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Abstract

A situation in which a �nite set of players can obtain certain payo�s by

cooperation can be described by a cooperative game with transferable utilities {or

simply a TU-game. A value mapping for TU-games is a mapping that assigns to

every game a set of vectors each representing a distribution of the payo�s. A value

mapping is e�cient if to every game it assigns a set of vectors which components

all sum up to the worth that can be obtained by all players cooperating together.

An approach to e�ciently allocating the worth of the `grand coalition' is

using share mappings which assign to every game a set of share vectors being

vectors which components sum up to one such that every component is the

corresponding players' share in the total payo� that is to be distributed among

the players. In this paper we discuss a class of share mappings containing the

(Shapley) share-core, the Banzhaf share-core and the Large Banzhaf share-core.

We provide characterizations of this class of share mappings and show how they

are related to the corresponding share functions being functions that assign to

every TU-game exactly one share vector.

Keywords: TU-Game, Share vector, Core, Reduced Game

1 Introduction

A situation in which a �nite set of players can obtain certain payo�s by cooperation can

be described by a cooperative game with transferable utilities, or simply a TU-game,

being a pair (N; v), where N = f1; : : : ; ng is a �nite set of players and v: 2N ! IR is a

characteristic function on N such that v(;) = 0. For any coalition E � N , v(E) is the

worth of coalition E, i.e. the members of coalition E can obtain a total payo� of v(E)

by agreeing to cooperate. We denote the collection of all TU-games by G.

A solution of an n-person TU-game is an n-dimensional vector representing a

distribution of payo�s. A value function on a subset C of G is a function that assigns

a solution to any game in C. A value function f is e�cient on C if for any game in

C the total payo� it assigns to the players is equal to the worth v(N) of the `grand

coalition', i.e. if
P

i2N fi(N; v) = v(N) for all (N; v) 2 C. An example of an e�cient

value function is the Shapley value (Shapley (1953)). An example of a value function

that is not e�cient is the Banzhaf value (Banzhaf (1965)) which is characterized in,

e.g., Lehrer (1988) and Haller (1994). Since the Banzhaf value is not e�cient it is not
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adequate in allocating the worth v(N) of the `grand coalition'. In order to allocate v(N)

according to the Banzhaf value van den Brink and van der Laan (1998a) characterized

the normalized Banzhaf value which distributes the worth v(N) proportional to the

Banzhaf values of the players.

An alternative approach to e�ciently allocating the worth v(N) of the `grand

coalition' is the concept of share functions as introduced in van der Laan and van

den Brink (1998). A share vector for game (N; v) 2 G is an n-dimensional real vector

x 2 IRn such that
P

i2N xi = 1. Here xi is player i's share in the total payo� that is to be

distributed among the players. A share function on C � G is a function � that assigns

to every (N; v) 2 C exactly one share vector �(N; v) 2 Sn := fx 2 IRn j
P

i2N xi = 1g.

For a game with v(N) 6= 0, the share vector of the game corresponding to the

Shapley value of the game is the Shapley share vector, which is obtained by dividing

the Shapley value of each player by the sum of the Shapley values of all players (being

equal to v(N) since the Shapley value is e�cient). For a subset C of G such that

v(N) 6= 0 for any (N; v) 2 C, the Shapley share function on C is de�ned to be the

function assigning the Shapley share vector to each (N; v) 2 C. Similarly, the Banzhaf

share function on C assigns to any game in the subset the Banzhaf share vector, which

is obtained by dividing the Banzhaf value by the sum of payo�s over all players (or

equivalently dividing the normalized Banzhaf value by v(N)).

In this paper we will apply the idea of share vectors to set-valued solution concepts

for TU-games. A value mapping on a subset C of G is a mapping M that assigns

a set of solutions M(N; v) � IRn to any game in (N; v) 2 C. A value mapping M

is e�cient if
P

i2N yi = v(N) for every y 2 M(N; v) and (N; v) 2 C. A well-known

e�cient value mapping is the Core-mapping which assigns to every TU-game (N; v) its

Core. Analogously to share functions, we can de�ne a share mapping on C � G being a

mapping M on C that assigns to every (N; v) 2 C a set of share vectors M(N; v) � Sn.

Again, by de�nition a share mapping M is e�cient in the sense that all shares sum

up to one for every share vector in M(N; v). We de�ne the share-core mapping on G

by the mapping C which assigns to a game (N; v) satisfying v(N) 6= 0 the set of share

vectors x for which the vector y given by yi = xiv(N); i 2 N is in the Core of (N; v).
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The set C(N; v) is called the share-core of (N; v).

As is well-known, for so-called convex games the Core is not empty and the

Shapley value is the barycenter of the Core (see Shapley (1971) and Ichiishi (1981)).

Analogously the Shapley share vector is closely related to the share-core. In the follow-

ing the share-core will therefore also be called the Shapley share-core and the share-core

mapping the Shapley share-core mapping. We generalize the (Shapley) share-core map-

ping in a similar way as the Shapley value function is generalized in van der Laan and

van den Brink (1998). In this way we obtain a class of share mappings which also

contains the so-called Banzhaf share-core mapping and Large Banzhaf share-core map-

ping. We show that the Large Banzhaf share-core has certain appealing properties. In

particular, each monotone game has a non-empty Large Banzhaf share-core and there

exist monotone games for which it consists of exactly one element.

The class of share mappings will be characterized by applying a modi�ed version

of Davis and Maschler's reduced game property as used by Peleg (1986) in character-

izing the Core1. Recall that another famous reduced game property is the Hart and

Mas-Colell reduced game property as introduced in Hart and Mas-Colell (1988, 1989)

in characterizing the Shapley value. In Dragan (1996) an alternative reduced game

property is used for characterizing the Banzhaf value. A modi�cation of these proper-

ties has been used in van den Brink and van der Laan (1999) to characterize a class of

share functions containing the Shapley and Banzhaf share functions.

We conclude the paper by introducing the concept of marginal share vectors

and show that the share vector induced by a share function in this class is equal to the

average of the corresponding marginal share vectors. After generalizing the concept

of convex games, we show that on this subset of games there is a one-to-one relation

between the class of share mappings introduced in this paper and the class of share

functions as given in van den Brink and van der Laan (1999), in the same way as the

Shapley share vector is related to the Shapley share-core for convex games.

The paper is organized as follows. In Section 2 we state some preliminaries on TU-

1Tadenuma (1992) usues an alternative reduced game property in characterizing the Core. A

general approach to characterizing the core using reduced game properties is given by Funaki and

Yamamoto (1997).
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games and briey discuss the class of share functions as characterized by van der Laan

and van den Brink (1998). In Section 3 we introduce the class of share mappings

and give some properties of the corresponding solution sets of share vectors. In Sec-

tion 4 we discuss some examples of share mappings in this class, such as the Shapley

share-core mapping and the (Large) Banzhaf share-core mapping. We also show the

usefulnes of the share-core mappings introduced by applying them to the special class

of weighted majority voting games. In Section 5 we state the modi�ed version of Davis

and Maschler's reduced game and characterize the class of share mappings as the u-

nique class of share mappings satisfying non-emptyness, and modi�ed versions of the

axioms of the Davis-Maschler reduced game property, superadditivity and individual

rationality. Finally, in Section 6 we discuss marginal share vectors, use these in gener-

alizing the concept of convex games, and show a relation between share mappings and

corresponding share functions.

2 Preliminaries on TU-games and share functions

In this section we give some preliminary concepts and de�nitions on cooperative games.

For given N and nonempty T � N the unanimity game (N;uT ) is given by uT (E) = 1

if T � E and uT (E) = 0 otherwise, E � N .2 In the sequel we denote jEj for the

number of elements of the set E. From Harsanyi (1959) we know that the characteristic

function v of a game (N; v) can be expressed as a linear combination of the characteristic

functions of the unanimity games (T; uT ), T � N , by v =
P

T�N �v(T )u
T with �v(T )

the dividend of coalition T � N given by �v(T ) =
P

E�T (�1)
(jT j�jEj)v(E).

A TU-game (N; v) is calledmonotone if v(E) � v(F ) for all E � F � N and it is

called convex if for every pair E; F � N it holds that v(E[F )+v(E\F ) � v(E)+v(F ).

Observe that any unanimity game is monotone and convex. For a given game (N; v) 2 G

and given T � N , the restriction of (N; v) to T is denoted by the subgame (T; vT ) and

is given by vT (E) = v(E) for all E � T . The class C � G is called subgame closed if

for every (N; v) 2 C and every T � N it holds that (T; vT ) 2 C. Examples of subgame

2Note that we ignore the unanimity games (N; u;). In the paper, when we speak about unanimity

games we mean unanimity games (N; uT ) with T 6= ;.
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closed classes of games are the class of all games G, the class of all monotone games,

and the class of all convex games. Note that a class of games with a �xed player set is

not subgame closed.

A game (N; v) is called a null game if v = v0 with v0(E) = 0 for all E � N .

Now, let �:G ! IR be a function assigning a real value to any game (N; v) 2 G. The

function �:G ! IR is positive on C � G if �(N; v) > 0 for all (N; v) 2 C, and it is called

zero on C � G if �(N; v) = 0 for all (N; v) 2 C. By G+
�
� G, respectively G0

�
� G, we

denote the class of games on which � is positive, respectively zero. Moreover, we de�ne

G� = G+
�
[ G0

�
, i.e. �(N; v) � 0 for all (N; v) 2 G� � G. We call a function �:G ! IR

additive on C if for every pair of games (N; v); (N;w) 2 C such that3 (N; v + w) 2 C

it holds that �(N; v + w) = �(N; v) + �(N;w). A function �:G ! IR is linear on C

if it is additive on C and for every (N; v) 2 C and c 2 IR such that (N; cv) 2 C it

holds that �(N; cv) = c�(N; v). Finally, we call �:G ! IR symmetric on C if for every

(N; v) 2 C, every pair of symmetric players4 i; j in (N; v) and every E � N; E � fi; jg,

such that the subgames (E n fig; vEnfig) and (E n fjg; vEnfjg) are in C, it holds that

�(E n fig; vEnfig) = �(E n fjg; vEnfjg).

We now recall some well-known value functions for cooperative games that are

mentioned in the introduction. The Shapley value (Shapley (1953)) is the value function

Sh given by

Shi(N; v) =
X
E�N

E3i

(jEj � 1)!(n� jEj)!

n!
mi

E
(N; v) for all i 2 N;

where mi

E
(N; v) = v(E)�v(E nfig) is the marginal contribution of player i to coalition

E � N in (N; v) 2 G. As mentioned in the introduction the Shapley value is an e�cient

value function.

A value function that is not e�cient is the Banzhaf value (Banzhaf (1965)) being

3For a pair of games (N; v); (N;w) 2 G the game (N; v+w) is given by (v+w)(E) = v(E) +w(E)

for all E � N .
4Players i; j 2 N are symmetric in (N; v) 2 G if v(E n fig) = v(E n fjg) for all E � N with

E � fi; jg.
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the value function � given by

�i(N; v) =
1

2n�1

X
E�N

E3i

mi

E
(N; v) for all i 2 N:

In order to e�ciently allocate v(N) according to the Banzhaf value the normalized

Banzhaf value � given by

�(N; v) =
v(N)P

j2N �j(N; v)
�(N; v)

can be used. Thus, the normalized Banzhaf value allocates v(N) proportional to the

Banzhaf values of the players.

A general approach to e�ciently allocating payo�s in TU-games is using share functions

which are introduced in van der Laan and van den Brink (1998). A share function on

a set of games C � G is a function � that assigns to every game (N; v) 2 C an n-

dimensional real vector �(N; v) 2 IRn such that the shares assigned to the players sum

up to one for every game in C, i.e.
P

i2N �i(N; v) = 1 for all (N; v) 2 C. The ith

component is the share of player i 2 N in the value to be distributed, e.g., in v(N).

Three properties that can be satis�ed by such share functions are the following5.

The �rst two properties are similar to the null player and symmetry properties

for value functions. The share function � satis�es the null player property on C if for

every (N; v) 2 C and every null player 6 i in (N; v) it holds that �i(N; v) = 0. Share

function � satis�es symmetry on C if for every (N; v) 2 C and every pair i; j of symmetric

players in (N; v) it holds that �i(N; v) = �j(N; v). Finally, for some function �:G ! IR,

the share function � satis�es �-additivity on C if for every pair of games (N; v); (N;w) 2

C such that (N; v + w) 2 C it holds that �(N; v + w)�(N; v + w) = �(N; v)�(N; v) +

�(N;w)�(N;w). This last property is a generalization of the additivity property which

is obtained by taking �(N; v) = 1 for all (N; v) 2 G. Although additivity is a reasonable

property of value functions it does not make sense for share functions. However, a

5In van der Laan and van den Brink (1998) e�cient shares (meaning that the components of

�i(N; v) sum up to one for all (N; v) 2 C is taken as a fourth axiom. In this paper we have taken this

into our de�nition of a share function.
6Player i 2 N is a null player in (N; v) 2 G if v(E) = v(E n fig) for all E � N .
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share function that satis�es �-additivity for an additive �-function satis�es some kind

of weighted additivity property in the sense that the shares assigned to the sum game

of two games is a convex combination of the shares assigned to the two separate games.

This can easily be seen by rewriting �-addivity for an additive �-function as �(N; v +

w) = �(N;v)

�(N;v)+�(N;w)
�(N; v) + �(N;w)

�(N;v)+�(N;w)
�(N;w). So, � determines the weights of the

games in this convex combination. What weights are appropriate depends on the

application we have in mind.

The following theorem7 characterizes a class of share functions on subclasses

of games C � G containing all positively scaled unanimity games (N;�uT ), T � N ,

� > 0, i.e. �uT (E) = � if T � E, and �uT (E) = 0 otherwise. Examples of classes of

games that contain all positively scaled unanimity games are the class of all games G,

the class of all monotone games, and the class of all convex games.

Theorem 2.1 (van der Laan and van den Brink (1998))

(i) Let �:G ! IR be positive and symmetric on a subclass C � G that contains all

positively scaled unanimity games. Then there exists a unique share function �� on

C satisfying the null player property, symmetry and �-additivity if and only if � is

additive on C.

(ii) For given positive vectors !n 2 IRn

+; n 2 IN, let the function �:G ! IR be de�ned

by �(N; v) = �!
n

(N; v), where �!
n

:G ! IR is given by

�!
n

(N; v) =
X
i2N

X
E3i

!njEjm
i

E
(N; v):

Then the share function �!
n

on G+
�!

n given by

�!
n

i
(N; v) =

P
E�N

E3i
!njEjm

i

E
(N; v)

�!
n(N; v)

for every i 2 N;

is the unique share function satisfying the null player property, symmetry, and �!
n

-

additivity on G+
�!

n .

7In van der Laan and van den Brink (1998) results are stated more general for classes of games

with �xed player set.
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The second part of the theorem shows that any choice of positive weights on the

marginal contributions (with equal weights assigned to coalitions of equal size) de�nes

a share function satisfying the null player property, symmetry and �!
n

-additivity on

G+
�!

n . Note that all functions �!
n

are positive on all positively scaled unanimity games.

Examples of � functions de�ned by a vector !n of weights are the function

�S :G ! IR given by �S(N; v) = v(N) (with !n
t
= (t�1)!(n�t)!

n!
, t = 1; : : : ; n) and �B:G !

IR given by �B(N; v) = 1
2n�1

P
E�N (2jEj �n)v(E) (with !n

t
= 2�(n�1) for t = 1; : : : ; n).

In van der Laan and van den Brink (1998) it is shown that the unique share function

satisfying the properties stated in Theorem 2.1 with � = �S is the Shapley share

function �S given by

�S
i
(N; v) =

Shi(N; v)

v(N)
for all i 2 N;

on the class of games (N; v) 2 G with v(N) 6= 0, and the unique share function

satisfying these properties with � = �B is the Banzhaf share function �B given by

�B
i
(N; v) =

�i(N; v)P
j2N �j(N; v)

=
�
i
(N; v)P

j2N �
j
(N; v)

=
2n�1�i(N; v)P

E�N

P
i2Em

i

E
(N; v)

for all i 2 N

on the class of games (N; v) for which
P

j2N �j(N; v) 6= 0. For other examples closely

related to the Deegan-Packel value (see Deegan and Packel 1979) and the � -value (see

Tijs 1981), we refer to van der Laan and van den Brink (1998)

3 Share mappings

A well-known e�cient value mapping is the Core-mapping given by

Core(N; v) =

(
x 2 IRnj

X
i2N

xi(N; v) = v(N);
X
i2E

xi(N; v) � v(E); 8E � N

)
:

Analogously to share functions we can de�ne a share mapping on C � G being a

mapping M on C that assigns to every (N; v) 2 C a set of share vectors M(N; v) �

Sn = fx 2 IRn j
P

i2N xi = 1g. We de�ne the share-core mapping on G by the mapping

C given by

C(N; v) =

(
x 2 Snjv(N)

X
i2E

xi � v(E) for all E � N

)
:
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In the following C(N; v) is called the share-core. Clearly, if v(N) 6= 0, we have that

x 2 C(N; v) if and only the vector y given by yi = xiv(N) is an element of Core(N; v).

Observe that this relation may not hold when v(N) = 0. In that case the Core becomes

the set Core(N; v) = fx 2 IRnj
P

i2N xi(N; v) = 0;
P

i2E xi(N; v) � v(E); 8E � Ng,

whereas C(N; v) = ; if there exists some E � N with v(E) > 0, and C(N; v) = Sn

if v(E) � 0 for all E � N . Observe that in this case a vector y 2 Core(N; v) may

contain positive and negative components, whereas C(N; v) is either empty or is equal

to Sn. However, if v(N) = 0 we have that for any x 2 C(N; v), it holds that player i

gets share xi in the zero worth v(N), i.e. independent of the share vector x each player

i gets a payo� yi = xiv(N) = 0 if v(N) is to be distributed. Clearly, if we distribute

v(N) = 0, the shares assigned to the players do not matter. Thus, C(N; v) = Sn seems

to be reasonable, although it does not need to correspond to Core(N; v).

Next, we generalize the concept of the share-core mapping to the concept of

�-share-core mappings for functions �:G ! IR discussed in the previous section.

De�nition 3.1 Let a function �:G ! IR be given. Then the �-share-core mapping

on G is the mapping C� on G given by

C�(N; v) =

(
x 2 Snj�(N; v)

X
i2E

xi � �(E; vE) for all E � N

)
; (N; v) 2 G:

The set C�(N; v) of share vectors x 2 Sn is called the �-share-core of the n-player

game (N; v).

The de�nition says that the �-share-core of a game (N; v) with �(N; v) 6= 0, consists

of all share vectors x such that the total share of every coalition E � N is at least as

high as the ratio of the �-value of the subgame corresponding to E over the �-value

of the original game (N; v). If �(N; v) = 0 then each share vector in Sn belongs to

the �-share-core of (N; v) if �(E; vE) � 0 for all E � N , while the �-share-core is

empty if there is an E � N with �(E; vE) > 0. For the Shapley �-function given by

�S(N; v) = v(N) for all (N; v) 2 G, the corresponding �-share-core is the share-core

C(N; v). Therefore we also call C�S (N; v) the Shapley share-core of (N; v), and C�S

the Shapley share-core mapping. The �-share-core of a game (N; v) can be obtained as

9



the Shapley share-core of the game (N; v�) de�ned by v�(E) = �(E; vE) for all E � N .

From this it follows immediately that the �-share-core is convex.

Corollary 3.2 For given �:G ! IR and game (N; v) 2 G, the �-share-core C�(N; v)

is convex.

The next lemma shows that a share vector in C�(N; v) is nonnegative for every

game (N; v) with �(N; v) > 0 in a subgame closed subclass C � G�.

Lemma 3.3 For given �:G ! IR, let C � G� be subgame closed and let (N; v) 2 C

be such that �(N; v) > 0. Then for every share vector x 2 C�(N; v) it holds that

xi(N; v) � 0 for all i 2 N .

Proof: Since C is subgame closed, we have that (E; vE) 2 C for all E � N . Since

C � G� it follows that �(E; vE) � 0 for every E � N . Let x 2 C�(N; v). Taking

E = fig it follows from �(N; v)xi � �(fig; vfig) � 0 and �(N; v) > 0 that xi � 0 for

all i 2 N . 2

The following lemma appears to be useful when comparing with each other the

corresponding share-cores of two functions � and �0 on G.

Lemma 3.4 For given �:G ! IR and �0:G ! IR, let C � G� \ G�0 be subgame closed,

(N; v) 2 C with �(N; v) > 0 and � > 0. Then it holds that

(i) C�(N; v) � C�0(N; v) if �
0(N; v)�(E; vE) � �(N; v)�0(E; vE) for all E � N ;

(ii) C�(N; v) = C�0(N; v) if �
0(E; vE) = ��(E; vE) for all E � N .

Proof: (i) First, since C � G�\G�0 and C is subgame closed, we have that �(E; vE) � 0

and �0(E; vE) � 0 for all E � N . Second, suppose that x 2 C�(N; v). Then, according

to Lemma 3.3 we have that xi(N; v) � 0 for all i 2 N . When �(E; vE) = 0 it

follows from �0(N; v)�(E; vE) � �(N; v)�0(E; vE) and �(N; v) > 0 that �0(E; vE) = 0,

and hence �0(N; v)
P

i2E xi � 0 = �0(E; vE). When �(E; vE) > 0, it follows from

�0(N; v)�(E; vE) � �(N; v)�0(E; vE) that �0(N; v)
P

i2E xi �
�(N;v)�0(E;vE)

�(E;vE)

P
i2E xi �

10



�0(E; vE), since
�(N;v)

�(E;vE)

P
i2E xi � 1. Hence �0(N; v)

P
i2E xi � �0(E; vE) for every

E � N and thus x 2 C�0(N; v).

(ii) Since �0(E; vE) = ��(E; vE) it holds that �
0(N; v)�(E; vE) = ��(N; v)�(E; vE) =

�(N; v)�0(E; vE), E � N . Since �(N; v) > 0 and hence also �0(N; v) = ��(N; v) > 0

it follows from (i) that C�(N; v) = C�0(N; v). 2

4 Some examples and properties of �-share-cores

In this section we discuss some examples of �-share-cores. We have already discussed

the Shapley share-core (being equal to the share-core C(N; v) as mentioned in the

introduction) that is generated by the function �S . An alternative is the Banzhaf

share-core that is generated by �B. Comparing these two we conclude that the Banzhaf

share-core is not always contained in the Shapley share-core, nor the other way around

as the following example shows.

Example 4.1 Let (N; v) 2 G be given by N = f1; 2; 3g and v = uf1;2g+uf1;2;3g. Then

for E � N it holds that

�B(E; vE) =

8>>><
>>>:

0 if E 2 ff1g; f2g; f3g; f1; 3g; f2; 3gg

1 if E = f1; 2g
7
4

if E = f1; 2; 3g:

From this it follows that8

C�B(N; v) = Conv

8>>><
>>>:

0
BBB@

1

0

0

1
CCCA ;

0
BBB@

4
7

0
3
7

1
CCCA ;

0
BBB@

0
4
7
3
7

1
CCCA ;

0
BBB@

0

1

0

1
CCCA
9>>>=
>>>; :

With �S(E; vE) = v(E) it follows that

C�S(N; v) = Conv

8>>><
>>>:

0
BBB@

1

0

0

1
CCCA ;

0
BBB@

1
2

0
1
2

1
CCCA ;

0
BBB@

0
1
2
1
2

1
CCCA ;

0
BBB@

0

1

0

1
CCCA
9>>>=
>>>;
:

8By Conv A we denote the convex hull of A � IRn.
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Thus the Banzhaf share-core C
�
B (N; v) is a strict subset of the Shapley share-core

C�S(N; v).

Next, consider the game (N; v) 2 G given by N = f1; 2; 3g and v = uf1;2g +

uf1;3g� uf1;2;3g. For this game it holds that

�B(E; vE) =

8>>><
>>>:

0 if E 2 ff1g; f2g; f3g; f2; 3gg

1 if E 2 ff1; 2g; f1; 3gg
5
4

if E = f1; 2; 3g;

and it follows that

C
�
B(N; v) = Conv

8>>><
>>>:

0
BBB@

1

0

0

1
CCCA ;

0
BBB@

4
5

0
1
5

1
CCCA ;

0
BBB@

3
5
1
5
1
5

1
CCCA ;

0
BBB@

4
5
1
5

0

1
CCCA
9>>>=
>>>;
:

From �S(E; vE) = v(E) for every E � N it follows that

C�S(N; v) =

8>>><
>>>:

0
BBB@

1

0

0

1
CCCA
9>>>=
>>>; :

Thus, C�S (N; v) is a strict subset of C�B (N; v).

In van der Laan and van den Brink (1998) the Banzhaf share function is char-

acterized using �B:G ! IR given by �B(N; v) = 2n�1�B(N; v) =
P

E�N (2jEj �n)v(E).

Although �B and �B yield the same share function, they do not yield the same �-share-

cores, as the following example shows.

Example 4.2 Consider the �rst game (N; v) of Example 4.1. We already determined

C�B (N; v). Further, with �B(N; v) = 22�B(N; v) it follows that

C
�B
(N; v) = Conv

8>>><
>>>:

0
BBB@

1

0

0

1
CCCA ;

0
BBB@

2
5

0
3
5

1
CCCA ;

0
BBB@

0
2
5
3
5

1
CCCA ;

0
BBB@

0
3
5
2
5

1
CCCA ;

0
BBB@

2
5
3
5

0

1
CCCA
9>>>=
>>>;
:

Hence, C
�B
(N; v) 6= C�B (N; v).
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For the game (N; v) considered in Example 4.2 it holds that C
�
B(N; v) �

C
�B
(N; v). The next theorem shows that this is always true for monotone games.

Therefore we refer to the share-core generated by �B as the Large Banzhaf share-core.

Theorem 4.3 If (N; v) 2 G is monotone then C�B (N; v) � C
�B
(N; v).

Proof: Let (N; v) 2 G be monotone. If v = v0 (i.e. v0(E) = 0 for all E � N , see

Section 2) then �B(E; vE) = �B(E; vE) = 0 for all E � N , and hence by de�nition

C�B (N; v) = C
�
B (N; v) = Sn. If v 6= v0, then �B(N; v) > 0 and �B(N; v) > 0. More-

over, for all E � N , we have that
�
B(E;vE)

�B(N;v)
�

�
B(E;vE)

�B(N;v)
2n�jEj =

�
B(E;vE)

�
B(N;v)

. From part (i)

of Lemma 3.4 it then follows that C
�
B (N; v) � C

�
B(N; v). 2

As shown in Example 4.1 for the Banzhaf share-core, also the Large Banzhaf

share-core may contain elements not in the Shapley share-core and reversely. This is

shown in the next example.

Example 4.4 Let (N; v) 2 G be given by N = f1; 2; 3g and v = uf1;2g + uf1;3g. For

every E � N it holds that �S(E; vE) = v(E) and

C�S(N; v) = Conv

8>>><
>>>:

0
BBB@

1

0

0

1
CCCA ;

0
BBB@

1
2
1
2

0

1
CCCA ;

0
BBB@

1
2

0
1
2

1
CCCA ;

0
BBB@

0
1
2
1
2

1
CCCA
9>>>=
>>>; :

Furthermore,

�B(E; vE) =

8>>><
>>>:

0 if E 2 ff1g; f2g; f3g; f2; 3gg

2 if E 2 ff1; 2g; f1; 3gg

8 if E = f1; 2; 3g;

and it follows that

C
�B
(N; v) = Conv

8>>><
>>>:

0
BBB@

1

0

0

1
CCCA ;

0
BBB@

1
4

0
3
4

1
CCCA ;

0
BBB@

0
1
4
3
4

1
CCCA ;

0
BBB@

0
3
4
1
4

1
CCCA ;

0
BBB@

1
4
3
4

0

1
CCCA
9>>>=
>>>;
:

Thus, C�S (N; v) is a strict subset of C�B
(N; v).
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Next, consider the game (N; v) 2 G given by N = f1; 2; 3; 4g and

v(E) =

8>>>>>><
>>>>>>:

0 if jEj = 1

1 if jEj = 2 or E � ff1; 2; 4g; f1; 3; 4g; f2; 3; 4gg

2 if E = f1; 2; 3g

24 if E = N:

From this it follows that

�B(E; vE) =

8>>>>>>>>><
>>>>>>>>>:

0 if jEj = 1

2 if jEj = 2

6 if E � ff1; 2; 4g; f1; 3; 4g; f2; 3; 4g

9 if E = f1; 2; 3g

130 if E = N:

It is not di�cult to verify that for this four player game the Large Banzhaf share-core

C
�B
(N; v) is a strict subset of the Shapley share-core C�S(N; v).

To give an example of a game for which the Large Banzhaf share-core is a strict

subset of the Shapley share-core we need at least four players. The next theorem states

that for games with at most three players and v(E) � 0 for all E � N , the Shapley

share-core is always contained in the Large Banzhaf core.

Theorem 4.5 For every (N; v) 2 G with jN j � 3 and v(E) � 0 for all E � N , it

holds that C�S (N; v) � C
�B
(N; v).

Proof: If (N; v) is not monotone then there exist E � F � N such that v(E) >

v(F ) � 0. Then C�S (N; v) = ; and thus C�S(N; v) � C
�B
(N; v). Next, suppose that

(N; v) is monotone. If v = v0 then C
�B
(N; v) = C�S (N; v) = Sn. If v 6= v0 then

�S(N; v) > 0 and we distinguish the following three cases:

(i) If n = 1 then �B(N; v) = v(N) = �S(N; v) > 0. With part (i) of Lemma 3.4 it

follows that the proposition is true in this case.
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(ii) If n = 2 then �B(N; v) = 2v(N) > 0. The condition of part (i) of Lemma

3.4 clearly is satis�ed for E = N . For E � N with jEj = 1 we have that
�
B(E;vE)

�B(N;v)
=

P
F�E

(2jF j�jEj)v(F )P
F�N

(2jF j�n)v(F )
= v(E)

2v(N)
� v(E)

v(N)
= �

S(E;vE)

�S(N;v)
and the condition is

satis�ed.

(iii) If n = 3 then �B(N; v) =
P

F�N (2jF j � n)v(F ) = �
P

F�N

jF j=1
v(F )+

P
F�N

jF j=2
v(F )

+3v(N). Monotonicity of (N; v) implies that
P

F�N

jF j=2
v(F ) �

P
F�N

jF j=1
v(F ) �

0. So, �B(N; v) > 0. Further, it follows for E � N with jEj = 1 that
�
B(E;vE)

�B(N;v)
= v(E)

�B(N;v)
� v(E)

v(N)
= �

S(E;vE)

�S(N;v)
, and for E � N with jEj = 2 that

�
B(E;vE)

�
B(N;v)

=
2v(E)

�
B(N;v)

�
v(E)

v(N)
=

�
S(E;vE)

�
S(N;v)

. Hence the condition of part (i) of Lemma

3.4 is satis�ed. 2

It is well-known that the Core, and hence also the Shapley share-core, can be

empty, even for monotone games. However, for monotone games the Large Banzhaf

share-core has the nice property of being not empty. To prove the next theorem, remark

that a monotone game (N; v) is convex if for every E � F � N and every i 2 E it

holds that v(F )� v(F n fig) � v(E)� v(E n fig).

Theorem 4.6 If (N; v) 2 G is monotone it holds that C
�
B(N; v) 6= ;.

Proof: If v = v0 then C
�B
(N; v) = Sn. For v 6= v0 (and thus �B(N; v) > 0) de�ne

the game (N;w) by w(E) = �
B(E;vE)

�B(N;v)
for every E � N: Monotonicity of (N; v) implies

that for every E � F � N and every i 2 E it holds that

�B(F; vF )� �B(F n fig; vFnfig)

=
X
H�F

X
j2H

(v(H)� v(H n fjg))�
X

H�Fnfig

X
j2H

(v(H)� v(H n fjg))

=
X
H�F

H3i

X
j2H

v(H)� v(H n fjg))
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�
X
H�E

H3i

X
j2H

(v(H)� v(H n fjg)) = �B(E; vE)� �B(E n fig; vEnfig));

and hence also w(F )�w(F n fig) � w(E)�w(E n fig). Thus (N;w) is a convex game

and so Core(N;w) 6= ;. Hence, by de�nition of the game (N;w) it follows that

C
�B
(N; v) = fx 2 Sn j �B(N;w)

X
i2E

xi � �B(E;wE); E � Ng

= fx 2 IRn j
X
i2N

xi = 1 and
X
i2E

xi �
�B(E; vE)

�B(N; v)
; E � Ng

= fy 2 IRn j
X
i2N

yi = w(N) and
X
i2E

yi � w(E); E � Ng

= Core(N;w) 6= ;:

2

Having showed that the Large Banzhaf share core is not empty for monotone

games, we now consider the question how `small' the Large Banzhaf share-core can be

on the class of monotone games. The next example shows that there exist monotone

games for which the Large Banzhaf share-core contains exactly one element.

Example 4.7 Consider the monotone game (N; v) given by v(E) = �, E � N , for

some � > 0. According to Theorem 4.6 the Large Banzhaf share-core C
�
B(N; v) is not

empty. Suppose that x 2 C
�B
(N; v). For every E � N it holds that �B(E; vE) = �jEj,

and thus x must satisfy
P

i2E xi �
�
B(E;vE)

�B(N;v)
= jEj

n
: Considering all E � N with jEj = 1

this yields that xi �
1
n
for all i 2 E. Since

P
i2N xi = 1 it must hold that xi =

1
n
for all

i 2 E. Hence, C
�B
(N; v) contains only one element.

We conclude this section by considering weighted majority voting games. A

weighted majority voting game on N is a game (N; v) 2 G for which there exist numbers

s; s1; : : : ; sn 2 IN such that v(E) = 1 if
P

i2E si � s, and v(E) = 0 otherwise, with
1
2

P
i2N si < s �

P
i2N si. We call a coalition E � N winning (respectively losing)

if v(E) = 1 (respectively v(E) = 0). Clearly a weighted majority voting game is

monotone and also proper , i.e. v(N n E) = 0 if v(E) = 1. Moreover v(N) = 1 and
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so it is not a null game. It is well-known that the Core (and hence also the Shapley

share-core) of a weighted mojority voting game is empty if the game does not have a

veto player.9 However, since any weighted majority voting game is monotone, it follows

from Theorem 4.6 that the Large Banzhaf share-core is not empty on the class of these

games. The Banzhaf share-core may be empty, but for non-emptyness the existence of

a veto player is not required, as is shown in the next example.

Example 4.8 Consider the weighted majority voting game (N; v) on N = f1; 2; 3g

such that the winning coalitions are the ones that contain at least two players, i.e.

v(E) = 1 if jEj � 2 and v(E) = 0 otherwise. Clearly, their is no veto player and so the

Shapley share-core is empty. The Banzhaf and large Banzhaf �-functions are given by

�B(E; vE) =

8>>><
>>>:

0 if jEj = 1

1 if jEj = 2
3
2

if jEj = 3;

and �B(E; vE) = 2jEj�1�B(E; vE). From this it follows that C�B(N; v) = f(1
3
; 1
3
; 1
3
)>g

and

C
�B
(N; v) = Conv

8>>><
>>>:

0
BBB@

2
3
1
3

0

1
CCCA ;

0
BBB@

2
3

0
1
3

1
CCCA ;

0
BBB@

1
3
2
3

0

1
CCCA ;

0
BBB@

0
2
3
1
3

1
CCCA ;

0
BBB@

1
3

0
2
3

1
CCCA ;

0
BBB@

0
1
3
2
3

1
CCCA
9>>>=
>>>; :

So, the Shapley share-core is empty, the large Banzhaf share-core is non-empty but

quite large, and the Banzhaf share-core consists of a unique element. This last share-

core seems very reasonable in this case.

5 Characterization of the �-share-core mapping

The traditional core for value vectors has been characterized by Peleg (1986) by using

the concept of the Davis-Maschler reduced game. For a given game (N; v) 2 G and

9A player i is a veto player if i 2 E for all E such that v(E) = 1.
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payo� vector y 2 IRn, the DM-y-reduced game of the nonempty coalition T � N is

de�ned implicitly as the game (T; vT;y) satisfying for every E � T

vT;y(E) =

8>>><
>>>:

0 if E = ;

v(N)�
P

i2NnE yi if E = T

maxF�NnT fv(E [ F ))�
P

i2F yig otherwise:

To give a characterization of the �-share-core mapping for given function � on G we

�rst generalize this concept of the Davis-Maschler reduced game.

De�nition 5.1 For given function �:G ! IR, game (N; v) in G and share vector

x 2 Sn, the DM-(�; x)-reduced game of (N; v) 2 G of the nonempty coalition T � N

is the game (T; vT;�;x) that, for every E � T , satis�es

�(E; vT;�;x
E

) =

8>>><
>>>:

0 if E = ;

�(N; v)
�
1�

P
i2NnE xi

�
if E = T

maxF�NnT

n
�(E [ F; v(E[F ))� �(N; v)

P
i2F xi

o
otherwise:

Since x 2 Sn, for E = T the condition can be rewritten as

�(E; vT;�;x
E

) = �(T; vT;�;x) = �(N; v)
X
i2T

xi: (1)

From the de�nition above it follows straightforward that when the function � is taken

to be �S(N; v) = v(N), the DM-(�; x)-reduced game (T; vT;�;x) for given share vector

x is equal to the standard Davis-Maschler reduced game (T; vT;y) with the vector y

given by yi(N; v) = xiv(N), i 2 N . Although the Davis-Maschler reduced game is

uniquely determined for every vector y and every T � N , existence and uniqueness of

the DM-(�; x)-reduced game is not guaranteed for arbitrary function � on G and share

vector x, as is illustrated in the following examples.

Example 5.2 First, consider the game (N; v) 2 G given by N = f1; 2; 3g, v =

uf3g + uf1;2g and take the share vector x = (1
4
; 1
4
; 1
2
)> 2 Sn. Let �:G ! IR be given

by �(N; v) =
P

i2N v(fig). So, �(N; v) = 1 and for T = f1; 2g, the DM-(�; x)-reduced

game (T; vT;�;x) must satisfy

�(fig; vT;�;xfig ) = maxf�(fig; vfig); �(fi; 3g; vfi;3g)�
1

2
g

= maxf0; 1�
1

2
g =

1

2
; i = 1; 2
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and �(T; v�;T;x) = �(N; v) (x1 + x2) = 1� 1
2
= 1

2
.

Thus, it must hold that
P

i2f1;2g v
�;T;x(fig) = �(T; v�;T;x) = 1

2
and v�;T;x(fig) =

�(fig; v
T;�;x

fig ) = 1
2
; i = 1; 2. Clearly, there is no game (T; vT;�;x) that satis�es these

conditions.

Next, consider the game (N; v) 2 G given by N = f1; 2; 3g, v = uf3g and take

again the share vector x = (1
4
; 1
4
; 1
2
)>. Now, let � be given by �(N; v) = maxE�N v(E),

so that �(N; v) = 1. For T = f1; 2g, the DM-(�; x)-reduced game (T; vT;�;x) must

satisfy

�(fig; v�;T;xfig ) = maxf�(fig; vfig); �(fi; 3g; vfi;3g)�
1

2
g

= maxf0; 1�
1

2
g =

1

2
; i = 1; 2

and �(T; v�;T;x) = �(N; v)(x1 + x2) = 1 � 1
2
= 1

2
.

Clearly, all games (T; v) with v(fig) = 1
2
; i = 1; 2 and v(T ) � 1

2
satisfy these conditions

and hence the DM-(�; x)-reduced game (T; vT;�;x) is not uniquely determined.

Thus, in general DM-(�; x)-reduced games need not exist nor be unique. However, it

turns out that they are uniquely determined on G if � is linear on G and positive for

all unanimity games.

Theorem 5.3 Let �:G ! IR be linear on G and positive for all unanimity games. Let

(N; v) 2 G be an n-player game and x 2 Sn. Then for every T � N , the DM-(�; x)-

reduced game (T; vT;�;x) exists and is uniquely determined.

Proof: For given (N; v) 2 G, T � N , a share vector x 2 Sn and a linear function �

on G being positive for all unanimity games, let (T; vT;�;x) 2 G be a DM-(�; x)-reduced

game for the coalition T . To show the existence and uniqueness of (T; vT;�;x), we prove

that there exist unique dividends �v�;T;x (E), E � T , by induction on jEj.

First, suppose that jEj = 1. Then the linearity of � implies that �(E; vT;�;x
E

) =

�
v
T;�;x

E

(E)�(E; uE). Since �(E; uE) > 0 by assumption, it holds that the dividend

�vT;�;x (E) = �
v
T;�;x

E

(E) =
�(E;vT;�;x

E
)

�(E;uE)
is uniquely determined. Proceeding by induction
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assume that for some given integer k � 1 and for any H � T with jHj � k we have

determined the dividends �vT;�;x (H), and let E � T be such that jEj = k + 1. First,

consider the case that jEj < jT j. Then by de�nition, the DM-(�; x)-reduced game

(T; vT;�;x) must satisfy

�(E; vT;�;x
E

) = max
F�NnT

(
�(E [ F; v(E[F ))� �(N; v)

X
i2F

xi

)
:

Let the maximum be attained at F � � N n T . Then

�(E; vT;�;x
E

) = �(E [ F �; v(E[F �))� �(N; v)
X
i2F �

xi;

which is uniquely determined. Also, in case jEj = jT j (and hence E = T ), we have by

de�nition that

�(E; vT;�;x
E

) = �(N; v)
X
i2T

xi

is uniquely determined. Linearity of � implies that

�(E; vT;�;x
E

) =
X
H�E

�
v
T;�;�

E

(H)�(E; uH);

and by �(E; uE) > 0 it then holds that

�
v
T;�;x

E

(E) =
�(E; vT;�;x

E
)�

P
H�E

H 6=E
�
v
T;�;x

E

(H)�(E; uH)

�(E; uE)
:

Since �
v
T;�;x

E

(H) = �
v
T;�;x

H

(H) for all H � E, the induction hypothesis implies that

�
v
T;�;x

E

(E) is uniquely determined. Hence all the dividends �vT;�;x (E) = �
v
T;�;x

E

(E)

exist and are uniquely determined and therefore it holds that all the values vT;�;x(E) =P
H�E �vT;�;x (E)u

H(E) exist and are uniquely determined for all E � T , and so are

(T; vT;�;x) for all T � N . 2

In the following we will give an axiomatic characterization of the �-share-core.

To do so, we �rst introduce a modi�ed version of the standard converse reduced game

property in case � is given by �S(N; v) = v(N) and prove that the �-share-core satis�es
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this so-called converse DM-�-reduced game property for share mappings. To state this

property, for given vector x 2 Sn and subset H � N , let the jHj-dimensional vector

xH 2 S jHj for every j 2 H be given by

xH
j
=

8<
:

xjP
i2H

xi
if
P

i2H xi 6= 0;

1
jHj

if
P

i2H xi = 0:
(2)

Axiom 5.4 (Converse DM-�-reduced game property) For given �:G ! IR, a

share mapping M on G satis�es the converse DM-�-reduced game property on a subset

C of G if for every (N; v) 2 C with jN j � 2 and for every nonnegative x 2 Sn it holds

that x 2M(N; v) if xH 2M(H; vH;�;x) for every H � N with jHj = 2.

Although this property will not appear in the �rst characterization that we present in

this section, the proof of that characterization makes use of the following lemma.

Lemma 5.5 Let �:G ! IR be linear and positive for all unanimity games. Then the

�-share-core mapping C� on G satis�es the converse DM-�-reduced game property on

G.

Proof: Since � is linear and positive for all unanimity games, we have that all reduced

games exist and are uniquely determined according to Theorem 5.3. Let (N; v) 2 G with

jN j � 2 and suppose that the nonnegative vector x 2 Sn satis�es xH 2 C�(H; v
H;�;x)

for all H � N with jHj = 2.

Since x is nonnegative and
P

i2N xi = 1, for every nonempty T � N , T 6= N ,

there exists some i 2 T and h 2 N n T such that xi + xh > 0. Take such an i and

h and set H = fi; hg. By assumption it then holds that xH 2 C�(H; v
H;�;x) and thus

�(fig; vH;�;xfig ) � �(H; vH;�;x)xH
i
. Since

�(fig; vH;�;xfig ) = max
F�NnH

0
@�(fig [ F; v(fig[F ))� �(N; v)

X
k2F

xk

1
A

� �(T; vT )� �(N; v)
X

k2Tnfig

xk
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and x 2 Sn it then holds that

�(T; vT )� �(N; v)
X
k2T

xk = �(T; vT )� �(N; v)
X

k2Tnfig

xk � �(N; v)xi

� �(fig; v
H;�;x

i
)� �(N; v)xi

� �(H; vH;�;x)xH
i
� �(N; v)xi

= �(H; vH;�;x)
xi

xi + xh
� �(N; v)xi

= �(N; v)xi � �(N; v)xi = 0:

Thus, �(N; v)
P

j2T xj � �(T; vT ) for all T � N , T 6= N . But then x 2 C�(N; v). Thus,

the �-share-core mapping C� satis�es the converse DM-�-reduced game property. 2

We now state axioms that characterize the �-share-core mapping. The �rst one is

well-known.

Axiom 5.6 (Non-emptyness) A share mapping M on G satis�es non-emptyness on

C � G if for every (N; v) 2 C it holds that M(N; v) 6= ;.

The next two axioms generalize familiar properties in case � is given by �S(N; v) =

v(N) for all (N; v) 2 G.

Axiom 5.7 (�-Individual rationality) Let �:G ! IR be given. A share mapping M

on G satis�es �-individual rationality on C � G if for every (N; v) 2 C with �(N; v) 6= 0

and for every x 2M(N; v), it holds that xi �
�(fig;vfig)

�(N;v)
for all i 2 N .

To state the next axiom, for two sets X;Y � IRn and positive real numbers

a; b > 0 we de�ne the set aX + bY � IRn by aX + bY = fax+ by j x 2 X; y 2 Y g.

Axiom 5.8 (�-Superadditivity) Let �:G ! IR be given. A share mapping M sat-

is�es �-superadditivity on C � G if for all pairs of games (N; v); (N;w) 2 C such that

(N; v+w) 2 C it holds that �(N; v)M(N; v)+�(N;w)M(N;w) � �(N; v+w)M(N; v+

w).
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The next axiom states that if x belongs to the solution set M(N; v) 2 Sn of a

game, then for any H � N , the jHj dimensional vector xH as de�ned in equation (2)

belongs to the solution set M(H; vH;�;x) of the reduced game.

Axiom 5.9 (DM-�-reduced game property) Let �:G ! IR be given. A share

mapping M satis�es the DM-�-reduced game property on C � G if for every (N; v) 2 C,

x 2M(N; v), and every H � N; H 6= ;, it holds that xH 2M(H; vH;�;x).

Next, following Peleg (1986) for �S(N; v) = v(N), we will characterize the �-

share-core mapping on subgame closed subsets of the class of �-balanced games. For

a function � on G, a game (N; v) 2 G is called �-balanced if C�(N; v) 6= ;. Let GB
�

denote the collection of all �-balanced games (N; v) in G�, i.e.

GB
�
= f(N; v) 2 G j �(N; v) � 0 and C�(N; v) 6= ;g:

The characterization follows from the next two lemma's.

Lemma 5.10 Let �:G ! IR be linear and positive for all unanimity games. Then the

�-share-core mapping C� satis�es non-emptyness on any subgame closed subset C of GB
�
,

and �-individual rationality, the DM-�-reduced game property and �-superadditivity on

any subgame closed subset C of G�.

Proof: Clearly, by de�nition C� satis�es non-emptyness since C � GB
�
. Moreover, by

de�nition C� satis�es �-individual rationality on C � G�. To show the DM-�-reduced

game property on C � G�, let (N; v) 2 GB
�
; x 2 C�(N; v), and H � N; H 6= ;.

Since � is linear and positive for all unanimity games, it follows from Theorem 5.3 that

all reduced games (H; vH;�;x), H � N , exist and are uniquely determined. We have

to prove that xH 2 C�(H; v
H;�;x) for all H � N . By de�nition of xH it holds thatP

h2H xH
h
= 1.

First, suppose that �(N; v) = 0. If there is an E � N with v(E) > 0 then

C�(N; v) = ;, and so the DM-�-reduced game property is satis�ed in this case. Oth-

erwise, v(E) � 0 for all E � N and C�(N; v) = Sn. In that case it follows from

De�nition 5.1 that �(H; vH;�;x) = 0 and �(E; vH;�;x) � 0 for all E � H; E 6= H. But
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then C�(H; v
H;�;x) = Sn = C�(N; v). So, the DM-�-reduced game property is satis�ed

if �(N; v) = 0.

Now, suppose that �(N; v) > 0. Since C is subgame closed, according to Lemma 3.3

we have that xi � 0, for all i 2 N . Hence xh = 0 for all h 2 H if
P

h2H xh = 0.

Since according to equation (1), �(H; vH;�;x) = �(N; v)
P

h2H xh and x 2 Sn, for every

E � H; E 6= H, it holds that

X
i2E

�
�(N; v)xi � �(H; vH;�;x)xH

i

�
=

X
i2E

0
@�(N; v)xi � xH

i
�(N; v)

X
h2H

xh

1
A

= �(N; v)

0
@X
i2E

0
@xi � xH

i

X
h2H

xh

1
A
1
A :

When
P

h2H xh = 0, then xh = 0 for all h 2 H and hence xi = 0 for all i 2 E,

so that �(N; v)
�P

i2E

�
xi � xH

i

P
h2H xh

��
= 0. When

P
h2H xh > 0, then by def-

inition xH
i

P
h2H xh = xi for all i 2 E � H and also in this case it follows that

�(N; v)
�P

i2E

�
xi � xH

i

P
h2H xh

��
= 0. Hence, for every E � H; E 6= H, it holds

that

�(N; v)
X
i2E

xi = �(H; vH;�;x)
X
i2E

xH
i
: (3)

Thus, for every E � H; E 6= H, it holds that

�(E; vH;�;x
E

)� �(H; vH;�;x)
X
i2E

xH
i
= �(E; vH;�;x

E
) � �(N; v)

X
i2E

xi

= max
F�NnT

 
�(E [ F; vE[F )� �(N; v)

X
i2F

xi

!
� �(N; v)

X
i2E

xi

= max
F�NnT

 
�(E [ F; vE[F )� �(N; v)

X
i2E[F

xi

!
� 0;

since by assumption x 2 C�(N; v) and hence �(N; v)
P

i2E[F xi � �(E [ F; vE[F ) for

all E [ F � N . Thus, xH 2 C�(H; v
H;�;x).

To show �-superadditivity of C�, let (N; v); (N;w) 2 C be such that (N; v+w) 2

C � G�, and let x 2 C�(N; v) and x0 2 C�(N;w). For every E � N it then
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holds that �(N; v)
P

i2E xi � �(E; vE), �(N;w)
P

i2E x
0
i
� �(E;wE), and

P
i2N xi =P

i2N x0
i
= 1. But then additivity of � and the fact that vE + wE = (v + w)E yield

�(N; v)
P

i2N xi + �(N;w)
P

i2N x0
i
= �(N; v) + �(N;w) = �(N; v + w), and for every

E � N , �(N; v)
P

i2E xi + �(N;w)
P

i2E x
0
i
� �(E; vE) + �(E;wE) = �(E; (v + w)E),

and thus �(N; v)x + �(N;w)x0 2 �(N; v + w)C�(N; v + w). Thus, C� satis�es �-

superadditivity on subgame closed subsets C of G�. 2

The second lemma states the reverse.

Lemma 5.11 Let �:G ! IR be linear and positive for all unanimity games. Let M

be a share mapping satisfying non-emptyness on GB
�
, and �-individual rationality, the

DM-�-reduced game property and �-superadditivity on G. Then it holds that M(N; v) =

C�(N; v) for every (N; v) 2 GB
�
.

Proof: Since � is linear and positive for all unanimity games, according to Theorem

5.3 all reduced games (H; vH;�;x), H � N , exist and are uniquely determined. To prove

that the mapping M must be equal to C� on GB
�
, we �rst consider the case n = 1.

Then non-emptyness and �-individual rationality of M yields that M(N; v) = fx 2

IR j x = 1g = C�(N; v). Next, for n � 2 we prove that for all (N; v) 2 GB
�
it holds that

both M(N; v) � C�(N; v) and C�(N; v) �M(N; v), so that M(N; v) = C�(N; v).

First, we show that M(N; v) � C�(N; v). Let (N; v) 2 G
B

�
and x 2M(N; v). If

n = 2, then �-individual rationality implies that �(N; v)xi � �(fig; vfig), for i 2 N .

Since also
P

i2N xi = 1 it follows that x 2 C�(N; v).

If n � 3, then the DM-�-reduced game property of M implies that xH 2M(H; vH;�;x)

for all H � N . In particular this is true for jHj = 2. But then, as shown above for

n = 2, it follows from the property of �-individual rationality that xH 2 C�(H; v
H;�;x),

for all H � N; jHj = 2 and thus x 2 C�(N; v) according to Lemma 5.5. So, M(N; v) �

C�(N; v) for all (N; v) 2 G
B

�
.

Second, to prove that C�(N; v) � M(N; v), let (N; v) 2 GB
�
and x 2 C�(N; v).

We �rst consider the case that n � 3. Therefore, construct the game (N;w) by setting

�(fig; wfig) = �(fig; vfig) for all i 2 N , and �(E;wE) = �(N; v)
P

i2E xi for every
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E � N with jEj � 2. Since x 2 Sn it holds that �(N;w) = �(N; v), and thus

C�(N;w) = fx0 2 Sn j �(N;w)
X
i2E

x0
i
geq�(E;wE); E � Ng

= fx0 2 Sn j
X
i2E

x0
i
�
X
i2E

xi if jEj � 2 and �(N; v)x0
i
� �(fig; vfig); 8i 2 Ng

= fxg:

Because (N; v) 2 GB
�
, we have that �(N;w) = �(N; v) � 0. Moreover C�(N;w) = fxg

is not empty. Hence (N;w) 2 GB
�
and thus by assumption M(N;w) is not empty.

However above we have shown that M(N;w) � C�(N;w) = fxg. Hence M(N;w) =

C�(N;w) = fxg. Now, de�ne the game (N; z) by z(E) = v(E)� w(E) for all E � N .

Linearity of � implies that �(E; zE) = �(E; vE) � �(E;wE) for all E � N . Hence, by

construction of (N;w) it follows that �(fig; zfig) = 0 for all i 2 N and that �(N; z) =

�(N; v) � �(N;w) = 0. Furthermore, since x 2 C�(N; v), it holds that �(E; zE) =

�(E; vE) � �(N; v)
P

i2E xi � 0 for every E � N , 2 � jEj � n. Hence C�(N; z) = Sn

is not empty. Since �(N; z) = 0, it follows that (N; z) 2 GB
�
and hence M(N; z) � Sn

is not empty. Since, C�(N; z) = Sn, it follows that M(N; z) � C�(N; z). Applying the

�-superadditivity of M on v = z + w it follows with �(N; z) = 0 and (M(N;w) = fxg

that �(N;w)fxg = �(N; z)M(N; z) + �(N;w)M(N;w) � �(N; v)M(N; v), and thus

x 2M(N; v). Hence C�(N; v) �M(N; v) for every (N; v) 2 GB
�
with n � 3.

It remains to consider the case n = 2. Therefore, for h 62 N , let the three play-

er game (N 0; w) be given by N 0 = N [ fhg, �(N 0; w) = �(N; v), and �(E;wE) =P
i2E\N �(fig; vfig) for every E � N 0. Suppose x 2 C�(N; v). Then, for x

0 2 S3 given

by x0
i
= xi for i 2 N , and x0

h
= 0 it holds that x0 2 C�(N

0; w). Hence C�(N
0; w)

is not empty and �(N 0; w) = �(N; v) � 0, thus (N 0; w) 2 GB
�
. Since jN 0j = 3 the

case n � 3 applies and hence it holds that x0 2 M(N 0; w) as shown above. Fur-

ther, from the construction of (N 0; w) and x0, it follows that for N � N 0 the re-

duced game (N;wN;�;x
0

) = (N; v). The DM-�-reduced game property then implies

that (x0)N = x 2 M(N;wN;�;x
0

) = M(N; v) and thus also in case n = 2 it holds that

C�(N; v) �M(N; v). 2
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The proof of the Main Theorem follows immediately from the two lemma's stated

above.

Theorem 5.12 Let �:G ! IR be linear and positive for all unanimity games and let

M be a mapping on a subgame closed subset C of GB
�
. Then M satis�es non-emptyness,

�-individual rationality, the DM-�-reduced game property and �-superadditivity on C

if and only if M is the �-share-core mapping on C.

Proof: The proof follows immediately from Lemma 5.10 and Lemma 5.11. 2

The Main Theorem characterizes the �-share-core mapping as the unique non-empty

mapping satisfying �-individual rationality, the DM-�-reduced game property and �-

superadditivity on a given subgame closed subset C of GB
�
.

We conclude this section by generalizing another result from Peleg (1986). In

that result we use �-individual rationality for two person games which requires the

�-individual rationality property to hold only for games with two players.

Theorem 5.13 Let �:G ! IR be linear and positive for all unanimity games and let

C be a subgame closed subset of G�. Then the share mapping M satis�es the DM-

�-reduced game property, the converse DM-�-reduced game property, and �-individual

rationality for two person games on C if and only if it is equal to the �-share-core

mapping.

Proof: First, observe that C� satis�es the three properties. According to Lemma

5.5 the converse DM-�-reduced game property is satis�ed. The DM-�-reduced game

property and �-individual rationality for two person games is satis�ed according to

Lemma 5.10.

Second, suppose that M satis�es the three properties on G, and let (N; v) 2 G.

If n = 1 then by de�nition M(N; v) = fx 2 IR j x = 1g = C�(N; v). If n = 2 then

�-individual rationality for two person games and the fact that M(N; v) � S2 imply

that M(N; v) = C�(N; v).
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It remains to consider n � 3. Observe that all reduced games exist and are unique-

ly determined because � is linear and positive for all unanimity games. Now, let x 2

M(N; v). The DM-�-reduced game property ofM then implies that xH 2M(H; v�;H;x)

for every H � N with jHj = 2. But then xH 2 C�(H; v
H;�;x) for every H � N with

jHj = 2, as shown above. The converse DM-�-reduced game property of C� then im-

plies that x 2 C�(N; v). Thus, M(N; v) � C�(N; v). Along the same lines it follows

that C�(N; v) �M(N; v). Hence M(N; v) = C�(N; v). 2

Note that Theorem 5.13 characterizes the �-share-core mapping on subgame closed

subsets of G�, whereas Theorem 5.12 characterizes it on subgame closed subsets of GB
�

for which it is not empty by de�nition.

6 Marginal shares and �-convex games

In this section we �rst give an alternative de�nition of the class of share functions

given in Theorem 2.1.(ii) by using marginal contributions. Therefore, we �rst extend

Theorem 2.1 from subclasses of the class G+
�
of �-positive games to subclasses of the

set G�, so allowing for games to which the function � assigns the value zero. The next

corollary follows immediately from part (i) of Theorem 2.1 by requiring that �� satis�es

the equal share property in case (N; v) is a game with �(N; v) = 0, i.e. ��
i
(N; v) = 1

n

for all i 2 N when (N; v) 2 C \ G�0 .

Corollary 6.1 Let �:G ! IR be additive and symmetric on G�, and let C � G� be a

subgame closed set containing all positively scaled unanimity games. Then there exists

a unique share function �� on C satisfying (i) symmetry and �-additivity on C, (ii) the

null player property on C \ G�+, and (iii) the equal share property on C \ G�0

The marginal value vector of game (N; v) and permutation �:N ! N is the vec-

tor m�(N; v) given m�

i
(N; v) = mi

P (�;i)[fig(N; v) = v(P (�; i) [ fig) � v(P (�; i)) with

P (�; i) := fj 2 N j �(j) < �(i)g for all i 2 N . Thus, the marginal value vector

corresponding to permutation � assigns to player i its marginal contribution to the
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worth of the coalition consisting of all its predecessors in �. Using these marginal

value vectors the Shapley value can also be expressed as the average of these marginal

value vectors over all permutations, i.e. Sh(N; v) = 1
n!

P
�2�(N)m

�(N; v), where �(N)

denotes the collection of all permutations on N . A similar expression can be given for

share functions. So, let �:G ! IR be given and suppose that the entrance of the players

in forming the `grand coalition' is given by permutation �:N ! N on the set N of

players. Then we de�ne the share function ��;� in which the shares are determined by

the marginal contributions of the players according to the permutation � by

�
�;�

i
(N; v) =

8<
:

�(P (�;i)[fig;vP (�;i)[fig)��(P (�;i);vP (�;i))

�(N;v)
if �(N; v) 6= 0

1
n

otherwise:
(4)

The share vector ��;�(N; v) is called the marginal share vector of (N; v) corresponding

to � and permutation �. If players enter the `grand coalition' according to permutation

� then the �rst player �(1) when entering gets full share

�
�;�

�(1)(f�(1)g; vf�(1)g) = 1 =

8<
:

�(f�(1)g;vf�(1)g)

�(f�(1)g;vf�(1)g)
if �(f�(1)g; v�(1)g) 6= 0

1
jf�(1)gj

otherwise:

When the second player, �(2), enters the coalition then the share of the �rst player is

adapted to ��;�
�(1)(f�(1); �(2)g; vf�(1);�(2)g)

=

8<
:

�(f�(1)g;vf�(1)g)

�(f�(1);�(2)g;vf�(1);�(2)g)
if �(f�(1); �(2)g; vf�(1);�(2)g) 6= 0

1
jf�(1);�(2)gj

= 1
2

otherwise:

and the share of the new player �(2) is the remainder ��;�
�(2)(f�(1); �(2)g; vf�(1);�(2)g) =

1 � �
�;�

�(1)(f�(1); �(2)g; vf�(1);�(2)g). This equals
�(f�(1);�(2)g;vf�(1);�(2)g)��(f�(1)g;vf�(1)g)

�(f�(1);�(2)g;vf�(1);�(2)g)
if

�(f�(1); �(2)g; vf�(1);�(2)g) 6= 0, and is 1
2
otherwise. Proceeding in this way yields the

shares expressed by (4).

Next we state another property for �-functions. The function �:G ! IR is null

player independent on C � G if for every (N; v) 2 C and every null player i in (N; v)

such that (N n fig; vNnfig) 2 C it holds that �(N; v) = �(N n fig; vNnfig). Examples

of null player independent functions are �S and �B. Note that �B is not null player

independent. Now, every share function of Corollary 6.1 with � satisfying null player
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independence and such that � assigns zero to null games is equal to the average of all

share vectors ��;�(N; v) over all � 2 �(N).

Theorem 6.2 Let �:G ! IR be additive, symmetric and null player independent on

G� and satisfy �(N; v0) = 0, and let �� be the share function of Corollary 6.1. For

every subgame closed subset C of G� containing all positively scaled unanimity games,

and (N; v) 2 C it then holds that

��(N; v) =
1

n!

X
�2�(N)

��;�(N; v) for all (N; v) 2 C:

Proof: In van den Brink and van der Laan (1999) (Theorem 3.5) it is shown that

(N; v�) 2 G�S and that ��(N; v) = ��
S

(N; v�), where (N; v�) is given by v�(E) =

�(E; vE) for all E � N . With the corresponding property of the Shapley value it is

easy to verify that the theorem holds for the Shapley share function ��
S

. For the other

share functions the theorem then follows from the fact that ��;�(N; v) = ��
S
;�(N; v�).

2

Thus, the share function ��(N; v) satisfying the properties of Corollary 6.1 can be ob-

tained as the average of the marginal share vectors in a similar way as the corresponding

value function can be obtained as the average of the marginal value vectors.

We now turn to the class of convex games (N; v). As stated before the (s-

tandard) Core of a convex game is not empty. Moreover, it is equal to the convex

hull of all marginal vectors of (N; v), i.e. Core(N; v) = Convfm�(N; v) j � 2 �(N)g

and the Shapley value Sh(N; v) is the barycenter of Core(N; v) if (N; v) is a con-

vex game (see Shapley (1971) and Ichiichi (1981)). From this it is easy to verify

that for convex non-null games (N; v), v 6= v0, it holds that the Shapley share core

C(N; v) = C�S (N; v) = Conv
n
m
�(N;v)

v(N)
j� 2 �(N)

o
, and that the Shapley share vector

�S(N; v) is the barycenter of C�S (N; v).

To generalize these results for other � functions we �rst generalize the concept

of convexity. For given function �, we call a game �-convex if the game that assigns

to every coalition the �-value assigned to the subgame restricted to that coalition is

convex.
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De�nition 6.3 Let C � G� be subgame closed, and let �: C ! IR be given. The game

(N; v) 2 G� is �-convex on C if for every E;F � N it holds that

�(E [ F; vE[F ) + �(E \ F; vE\F ) � �(E; vE) + �(F; vF ):

For a subgame closed set C � G�, (N; v) 2 C, and �: C ! IR de�ne the characteristic

function w on N by w(E) =
�(E;vE)

�(N;v)
for every E � N if �(N; v) 6= 0, and w = v0

otherwise. Note that we already used this transformed game in the proof of Theorem

4.6. As noticed in the proof of Theorem 4.6 it holds that C�(N; v) = C(N;w). The

properties for convex games mentioned above then yield the following theorem.

Theorem 6.4 Let �:G ! IR be linear, symmetric and null player independent on the

subgame closed subset C � G� containing all positively scaled unanimity games, and

satisfy �(N; v0) = 0. If (N; v) 2 C is �-convex then

(i) C�(N; v) 6= ;;

(ii) C�(N; v) = Convf��;�(N; v) j � 2 �(N)g if �(N; v) 6= 0, and C�(N; v) = Sn

if �(N; v) = 0;

(iii) ��(N; v) is the barycenter of C�(N; v).

Proof: Let �:G ! IR be symmetric and linear on the subgame closed subset C � G�,

and let (N; v) 2 C be �-convex. Further, let the characteristic function w on N be

given by w(E) = �(E;vE)
�(N;v)

for all E � N if �(N; v) 6= 0, and w = v0 otherwise. Then

�-convexity of (N; v) implies convexity of (N;w), and with C�(N; v) = C�S(N;w) we

obtain the following.

Part (i) follows from the convexity of (N;w) and non-emptyness of the Shapley

share-core of convex games.

Part (ii) is true by de�nition when �(N; v) = 0. If �(N; v) 6= 0, then part (ii)

follows from

�
�;�

i
(N; v) =

�(P (�; i) [ fig; v(P (�;i)[fig))� �(P (�; i); vP (�;i))

�(N; v)

= w(P (�; i) [ fig)�w(P (�; i)) = m�

i
(N;w); for all i 2 N;
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and the fact that Core(N;w) of a convex game (N;w) is equal to the convex hull of

all marginal vectors m�(N;w).

To show Part (iii), �rst consider �(N; v) 6= 0. Then it follows from Theorem

6.2, the fact that Sh(N;w) is the barycenter of Core(N;w) and because it holds that
1
n!

P
�2�(N) �

�;�

i
(N; v)

=
1

n!

X
�2�(N)

�(P (�; i) [ fig; v(P (�;i)[fig))� �(P (�; i); vP (�;i))

�(N; v)

=
1

n!

X
�2�(N)

w(P (�; i) [ fig)� w(P (�; i)) = Shi(N;w);

for all i 2 N . If �(N; v) = 0 then 1
n!

P
�2�(N) �

�;�(N; v) = 1
n
is the barycenter of

Sn = C�(N; v). 2

Note that �S-convexity coincides with convexity of a game. Thus, trivially, all convex

games are �S -convex. Also, all convex games are �B-convex, but convex games need

not be �B-convex.

Example 6.5 Consider the �rst game of Example 4.1. Then the extreme points of the

share-cores C�S(N; v) and C�B(N; v), respectively, are given by the vectors ��
S
;�(N; v)

and ��
B
;�(N; v), � 2 �(N). The vectors �S(N; v) = (1

2
; 1
4
; 1
4
)> and �B(N; v) =

(10
24
; 7
24
; 7
24
)> are the barycenters of the corresponding �-share-cores.
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