nontrivial

fusions, except maybe in some sporadic cases, and when q = 4f (f any integer at least 2)

where there seems to be an interesting 4-class fusion scheme. We say “seems” because we

are lacking a proof that this is indeed an association scheme. To describe this (putative)

scheme, let the ground-set be all 2-element subsets of the projective line PG(1, 4f ); the

four possible relations for two distinct 2-sets {a, b} and {c, d} are:

S1 : {a, b} ∩ {c, d} 6= ∅, i.e. R1 in the earlier notation.

S2 : {a, b} ∩ {c, d} = ∅ and the cross-ratio ρ = ρ(a, b, c, d) satisfies ρ2f−1 = 1,

i.e. ρ lies in the subfield GF (2f ).

S3 : {a, b} ∩ {c, d} = ∅ and the cross-ratio ρ = ρ(a, b, c, d) satisfies ρ2f+1 = 1.

S4 : The remainder.

We have been able to show by computer that these four relations do indeed form a

scheme when f is less that or equal to 6. Also we can prove in general that some of the

intersection parameters, such as p3
23, are well defined; but certain other parameters such

as p3
33 have left us baffled. An explicit knowledge of the eigenmatrix of FT (4f +1) would

theoretically settle this question (cf. [8], Lemma 1), which is partly why we earlier raised

the issue of computing it.

Conjecture. The above relations Si on the 2-subsets of PG(1, 4f ) do form a 4-class

association scheme for all f ≥ 2. The corresponding eigenmatrix is given by
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P =



1 2(4f − 1) (2f−1 − 1)(4f − 1) 2f−1(4f − 1) 2f (2f−1 − 1)(4f − 1)

1 4f − 3 2− 2f −2f −2f(2f − 2)

1 −2 1− 2f 0 2f

1 −2 (2f−1 − 1)(2f − 1) 2f−1(2f − 1) −2f(2f − 2)

1 −2 2f−1(2f − 1) + 1 −2f−1(2f + 1) 2f


We note finally that, granting this conjecture, one can merge S2 and S3 to get a 3-class

scheme, and then further merge S1 with S2 and S3 to get a 2-class scheme. The resulting

graph G = S1 ∪ S2 ∪ S3 is strongly regular with parameters v = 22f−1(22f + 1), k =

(2f + 1)(22f − 1), λ = (2f − 1)(3 · 2f + 2), µ = 2f+1(2f + 1). Graphs with these

parameters have already been constructed by Brouwer and Wilbrink (cf. [3], 7B); it was

checked that in the smallest case f = 2 (v = 136) the two constructions yield isomorphic

strongly regular graphs. We know nothing for larger values; but the two constructions

look totally different, so that it is a reasonable guess that they are not isomorphic in

general.
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