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Abstract

This paper studies non-cooperative bargaining with random pro-
posers in apex games. Two di¤erent protocols are considered: the
egalitarian propocol, which selects each player to be the proposer with
the same probability, and the proportional protocol, which selects
each player with a probability proportional to his number of votes.
Expected equilibrium payo¤s coincide with the kernel for the grand
coalition regardless of the protocol. Expected payo¤s conditional on
a coalition may depend on the protocol: given a coalition of the apex
player with a minor player, an egalitarian protocol yields a nearly
equal split whereas a proportional protocol leads to a proportional
split.

Keywords: noncooperative bargaining, apex games, kernel, ran-
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1 Introduction
An apex game is a simple n-player game with one major player (the apex
player) and n ¡ 1 ¸ 3 minor players (also called base players). A winning
coalition can be formed by the apex player together with at least one of
the minor players or by all the minor players together. Apex games can be
interpreted as weighted majority games in which the major player has n¡ 2
votes, each of the n ¡ 1 minor players has one vote, and n ¡ 1 votes are
required for a majority.

Since the apex player only needs one of the minor players he can play
them o¤ against each other to obtain favorable terms. Each minor player
has two options: either try to unite with the other minor players (and run
the risk that one of the others yields to an advantageous o¤er of the apex
player) or compete with them for the favor of the apex player. Apex games
have received a lot of attention both in theory1 and in experiments, and their
importance may be compared to that of the prisoner’s dilemma2.

This paper addresses three questions concerning apex games:
1) What coalition(s) are likely to form?
2) How will the gains from cooperation be divided for each possible coali-

tion?
3) What are the ex ante expected payo¤s for the players?
There are very di¤erent answers in the literature to the …rst question.

Some papers (Bennett, 1983; Morelli, 1998) predict that all minimal winning
coalitions are possible, whereas others limit the possible outcomes to the
coalition of all small players (Aumann and Myerson, 1988; Hart and Kurz,
1984) or to coalitions of the major player with a minor player (Chatterjee et
al., 1993).

As for the second question, equal division of gains seems indicated if all
minor players form a coalition. If the apex player forms a coalition with a

1Some of the theoretical literature will be reviewed in section 4.
2Rapoport et al. (1979) put it the following way:

The centrality of the Apex player, which produces the con‡ict faced by each
Base player of whether to cooperate and trust all the remaining n-2 Base
players or to do his best, negotiating from weakness, against the Apex player,
has aroused intense interest in apex games, such that they may become to
n-person experimental games what the Prisoner’s Dilemma has been to two-
person noncooperative games.

2



minor player, the division of gains is not so clear-cut. The answers given in
the literature point either to the ”egalitarian” 1

2
: 1
2

split corresponding to the
kernel (Davis and Maschler, 1965) or to the ”proportional” (to the number
of votes) n ¡ 2

n ¡ 1
: 1
n ¡ 1

split that comes from observing that a small player can
not expect more than 1

n ¡ 1
if all the minor players form a coalition. The

bargaining set (Aumann and Maschler, 1964) includes these two extremes
and all outcomes in between.

Most of the literature has little to say about ex ante payo¤s. They are
either very extreme (as the major player receives a payo¤ of zero) or un-
determined (when several coalitions are possible, ex ante expected payo¤s
depend on the likelihood of each coalition, and this is left undetermined).
On the other hand, ex ante concepts like the Shapley value give no predic-
tions about coalitions or division of gains. The current paper attempts to
provide an answer to the three questions simultaneously.

In this paper a noncooperative procedure with random proposers (Baron
and Ferejohn (1989), Okada (1996)) is used to model bargaining in apex
games. Two types of protocol are examined: the ”egalitarian” protocol in
which each player is selected to be the proposer with equal probability, and
the ”proportional” protocol, in which each player is selected with a probabil-
ity proportional to his number of votes3. The solution concept is stationary
perfect equilibrium with symmetric strategies for the minor players.

Intuitively, the apex player should bene…t from a proportional protocol
since he is chosen more often to be the proposer. However, we show that this
is not the case: expected equilibrium payo¤s are proportional to the number
of votes of the players for both protocols. The reason is that equilibrium
strategies change so as to compensate changes in the protocol: if the protocol
selects a player to be the proposer with a higher probability, the other players
make o¤ers to him with a lower probability so that his ex ante expected payo¤
remains unchanged.

We also show that all minimal winning coalitions may form, and the
probability of a coalition being formed depends on the protocol (the coalition
of all minor players being more frequent under a proportional rule). Expected
payo¤s conditional on a coalition of the major player and a minor player

3This would be the case in a parliamentary system where the probability of a party
being asked to form a government is proportional to the number of seats it holds. Baron
and Ferejohn (1989) use a proportional protocol in one of their examples. Okada (1996)
only considers the egalitarian protocol.
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depend on the protocol: for an egalitarian protocol, the expected division is
”close” to the egalitarian division (and converges to it when the number of
players tends to in…nity); for a proportional protocol, the expected division
is proportional.

The rest of the paper is organized as follows: section 2 describes the model
and the results, section 3 relates the resulting expected payo¤s to the kernel
for the grand coalition, section 4 reviews some of the literature, section 5
discusses possible extensions and section 6 concludes.

2 Bargaining with random proposers in apex
games

2.1 The Model

Apex games consist of one major player (the apex player) and n ¡ 1 minor
players. If N = f1; 2; :::; ng and 1 is the apex player, then v(S) = 1 if either
1 2 S and Snf1g 6= ;, or S = Nnf1g. Apex games can be interpreted as
weighted majority games in which the major player has n ¡ 2 votes, each
minor player has 1 vote, and n¡ 1 votes are required to obtain a majority4.

Bargaining in apex games is modeled following Okada (1996), which in
turn extends the model of Baron and Ferejohn (1989). Given the underlying
cooperative (apex) game (N; v), bargaining proceeds as follows: At every
round t = 1; 2; ::: Nature selects a player randomly to be the proposer. This
player proposes a coalition S µ N to which he belongs and a division of v(S),
denoted by xS = (xSi )i2S. The ith component xSi represents a payo¤ for player
i in S: Given a proposal, the rest of players in S (called responders) accept
or reject sequentially (the order does not a¤ect the results). If all players in
S accept, the proposal is implemented and the game ends5. If at least one
player rejects, the game proceeds to the next period in which nature selects
a new proposer (always with the same probability distribution). Players are

4This is of course only one of the many possible vectors of weights we can assign to
the players. We have chosen a so-called homogeneous representation, in which all minimal
winning colaitions have the same number of votes.

5Okada (1996) allows bargaining to continue among the remaining players until no
coalition that may be formed has a positive value. Ending the game after one coalition
has been formed is a simplifying assumption that does not a¤ect the results for apex
games.
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risk-neutral and share a discount factor ± < 16: Thus, if a proposal xS is
accepted by all players in S at time t, each player in S receives a payo¤
±t¡1xSi . A player not in S remains a singleton and receives zero.

A (pure) strategy for player i is a sequence ¾i = (¾ti)
1
t=1, where ¾ti; the

tth round strategy of player i, prescribes
(i) A proposal (S;xS):
(ii) A response function assigning ”yes” or ”no” to all possible proposals

of the other players.
The solution concept is symmetric stationary subgame perfect equilibrium.

A stationary perfect equilibrium is a subgame perfect equilibrium with the
property that players follow the same strategy at every round t. Equilibrium
strategies must be symmetric in a weak sense: each minor player proposes
coalition Nnf1g with the same probability. Notice that this does not impose
any restriction on the payo¤s o¤ered or on the strategy of the major player.

Concerning the probability of players being selected to be proposers, we
will call the probability vector used by Nature a protocol, and we will denote
it by µ := (µi)i2N ; where µi > 0 8i 2 N and

P
i2N µi = 1:

Two natural protocols suggest themselves: the egalitarian protocol µE :=
( 1
n
; :::; 1

n
); which selects each player with the same probability, and the pro-

portional protocol µP := ( n¡2
2n¡3 ;

1
2n¡3 ; :::;

1
2n¡3); which selects each player with

a probability proportional to his number of votes.
We will denote the noncooperative game described above G(N; v; µ; ±):

We will think of v as the characteristic function of an apex game, unless
otherwise speci…ed.

2.2 The equilibrium

The following lemma corresponds to theorem 1 in Okada (1996). Even though
the original theorem assumes the egalitarian protocol µE ; it can be applied
to any protocol µ: The proof is included for completeness.

Lemma 1 (Okada, 1996) Consider a zero-normalized, essential and super-
additive7 game (N; v). In any stationary subgame perfect equilibrium of the
game G(N; v; µ; ±), every player i in N proposes a solution (Si; ySi) of the
maximization problem

6Alternatively, after a proposal is rejected the game ends with probability 1 ¡ ±.
7A cooperative game (N; v) is zero-normalized and essential if v(i) = 0 8i 2 N and

v(N) > 0; it is superadditive if v(S [ T ) ¸ v(S) + v(T ) 8S; T µ N , S \ T = ;:
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max
S;y

(v(S)¡
X

j2S;j 6=i
yj) (1)

s:t:

(i) i 2 S µ N

(ii) yj ¸ ±wj 8j 2 Snfig

where wj is the equilibrium expected payo¤ of player j. Moreover, the proposal
(Si; y

Si) is accepted.

Proof. For every i = 1; :::; n, let wji be player i’s equilibrium expected
payo¤ conditional on player j becoming the proposer at time 1, and let mi

be the maximum value of (1). We …rst show that wii = mi:
Subgame perfection implies wii ¸ mi. In a subgame perfect equilibrium

any player j must accept any proposal that gives him at least ±wj , thus player
i can get at least mi:

Can player i get more than mi? If player i proposes (S; yS) at round 1
with yi > mi; the proposal will be rejected (otherwise at least one responder
j is getting less than ±wj and could do better by rejecting the proposal)
and i will get ±wi: Since the characteristic function is superadditive we haveP

j2N wj � v(N): This implies that the pair (N;w); w = (wj)j2N is a feasible
proposal and thus we must have ±wi � wi � mi, therefore wii � mi.

Since wii ¸ mi and wii � mi, it follows that wii = mi:
To prove that player i makes an acceptable proposal, we must prove

±wi < mi: We know that ±wi � mi . If ±wi = mi; then wi = mi = 0 since
wi � mi and ± < 1: Since (N; ±w) is a feasible proposal,mi ¸ (1¡±)v(N) > 0:

An immediate and useful corollary of Lemma 1 is the following:

Corollary 2 Consider a zero-normalized, essential and superadditive game
(N; v): In any stationary subgame perfect equilibrium of the game G(N; v; µ; ±),
every player in N has a strictly positive expected payo¤ (wi > 0 8i 2 N):

Proof. From the proof of Lemma 1 we know that each player gets a
strictly positive expected payo¤ as a proposer (mi ¸ (1¡ ±)v(N) > 0 for all
i). As a responder, he can guarantee himself a payo¤ of zero by rejecting
all proposals that are made to him. Since each player has a strictly positive
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probability of being selected to be the proposer (µi > 0 for all i), this implies
wi > 0 8i 2 N:

Corollary 2 has the following implications for zero-normalized, superad-
ditive and essential simple games8

Corollary 3 Consider a zero-normalized, superadditive and essential sim-
ple game (N; v): In any stationary subgame perfect equilibrium of the game
G(N; v; µ; ±); all players propose winning coalitions in which each responder
is pivotal.

Proof. Proposing a losing coalition cannot be a solution of (1), since it
would yield at most zero for the proposer and he can get at least 1¡ ± > 0
by proposing the grand coalition and o¤ering ±wj to each responder.

On the other hand, since by corollary 2 wi > 0 8i 2 N; a proposal
including a responder who is not pivotal cannot be a solution of (1).

It does not follow from Corollary 3 that only minimal winning coalitions
are proposed in equilibrium. In fact, a stationary perfect equilibrium may in-
clude proposals of coalitions in which the proposer is not pivotal (see Section
5.1). For apex games however only minimal winning coalitions are proposed,
as Corollary 4 shows.

Corollary 4 If (N; v) is an apex game, in any stationary subgame perfect
equilibrium of the game G(N; v; µ; ±) all players propose minimal winning
coalitions.

Proof. A winning but not minimal winning coalition in an apex game
must contain the apex player and at least two minor players, thus at least
two players in the coalition are not pivotal (the two minor players). If such
a coalition would be proposed in equilibrium, at least one responder would
not be pivotal, contradicting Corollary 3.

The following lemma describes some characteristics of the equilibrium
that are common to the protocols that treat all the minor players equally.

Lemma 5 Consider an apex game (N;v) and a protocol µ such that µi =
µj for all i; j 2 Nnf1g: Let ¾¤ be a symmetric stationary subgame perfect
equilibrium of the game G(N; v; µ; ±): Then the following holds:

8In a simple game, v(S) = 0 or 1 for all S µ N: A coalition S in a simple game is called
winning if v(S) = 1 and losing if v(S) = 0. A player i 2 S is called pivotal if v(S) = 1
and v(Snfig) = 0: If all players in S are pivotal S is called a minimal winning coalition.
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a) The apex player proposes each coalition f1; ig (i 6= 1) with probability
1
n¡1 :

b) wi = wj for all i; j 2 Nnf1g.

In other words, if the protocol treats all minor players symmetrically and
each minor player proposes coalition Nnf1g with the same probability, then
in equilibrium the apex player proposes to each minor player with the same
probability and all the minor players have the same expected equilibrium
payo¤9.

Proof. See Appendix.
Proposition 6 describes the symmetric stationary perfect equilibrium of

the game for the egalitarian protocol; proposition 7 describes it for the pro-
portional protocol. Both protocols satisfy the assumptions of Lemma 5, thus
equilibrium expected payo¤ must be the same for all minor players. In the
sequel we will denote equilibrium expected payo¤s by wm for a minor player
and wa for the apex player.

Proposition 6 The unique symmetric stationary subgame perfect equilib-
rium of G(N; v; µE ; ±) is as follows

a) When selected as a proposer, the apex player proposes to form a coali-
tion with each of the minor players with equal probability10.

b) When a minor player is selected as a proposer, he randomizes between
proposing a coalition with the apex player (with probability ± + (n¡1) (n¡3)

± (n¡1) (n¡2) ) and
with all other minor players.

These proposals are accepted and expected payo¤s are n ¡ 2
2n ¡ 3

for the apex
player and 1

2n ¡ 3
for each minor player.

9Remember that symmetry of the equilibrium imposes no requirements on the equilib-
rium strategy of the major player. As for the minor players, it constraints the probabilities
of proposing coalitions, not the payo¤s o¤ered. Thus, if i and j are minor players, sym-
metry of the equilibrium together with the fact that only minimal winning coalitions are
proposed implies that i includes j in a proposal with the same probability that j inlcudes
i, but it does not require that i o¤ers to j the same payo¤ j o¤ers to i: Because of subgame
perfection, we know that j would o¤er ±wj to j and j would o¤er ±wi to i, but symmetry
of the equilibrium does not require wi = wj:

10It su¢ces to describe the equilibrium strategies of the players by a probability distri-
bution over the coalitions they propose. Lemma 1 implies that each responder j will accept
any o¤er that gives him at least ±wj and will be o¤ered exactly ±wj . This fact together
with the probability distribution used by the proposers determines (wj)j2N , therefore we
need to specify neither the payo¤s o¤ered to the responders nor the set of proposals players
accept.

8



Proof. The equilibrium strategy of the apex player follows from Lemma
5. Corollary 4 leaves three possibilities for the minor players: they may
propose a coalition with the apex player, a coalition including all the minor
players, or they may randomize.

Suppose they propose a coalition to the apex player. The continuation
payo¤s are then found from the following system of equations, where wa
denotes the continuation payo¤ for the apex player and wm denotes the con-
tinuation payo¤ for a minor player:

wa =
1

n
[1¡ ±wm] +

n ¡ 1
n

±wa

wm =
1

n
[1¡ ±wa] +

1

n(n¡ 1)±wm

The solution to this system of equations is wa =
(n¡±¡1)

n(n¡1)¡±(n2¡2n+2) and wm =
(1¡±)(n¡1)

n(n¡1)¡±(n2¡2n+2) . When ± is close to 1, wa is close to 1 and wm is close to
0, thus this strategy combination cannot be an equilibrium (a minor player
would prefer to form a coalition with the other minor players and get a payo¤
close to 1, instead of following his prescribed strategy and get a payo¤ close
to zero).

Suppose each minor player proposes to the rest of the minor players. Then
the continuation payo¤s are found from the following system of equations:

wa =
1

n
[1¡ ±wm]

wm =
1

n
[1¡ (n¡ 2)±wm] +

1

n (n ¡ 1)±wm +
n ¡ 2
n

±wm

The solution to this system of equations is wa =
(n¡1¡±)
n(n¡1)¡± ; wm =

(n¡1)
n(n¡1)¡± .

Clearly, wa < wm, thus these strategies can not constitute an equilibrium (a
minor player would prefer to propose to the apex player).

Suppose a minor player proposes to the apex player with probability ¸
and to the other minor players with probability 1 ¡ ¸: The continuation
payo¤s and ¸ are found from the following system of equations (the third
one being an indi¤erence condition for the minor players):

9



wa =
1

n
[1¡ ±wm] +

n¡ 1
n

¸±wa

wm =
1

n
[1¡ ¸±wa ¡ (1¡ ¸)(n¡ 2)±wm] +

1

n(n¡ 1)±wm +
n¡ 2
n

(1¡ ¸)±wm

wa = (n¡ 2)wm
The solution to this system of equations is wa = n¡2

2n¡3 ; wm =
1

2n¡3 ; ¸ =
±+(n¡1)(n¡3)
±(n¡1)(n¡2) : When ± tends to 1, ¸ tends to n¡2

n¡1 :

Proposition 7 The unique symmetric stationary subgame perfect equilib-
rium of G(N; v; µP ; ±) is as follows

a) When selected as a proposer, the apex player proposes to form a coali-
tion with each of the minor players with equal probability.

b) When a minor player is selected as a proposer, he randomizes between
proposing a coalition with the apex player (with probability 1

n¡1) and with all
other minor players.

These proposals are accepted and expected payo¤s are n ¡ 2
2n ¡ 3

for the apex
player and 1

2n ¡ 3
for a minor player.

Proof. It is easy to check that there is no equilibrium in which the minor
players play pure strategies (see the proof of proposition 6).

Suppose a minor player proposes to the apex player with probability ¸
and to the other minor players with probability 1 ¡ ¸: The continuation
payo¤s and ¸ are found from the following system of equations:

wa =
n¡ 2
2n¡ 3 [1¡ ±wm] +

n¡ 1
2n¡ 3¸±wa

wm =
1

2n¡ 3 [1¡ ¸±wa ¡ (1¡ ¸)(n¡ 2)±wm] +
n¡ 2

(2n¡ 3)(n¡ 1)±wm

+
n¡ 2
2n¡ 3(1¡ ¸)±wm

wa = (n¡ 2)wm
The solution to this system of equations is wa = n¡2

2n¡3 ; wm =
1

2n¡3 ; ¸ =
1
n¡1 :

Remark 8 Note that expected payo¤s are the same for both protocols.
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The reason why payo¤s are the same for both protocols is that equilibrium
strategies change so as to compensate changes in the protocol: if the protocol
selects a player to be a proposer more often, equilibrium strategies adjust
so that he becomes a responder less often and his expected payo¤ remains
unchanged.

Since in equilibrium a winning coalition always forms without delay, we
have wa + (n ¡ 1)wm = 1: If the minor players follow a mixed strategy in
equilibrium, this condition together with the indi¤erence condition wa =
(n ¡ 2)wm determines expected payo¤s regardless of the protocol. These
payo¤s are such that players are indi¤erent between all the minimal winning
coalitions they can propose, thus there is always such an equilibrium provided
that the corresponding ¸ is indeed a probability, that is, a number between 0
and 1. If we restrict ourselves to protocols that give the same probability of
being the proposer to all minor players, all values of µa in the (open) interval
]0; 1

2
[ yield the same ex ante payo¤s: Outside this interval, the minor players

no longer randomize, there is no room for strategies to compensate changes
in the protocol (one would need ¸ < 0 or ¸ > 1) and the intuitive result that
a player gets a higher expected payo¤ if he is more often selected to be the
proposer is obtained.

Remark 9 Expected payo¤s coincide with the kernel for the grand coalition.

We elaborate on this in the next section.

Remark 10 Consider any two protocols that yield the same expected payo¤s
(for example, the egalitarian protocol and the proportional protocol). The
payo¤ a player gets conditional on being the proposer is the same for both
protocols; the same holds for the payo¤ a player gets as a responder.

As a responder, a player gets his expected payo¤ times the discount factor
±: As a proposer he must o¤er to the responders their expected payo¤ times ±:
For any two protocols that yield the same expected payo¤s a player receives
the same payo¤ as a responder and solves the same maximization problem
as a proposer.

Remark 11 The proposer has an advantage that does not completely disap-
pear in the limit when ± tends to 1.
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The proposer is said to have an advantage if the payo¤ a player gets as
proposer is higher than the payo¤ he gets as a responder. This advantage
does not vanish in the limit when ± tends to 1, in contrast with the Rubinstein
(1982) game. The reason is that in this game the impatience of the players is
not the only source of advantage for the proposer; a second sort of advantage
is the majority rule (as opposed to the unanimity rule). The proposer will
o¤er to each responder ± times his continuation payo¤. Since the proposer
only needs to form a minimal winning coalition, he ”saves” the expected
payo¤ of players outside the minimal winning coalition. Because expected
payo¤s for the players are proportional to their number of votes, the proposer
gets a payo¤ of at least one half.

Remark 12 The coalition of all minor players forms more often under a
proportional protocol.

As we have argued above, the payo¤ a player gets as a proposer and the
payo¤ he gets as a responder are the same for both protocols. If the protocol
changes so that a player is selected more often to be a proposer, strategies
change so that he is selected less often to be a responder to keep expected ex
ante payo¤s unchanged. Moreover, since a player gets a higher payo¤ as a
proposer rather than as a responder (see remark 11), his total probability of
being in a coalition (that is, the sum of his probability of being a proposer
and his probability of being a responder) must decrease as well.

The reasoning above implies that the apex player must be less often in a
coalition under a proportional protocol, thus the coalition of all minor players
must form more often.

We can calculate the concrete probabilities using propositions 6 and 7.
Under an egalitarian protocol, each minor player proposes the coalition

of all minor players with probability 1
n¡1 (in the limit when ± tends to 1).

Since one of the minor players is selected to be the proposer with probability
n¡1
n

, this implies that the coalition of all minor players forms with probability
1
n¡1

n¡1
n
= 1

n
: A coalition of the apex player with a given minor player forms

with probability 1
n

1
n¡1+

1
n
n¡2
n¡1 =

1
n

(the apex player is selected with probability
1
n

and proposes to a given minor player with probability 1
n¡1 ; a given minor

player is selected with probability 1
n

and proposes to the apex player with
probability n¡2

n¡1). Thus, each minimal winning coalition is equally likely.
Under a proportional protocol, each minor player proposes the coalition

of all minor players with probability n¡2
n¡1 : Since a minor player is selected

12



to be the proposer with probability n¡1
2n¡3 , this implies that the coalition of

all minor players forms with probability n¡2
2n¡3 (approximately 1

2
for large n):

Analogous computations show that each coalition of the apex player with a
minor player forms with probability 1

2n¡3 :

Remark 13 Expected payo¤s conditional on a concrete coalition being formed
are [ 1

n ¡ 1
; :::; 1

n ¡ 1
] for a coalition containing all minor players and depend

on the protocol for a coalition containing the apex player and a minor player.

The …rst part of the remark follows from the fact that expected payo¤s
are the same for all minor players and the equilibrium is symmetric.

As for the second part, we have argued above that the apex player will
be in a coalition less often under the proportional protocol. Since his ex
ante expected payo¤ remains unchanged, this implies that conditional on
being in a coalition his payo¤ must be higher. We can calculate the exact
(limit) expected payo¤ division using the equilibrium values of ¸ found in
propositions 6 and 7 and the coalition probabilities computed above.

For the egalitarian protocol, a coalition of the apex player with a given
minor player forms with probability 1

n
: It is proposed by the apex player

with probability 1
n

1
n¡1 ; and by the minor player with probability 1

n
n¡2
n¡1 : As

a proposer, the apex player gets 1 ¡ 1
2n¡3 ; as a responder he gets n¡2

2n¡3 . His
expected payo¤ conditional on being in the coalition is then

1
n

1
n¡1 [1¡ 1

2n¡3 ] +
1
n
n¡2
n¡1

n¡2
2n¡3

1
n

=
n(n¡ 2)

(n¡ 1)(2n ¡ 3)
This value is close to 1

2
:

For the proportional protocol, a coalition of the apex player and a given
minor player forms with probability 1

2n¡3 . It is proposed by the apex player
with probability n¡2

2n¡3
1

n¡1 and by the minor player with probability 1
2n¡3

1
n¡1 .

As for the egalitarian protocol, the apex player gets 1¡ 1
2n¡3 as a proposer

and n¡2
2n¡3 as a responder. His expected payo¤ conditional on being in the

coalition is then

n¡2
2n¡3

1
n¡1

£
1¡ 1

2n¡3
¤
+ 1

2n¡3
1
n¡1

n¡2
2n¡3

1
2n¡3

=
n¡ 2
n¡ 1

That is, the division of payo¤s conditional on a coalition of the apex
player and a minor player is proportional to the number of votes each of the
two players has.
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3 Apex games and the kernel
We saw in the previous section that expected equilibrium payo¤s of the game
G(N; v; µ; ±) coincide with the kernel for the grand coalition provided that
(N; v) is an apex game, µ is a protocol that treats all minor players equally
and with 0 < µa < 1

2
, and ± is close to 1 (cf. remarks 7 and 8). We show now

that this is not coincidental.

3.1 De…nition of the kernel11

Consider a cooperative game (N; v): Assume v(S) ¸ 0 8S µ N and v(i) = 0
8i 2 N: An outcome of the game is denoted by (x;B) where xi denotes the
payo¤ to the ith player and B ´ fB1; :::; Bng the coalition structure (partition
of N) that was formed. The payo¤ vector is assumed to satisfy
xi ¸ 0, i = 1; 2; :::; nP

i2Bj xi = v(Bj); j = 1; 2; :::;m
A payo¤ vector satisfying these two conditions is called an imputation.

The space of all imputations for the coalition structure B is denoted by X(B).

De…nition 14 Let x be an imputation in a game (N; v) for an arbitrary
coalition structure. The excess of a coalition S at x is e(S; x) := v(S) ¡P

i2S xi:

De…nition 15 Let (x;B) be an outcome for a cooperative game, and let k
and l be two distinct players in a coalition Bj of B. The surplus of k against
l at x is

sk;l(x) := max
k2S;
l=2S

e(S; x)

De…nition 16 Let (N; v) be a cooperative game and let B be a coalition
structure. The kernel K(B) for B is

K(B) := fx 2 X(B) : sk;l(x) > sl;k(x) =) xl = 0; for all k; l 2 B 2
B; k 6= lg

11The kernel was introduced by Davis and Maschler (1965). The de…nition of the ker-
nel included here is taken from Maschler (1992). The two papers di¤er slightly in the
terminology.
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Suppose (N; v) is an apex game and consider the coalition structure
ff1; 2g; f3g; f4g; :::; fngg (1 is the apex player): The kernel for this coali-
tion structure predicts that 1 and 2 receive 1

2
each. Since the payo¤ for a

coalition must equal its value, all singletons must receive zero. The surplus
of 1 against 2 then equals 1¡ x1, whereas the surplus of 2 against 1 equals
1¡ x2: Thus x1 = x2. Player 1 needs only one of the other players, whereas
player 2 needs all of them; however, since all those players receive zero, this
makes no di¤erence for payo¤s. This is somehow disappointing, because in-
tuitively the apex player is stronger and it seems that he should get more
than half.

For the grand coalition, the kernel predicts ( n¡2
2n¡3 ;

1
2n¡3 ; ::::;

1
2n¡3): To see

this, notice that all the minor players must get the same payo¤; call this
payo¤ x2. The surplus of the apex player against a minor player then equals
1 ¡ x2 ¡ x1, whereas the surplus of a minor player against the apex player
equals 1¡ (n¡ 1)x2: The equality 1¡ x2 ¡ x1 = 1¡ (n¡ 1)x2 together with
x1+(n¡1)x2 = 1 (that is, x must be an imputation) yields the result. If we
interpret apex games as weighted majority games, the kernel predicts payo¤s
that are proportional to the number of votes of the players12.

3.2 Why expected equilibrium payo¤s coincide with
the kernel for the grand coalition

We now come back to the equilibrium of the noncooperative game described
in section 2. Expected equilibrium payo¤s follow from the indi¤erence con-
dition for a minor player together with the fact that players propose winning
coalitions and there is no delay in equilibrium (see remark 7).

The indi¤erence condition of the minor player, wa = (n ¡ 2)wm, implies
1¡ wa = 1¡ (n¡ 2)wm: Substracting wm from both sides we get
1¡wa ¡ wm = 1¡ (n¡ 1)wm
That is, in the language of the kernel, the surplus of the apex player

against a minor player equals the surplus of a minor player against the apex
player.

Because there is no delay in equilibrium (and players always propose
winning coalitions), the sum of all expected payo¤s equals 1, that is

12While proportional payo¤s may seem only too obvious, one must take into account
that neither the Shapley value nor the Banzhaf value assign proportional payo¤s in an
apex game.
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wa + (n¡ 1)wm = 1
In the language of the kernel, (wi)i2N is an imputation.

4 Related literature
This section reviews some of the literature on apex games. This literature is
divided in three groups: the stable demands literature, the two-stage litera-
ture and the imperfect competition literature.

4.1 Stable aspirations

The stable demands literature predicts that any minimal winning coalition
may form. Given that a coalition forms, payo¤ division will be proportional13.
Since probabilities are not assigned to each minimal winning coalition, there
is no prediction of ex ante expected payo¤s. If the situation is modeled as
an extensive form game (Bennett and van Damme (1991), Bennett (1997),
Morelli (1998)) the equilibrium strategies are not unique: the apex player can
propose to any minor player, and each minor player can propose the minor
players coalition or a coalition with the apex player. ”Natural” assumptions
on the selection of the …rst proposer (egalitarian or proportional protocols)
and on the mixed strategies (each player plays all strategies that yield the
same payo¤ with equal probability) do not lead to expected ex ante payo¤s
proportional to the number of votes14. Ex post payo¤s are proportional to
the number of votes; ex ante payo¤s may be proportional to the number of
votes (if initial probabilities and mixed strategies are chosen in an appropriate
way) but need not be so. On the other hand, given that a coalition forms the
payo¤ division is always proportional and does not depend on the protocol or
on who was the proposer. Thus, the stable demands approach makes robust
predictions ex post, whereas the current approach makes robust predictions
ex ante.

13The rationale for this division varies across the stable demands literature. A simple
justi…cation is the partnership condition: given two players, either each of them needs the
other to get his payo¤ demands, or neither needs the other.

14Neither do they lead to the Shapley or Banzhaf values.
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4.2 Two-stage models

The two-stage approach provides possible justi…cations for the 1
2
: 1
2

split in
the two-person minimal winning coalition. This type of coalition, however,
never arises in equilibrium and the ”major” player always gets a zero payo¤.

A reason why the kernel assigns the unintuitive 1
2
: 1
2

split to a coalition
of the apex player and a minor player is the assumption that, when players
consider alternative coalitions, they assign to the other players the payo¤
they get in the current coalition structure. Hart and Kurz (1983) instead
assume that payo¤s are given by the Owen value15, and that if a group of
players deviates the new payo¤s are given by the Owen value of the new
coalition structure. A coalition structure is then considered to be stable if no
group of players can reorganize themselves in such a way that all its members
are strictly better-o¤.

The payo¤ division corresponding to a coalition of the apex player with a
minor player is

¡
1
2
; 1
2

¢
if the other minor players are together in a coalition and

(n¡2
n¡1 ;

1
n¡1) if they remain singletons (the kernel makes the same prediction

for both structures). This coalition structure is not stable because the apex
player can form a coalition (larger than minimal winning) with other minor
players. The coalition of all small players is stable if n ¸ 5 and coalitions
break up when one member leaves.

Aumann and Myerson (1988) consider a link formation game in which
players are o¤ered the opportunity to form links and payo¤s are determined
by the Myerson16 value of the resulting graph. The 1

2
: 1
2

split in a two-
player coalition is then justi…ed since communication is not possible among
players in di¤erent coalitions, so that the apex and the minor player are
in a symmetric situation. Because of this, the big player prefers to form a
coalition larger than the ”minimal winning”.

In equilibrium, all minor players form a coalition. The reason is that, if
any of them links with the apex player, the apex player will then link with
his ”optimal” number of minor players, and each minor player would get less
than what he would get if he linked with all the other minor players.

15The Owen value assigns to a player his average contribution, where the average is
computed over the orderings that are ”consistent” with the coalition structure, i.e., players
arrive randomly but players in the same coalition arrive successively.

16The Myerson value is the Shapley value of the graph-restricted game.
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4.3 Imperfect competition

Chatterjee et al. (1993) consider a proposal-making model in which a rule
of order selects the …rst proposer and the order in which players respond to
a proposal, and the …rst player to reject becomes the next proposer. They
predict that a coalition of the apex player and a minor player will form and
split the payo¤ equally regardless of the number of players. Expected payo¤s
depend on the rule of order and the strategy of the apex player. If the …rst
proposer is selected randomly and the apex player randomizes among all
minor players expected payo¤s are (1

2
; 1
n
; :::; 1

n
):

The reason for the equal-split prediction is that the game fails to re‡ect
competition between the minor players.

Suppose the minor players propose to the apex player. A minor player
who rejects an o¤er will propose to the apex player in the next period and
get a continuation payo¤ zm = ±(1¡±za); this payo¤ is the same for all minor
players and does not depend on the proposing strategy of the apex player:
If the apex player rejects a proposal, he gets za = ±(1 ¡ ±zm) no matter
to which minor player he proposes: These two equations determine za and
zm independently of the number of minor players. In the present paper, the
payo¤ of a player who rejects a proposal depends on how often other players
propose to him, so that competitive pressures are re‡ected in the expected
payo¤s of the players17.

5 Possible extensions?

The main result of this paper, namely the fact that expected payo¤s are
proportional to the number of votes, easily extends to all simple games with
one large player and n¡1 identical small players. It certainly does not extend
to all weighted majority games. This section includes two counterexamples,
one for the egalitarian protocol and one for the proportional protocol.

17Note that in the game considered by Chatterjee et al. (1993) expected payo¤s and
continuation payo¤s may be very di¤erent. Consider a protocol that always appoints a
given minor player i to be the proposer: This implies that the expected payo¤ for a minor
player j 6= i (wj in the notation of this paper) equals 0; whereas his continuation payo¤
zi is approximately 1

2
: In the game we consider there is a close relation between expected

payo¤s and continuation payo¤s. Since nature selects a new proposer once a proposal is
rejected, we have zi = ±wi:
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5.1 Counterexample 1: egalitarian protocol

Consider a weighted majority game in which two large players have k ¸ 2
votes each, 2k ¡ 1 players have one vote each and 2k votes are needed to
obtain a majority. The number of players is then n = 2k + 1, and the
total number of votes is 4k ¡ 1. There are two types of minimal winning
coalitions: the two large players, and a large player together with k small
players. Suppose expected ex ante payo¤s are proportional to the number
of votes of the players; this implies that players will propose only minimal
winning coalitions. A small player will then include one and only one of the
large players in the coalition he proposes; a large player is indi¤erent between
proposing to the other large player or to k minor players.

One may suspect that a large player cannot get a payo¤ proportional to
his number of votes for n large enough. As n grows, a large player becomes
a proposer less often, thus he must be a responder more often to keep his
expected payo¤ equal to his proportion of votes k

4k¡1 . Since the proportion
of the total votes a large player has is roughly constant regardless of the
number of players, his probability of being a responder must be close to 1
when the number of players is large. However, there is an upper bound to
his probability of being the responder since a small player proposes to only
one of the large players (together with k ¡ 1 small players).

The expected payo¤ for a large player wl must satisfy the following equa-
tion, where ¸ is the probability with which a large player proposes to the
other large player18

wl =
1
n
[1¡ ±wl] + n¡2

n
1
2
±wl +

1
n
¸±wl:

The maximum possible value of wl (corresponding to ¸ = 1) is smaller
than k

4k¡1 for any k ¸ 2 !
One can prove that in equilibrium a small player will propose a coalition

of himself and the two large players with positive probability and a large
player receives k ¡ 1 times what a small player receives instead of k times.
Thus, large players are underpaid and coalitions larger than minimal form.

18This formula takes into account that the small players must propose a coalition to
each of the large players with probability 1

2 ; in order for the two large players to have the
same expected payo¤.
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5.2 Counterexample 2: proportional protocol

Consider a weighted majority game with four players, one of them with 3
votes, two of them with 2 votes and one of them with 1 vote. 5 votes are
needed to obtain a majority, and thus there are two types of minimal winning
coalitions: a player with 3 votes together with one of the players with 2 votes,
or the two players with 2 votes together with the player with 1 vote. Thus,
the largest and the smallest player are never together in a minimal winning
coalition. If expected ex ante payo¤s are proportional, only minimal winning
coalitions form in equilibrium, thus the player with 3 votes must propose
to one of the players with 2 votes, and the player with 1 vote to both of
them. A player with 2 votes can propose two minimal winning coalitions,
one including the largest player and the other including the smallest player.

Suppose that expected equilibrium payo¤s are proportional to the number
of votes under a proportional protocol. If ¹ is the probability that a player
with 2 votes proposes to the largest player, the following equations must be
satis…ed:

3
8
= 3

8
(1¡± 2

8
)+ 4

8
¹± 3

8
; describing the expected payo¤ for the largest player.

1
8
= 1

8
(1¡2± 2

8
)+ 4

8
(1¡¹)± 1

8
; describing the expected payo¤ for the smallest

player.
For ± close to 1, ¹ needs to be close to 1

2
for the largest player to receive

a proportional payo¤, and close to 0 for the smallest player to receive a
proportional payo¤, a contradiction.

6 Concluding remarks
This paper considers an application of the Baron and Ferejohn (1989) bar-
gaining model to apex games. Expected ex ante payo¤s are found to be
proportional to the number of votes of the players, and this result is robust
to (not too extreme) changes in the protocol. The probability of a coalition
being formed as well as the expected division of payo¤s given that a coalition
is formed depends on the protocol.

The proposer has two sources of advantage in this game: the impatience of
the players and the majority (rather than unanimity) rule. In fact, a proposer
always gets more than half of the total payo¤ regardless of the number of
players. The reason is that each responder receives a payo¤ proportional to
his share of the total votes, and, since only minimal winning coalitions form,
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the sum of these shares is always smaller than 1
2
. This is striking if we think

of large apex games with a minor player selected as a proposer.
Expected payo¤s proportional to the number of votes may be desirable

for fairness reasons. However, the fairness argument only applies for homo-
geneous majority games (games in which each minimal winning coalition has
the same number of votes). This paper concerns homogeneous apex games
only. If, the game is not homogeneous, the result that all minor players
have the same expected payo¤ is not obviously attractive. Moreover, the
assumption that the protocol treats all the minor players equally and the re-
quirement that the minor players follow similar strategies are less reasonable
if the game is not homogeneous.

7 Appendix

Proof of Lemma 5. Corollary 4 implies that the apex player will propose
a coalition of the form f1; ig (i 6= 1) whereas a minor player i will propose
f1; ig or Nnf1g: Symmetry requires each minor player to propose coalition
Nnf1g (and thus coalition f1; ig) with the same probability.

The equilibrium expected payo¤ for a minor player is then given by the
following expression:

wi = µmw
i
i + (n¡ 2)µm(1¡ ¸)±wi + µa¹i±wi (2)

where µm denotes the probability each minor player has to be the proposer, µa
denotes the probability for the apex player to be the proposer (µa = 1¡(n¡1)
µm), ¸ denotes the probability that a minor player proposes to the apex
player, and ¹i denotes the probability that the apex player proposes to player
i (

P
j2Nnf1g ¹j = 1):

Solving for wi in (2), we get

wi =
µmw

i
i

1¡ ±((n¡ 2)µm(1¡ ¸) + µa¹i)
(3)

We can distinguish two cases:
a) ¸ > 0 (the minor players propose to the apex player with positive

probability).

21



b) ¸ = 0 (the minor players never propose to the apex player).
Case a): ¸ > 0 implies wii = 1¡±w1 = wjj 8i; j 2 Nnf1g: Thus, given two

minor players i and j, wi can only be di¤erent from wj if ¹i 6= ¹j : We now
prove that ¹i = ¹j 8i; j 2 Nnf1g:

Suppose not, say, ¹i > ¹j: From (3), this implies wi > wj: But this in
turn implies ¹i = 0 (the apex player will never propose to player i; since he
can do better by proposing to player j), a contradiction. Thus ¹i = ¹j =

1
n¡1

(since by Corollary 4 the apex player always proposes to a minor player) and
wi = wj for all i; j 2 Nnf1g:

Case b): Take a player j such that ¹j > 0: The apex player will only
propose to a minor player if he is (one of) the cheapest, thus it must be the
case that wj = mink2Nnf1gwk:

Suppose not all minor players have the same equilibrium expected payo¤.
Then 9i 2 Nnf1g s.t. wi > wj: By assumption ¸ = 0; so each minor
player proposes the coalition of all minor players in equilibrium. Moreover,
optimization by the apex player implies ¹i = 0:

Equilibrium expected payo¤s for i and j are then given by the following
expressions:

wi = µm(1¡
X

k2Nnf1;i;jg
±wk ¡ ±wj) + (n¡ 2)µm±wi (4)

wj = µm(1¡
X

k2Nnf1;i;jg
±wk ¡ ±wi) + (n¡ 2)µm±wj + µa¹j±wj (5)

Substracting (5) from (4) and re-arranging terms, we get

¢ = ¡ µa¹j±wj

1¡ (n¡ 1)±µm
(6)

where ¢ denotes wi ¡ wj:
Since 1 ¡ (n ¡ 1)±µm > µa > 0 and µa¹j±wj > 0; we get ¢ < 0, a

contradiction. Therefore, all minor players must have the same equilibrium
payo¤.
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