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On the Structure of the Set of

Correlated Equilibria

in two-by-two Bimatrix Games

Ronald Peeters� Jos Pottersy

May 1999

Abstract

The paper studies the structure of the set of correlated equilibria for 2�2-bimatrix

games. We �nd that the extreme points of the (convex) set of correlated equilibria

can be determined very easily from the Nash equilibria of the game.

JEL Classi�cation: C72.

Keywords: Correlated equilibrium; bimatrix game.

1 Introduction.

In certain classes of strategic games the players have partially common interests and they

may fear that `just playing a Nash equilibrium' does not do justice to the common interests.

In such games it may be wise to introduce a cooperative pre-play meeting to coordinate

the actions of the di�erent players. The concept of correlated equilibria is based on this

idea (see Auman (1974) and (1987)). It gives a method to coordinate the actions of the

players before the game is played.

The idea is the following: in the pre-play meeting the players agree upon a (�nite) proba-

bility space 
 with probability measure p and signalling functions xi: 
 ! Ti, one for each

player.
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If the game is played, a chance mechanism with probability distribution p (out of the reach

of any player) determines a point ! 2 
 and each player i get the information xi(!) 2 Ti.

Now each player i chooses an action ai in his action space Ai and the payo�s ui(a1; : : : ; an)

follow. The di�erence with playing the original strategic game (fAi; uigi2N) is that the

players can choose strategies fi:Ti ! Ai, the players can react to the signal they get.

During the pre-play meeting the players transformed the strategic game (fAi; uigi2N) into

a Bayesian game (
; p; fxi; Tigi2N ; fAi; uigi2N).

A Bayesian equilibrium in the extended game is called a correlated equilibrium of the

strategic game (fAi; uigi2N). Note that the signal is costless and is only used to `coordinate'

the actions.

Suppose that ffigi2N is a Bayesian equilibrium in the game

(
; p; fxi; Tigi2N ; fAi; uigi2N );

then we can introduce a new set �
:= A1� � � ��An and a new probability measure �p on �


de�ned by �p(a1; : : : ; an): = p [f! 2 
 : fi � xi(!) = aig]. We also introduce new signalling

functions, namely �xi(a1; : : : ; an): = ai.

So, in the pre-play meeting the players agree upon a chance distribution over the strategy

pro�les, before the game is played a strategy pro�le is drawn at random and each player gets

as a signal his component of this strategy pro�le ai, the `strategy he is supposed to play'.

`Following the advice', i.e. playing ai if you are told to do so, is a Bayesian equilibrium

in the new situation and generates the same outcome, the same chance distribution over

A = A1 � � � � �An, as the old Bayesian equilibrium ffig did (see Osborne and Rubinstein

(1994) for a proof). As the chance distribution over A is the only thing that matters, the

players do not need fancy chance mechanisms (
; p) and signalling functions fxig, they

can get the same outcome by taking 
 = A and signalling functions xi(a) = ai. What they

have to discuss is the probability distribution p on A. So, the set of correlated equilibria

consists of all probability measures p 2 �(A) for which the reaction functions `following

the advice you get' form a Bayesian equilibrium. Note that `following the advice you get'

generates the probability distribution p as outcome and payo�s
P

a2A p(a) ui(a) for each

player i. So, after all the discussion during the pre-play meeting was about the outcome.

After the previous discussion we are left with the following situation: during the cooperative

phase of the game the players (try to) agree upon an element p 2 �(A). During the

game each player gets the advice to play a certain action. If they do so, the probability

distribution p is generated and the question remains if it is wise to follow the instructions.

Is the situation self-enforcing in the sense that no unilateral deviation is a better action

for the deviating player?
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In this paper we study the set of correlated equilibria for the most simple situation, for

2 � 2-bimatrix games. We �nd a very easy way to derive the set of correlated equilibria

from the set of Nash equilibria.

For these games there are two well-known facts:

(i) the set of correlated equilibria is a convex polyhedron,

(ii) Nash equilibria `are' correlated equilibria.

From these facts follows that the set of correlated equilibria contains the convex hull of

the set of Nash equilibria. So we are interested in extreme points of the set of correlated

equilibria that are not Nash equilibria.

We prove that such points exist if and only if the 2� 2-bimatrix game has three isolated

Nash equilibria, two pure and one mixed Nash equilibrium (it is a game like the `Battle

of the Sexes') and that the extreme points of the set of correlated equilibria can be found

from the coordinates of the mixed equilibrium.

2 Correlated equilibria for bimatrix games.

Let (A;B) be the payo� matrices of a bimatrix game of size m�n. Let Z = (zij) � 0 be a

probability vector on the entries (i; j). So,
P

ij zij = 1. We �rst write down the conditions

that Z must satisfy to be a self-enforcing solution. If the signal ei is given, the conditional

expected payo� of playing ei must be at least as large as the conditional expected payo�

of any other strategy ek:X
j

zijP
` zi`

Aij �
X
j

zijP
` zi`

Akj

for every alternative strategy ek. This means:X
j

zij [Aij � Akj] � 0 for all k 6= i:

For the other player we �nd thatX
i

zij [Bij � Bi`] � 0 for all ` 6= j:

If we add the (in)equalities

zij � 0 for all pairs (i; j) and
X
(i;j)

zij = 1
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we have a description of the set Z(A;B) of correlated equilibria of the bimatrix game

(A;B) as a compact polyhedral set. So calculating Z(A;B) is the same as calculating the

extreme points of Z(A;B). In Evangelista and Raghavan (1996) it is proved that each

extreme point of a maximal Nash set1 is an extreme point of Z(A;B) too.

Lemma 1 (i) A Nash equilibrium (p; q) de�nes a correlated equilibrium by zij: = pi qj.

(ii) A correlated equilibrium Z = (zij) is a Nash equilibrium if and only if zij zk` = zi` zkj

for all strategies i; k for player 1 and all strategies j; ` for player 2.

Proof (i) If (p; q) is a Nash equilibrium, we have, for every i; k and j; `

pi > 0 implies eiAq � ek Aq and qj > 0 implies pB ej � pB e`:

This can be written as

pi

hX
j

qj Aij

i
� pi

hX
j

qj Akj

i
and qj

hX
i

piBij

i
� qj

hX
i

piBi`

i
:

These are the inequalities we looked for:X
j

zij [Aij � Akj] � 0 and
X
i

zij [Bij � Bi`] � 0 for all i; k and all j; `:

(ii) If Z = (zij) is a correlated equilibria satisfying all equalities zij zk` = zi` zkj, we take

an entry (i; j) with zij 6= 0 and de�ne the strategies p and q by

pk: =
zkjP
r zrj

and q`: =
zi`P
s zis

:

Clearly, p and q are well-de�ned strategies for player 1 and 2, respectively (the denominators

are not zero). We have

pk q` =
zkj zi`

(
P

r zrj)(
P

s zis)
= zk`

zij

(
P

r zrj)(
P

s zis)
:

Every product pk q` is a product of zk` and a constant (since i and j are �xed). This

constant is one, since pk q` as well as zk` add up to one. Then pk q` = zk` for all k and ` and

the Nash equilibrium conditions follow from the conditions for correlated equilibria e.g.:

pi [eiAq � ek Aq] =
X
j

(Aij � Akj) zij � 0:

This completes the proof. /

The following lemma will help in the analysis of the next section.

1A Nash subset is a subset of the set of Nash equilibria with the exchangeability property. If a Nash

set is maximal with respect to inclusion, it is a maximal Nash set.
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Lemma 2 The set of correlated equilibria of a bimatrix game (A;B) does not change if

the A-matrix is multiplied with a positive factor or a �xed row vector is added to all rows

of A. The B-matrix can also be multiplied with any positive factor and any �xed column

vector can be added to all columns of B without changing the set of correlated equilibria.

Proof It is easy to see that the operations proposed give an equivalent system of linear

inequalities with the same solution set. /

By use of the transformations proposed in Lemma 2 we are able to transform bimatrix

games (A;B) into games (A0; B0) which are strategically equivalent, that is the best reply

correspondences and therefore for instance the set of Nash equilibria do not change.

3 Correlated Equilibria for 2� 2-bimatrix games.

In this section we only consider 2� 2-bimatrix games. The payo� matrices are

A =

�
a11 a12
a21 a22

�
and B =

�
b11 b12
b21 b22

�

By using Lemma 2 we can transform these matrices into the matrices (A0; B0) with the

same set of correlated equilibria:

A0 =

�
�1 �2

0 0

�
and B0 =

�
�1 0

�2 0

�

where �i = a1i � a2i and �j = bj1 � bj2. The inequalities describing the set Z(A;B) =

Z(A0; B0) are

�1z11 + �2z12 � 0 (1)

��1z21 � �2z22 � 0 (2)

�1z11 + �2z21 � 0 (3)

��1z12 � �2z22 � 0 (4)

We know that the convex polyhedron Z(A0; B0) contains the convex hull of the set of Nash

equilibria E(A0; B0). To compute the set Z(A0; B0) it is su�cient to �nd all (extreme) points

of Z(A0; B0) that are not Nash equilibria, i.e. Z 2 Z(A0; B0) withD(Z): = z11z22�z12z21 6= 0

(see Lemma 1 (ii)).

Proposition 3 If Z(A0; B0) contains an element Z with D(Z) 6= 0, then (A0; B0) has at

least two pure Nash equilibria.
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Proof Let Z be a correlated equilibrium with D(Z) 6= 0. If we eliminate �2 from the

inequalities (1) and (2), i.e. multiply inequality (1) with z22 and inequality (2) with z12

and add we get �1D(Z) � 0. Eliminating �1 gives �2D(Z) � 0. Eliminating �2 and �1

from the inequalities (3) and (4) gives �1D(Z) � 0 and �2D(Z) � 0.

If D(Z) > 0, we �nd �1; �1 � 0 and �2; �2 � 0. Then (e1; e1) and (e2; e2) are pure Nash

equilibria. In case D(Z) < 0 we �nd that (e1; e2) and (e2; e1) are pure Nash equilibria. /

Corollary 4 If the bimatrix game (A0; B0) has exactly one, completely mixed Nash equilib-

rium or if one of the players has a strictly dominant strategy, then Z(A0; B0) = E(A0; B0).

Remark If there is a correlated equilibrium Z with D(Z) 6= 0, we may assume that

D(Z) > 0. Otherwise we interchange the strategies of player 1 and get

A0 =

�
�1 �2

0 0

�
becomes

�
0 0

�1 �2

�

and subtracting the second row from both rows yields�
��1 ��2

0 0

�

The matrix B0 transforms from�
�1 0

�2 0

�
into

�
�2 0

�1 0

�
:

So we assume from this moment that �1; �1 � 0 and �2; �2 � 0. The strategy pairs

(e1; e1) and (e2; e2) are Nash equilibria and all matrices Z with z12 = z21 = 0 are correlated

equilibria. We write a: = �1, a
0: = ��2, b: = �1 and b0: = ��2. Then a, b, a0 and b0 � 0 and

the payo� matrices have the form

A00 =

�
a �a0

0 0

�
and B00 =

�
b 0

�b0 0

�
:

The inequalities describing the set Z(A00; B00) are

az11 � a0z12 � 0 (1)0

�az21 + a0z22 � 0 (2)0

bz11 � b0z21 � 0 (3)0

�bz12 + b0z22 � 0 (4)0

We �rst consider the case that a+ a0 = 0 or b + b0 = 0.
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Proposition 5 If a+a0 = 0 or b+ b0 = 0, then Z(A00; B00) is the convex hull of E(A00; B00).

Proof If a + a0 = 0 and b + b0 = 0, both matrices are the 0-matrix and every strategy

pro�le is a Nash equilibrium. Then clearly, Z(A00; B00) = ch E(A00; B00). Next, we consider

the case a+ a0 = 0 and b+ b0 > 0. The case a+ a0 > 0 and b+ b0 = 0 is completely similar.

By multiplication of the B00-matrix with a positive factor we get b+ b0 = 1. The following

matrices are Nash equilibria in the game (A00 = 0; B00):

E11: =

�
1 0

0 0

�
; E22: =

�
0 0

0 1

�
; Z1: =

�
0 b0

0 b

�
; Z2: =

�
b0 0

b 0

�
:

Let Z be any correlated equilibrium with z12 + z21 > 0. We look for numbers u1 � 0 and

u2 � 0 such that Z � u1 Z1 � u2Z2 has zeroes o� the diagonal and nonnegative diagonal

entries. Then we must have z12 = u1 b
0 and z21 = u2 b.

If b0 = 0, we have by inequality (4)0 that z12 = 0 and if b = 0, we also have z21 = 0 by

relation (3)0. So we take u1: =
z12

b0
and u2: =

z21

b
in as far as these fractions are well-de�ned

and zero else. Also from (3)0 and (4)0 follows that

v1: = z11 � u2 b
0 = z11 �

z21 b
0

b
� 0 and v2: = z22 � u1 b = z22 �

z12 b

b0
� 0:

Accordingly we �nd Z = v1E11 + v2E22 + u1 Z1 + u2 Z2. /

Note that up to this moment we did not �nd any extreme point of Z(A00; B00) that is not

a Nash equilibrium. Only the last class of bimatrix games with a + a0 > 0 and b + b0 > 0

can provide us with such examples. We assume that a+ a0 = 1 and b + b0 = 1.

Consider the following matrices

E11: =

�
1 0

0 0

�
; E22: =

�
0 0

0 1

�
;

Z0: =

�
a0b0 ab0

a0b ab

�
; Z1: =

�
a0b0 ab0

0 ab

�
; Z2: =

�
a0b0 0

a0b ab

�
:

Note that E11, E22 and Z0 are Nash equilibria. Z0 corresponds with the Nash equilibrium

p = (b0; b) and q = (a0; a).

Proposition 6 If a+ a0 > 0 and b+ b0 > 0, then

Z(A00; B00) = R+ [E11; E22; Z0; Z1; Z2] \ fZ j z11 + z12 + z21 + z22 = 1g

(the intersection of the positive cone generated by E11, E22, Z0, Z1 and Z2 and the hyper-

plane z11 + z12 + z21 + z22 = 1).
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Proof Again we assume that a+ a0 = 1 and b+ b0 = 1. Let Z be a correlated equilibrium

with z12+z21 > 0. We look for numbers u0, u1 and u2 � 0 such that Z�u0Z0�u1 Z1�u2 Z2

has zeroes o� the diagonal and nonnegative entries on the diagonal. We have to solve the

equations z12 = (u0 + u1) ab
0 and z21 = (u0 + u2) a

0b.

If ab0 = 0, we have a = 0 and a0 = 1 or b0 = 0 and b = 1. Then z12 = 0, in the �rst case by

(1)0 and in the second case by (4)0. If a0b = 0 we �nd that z21 = 0.

We de�ne u0 = u1 = 0 if ab0 = 0 and u0 = u2 = 0 if a0b = 0. In other cases we take

u0: = min f
z12

ab0
;
z21

a0b
g; u1: =

z12

ab0
� u0 and u2: =

z21

a0b
� u0:

Then u0, u1 and u2 � 0 and u0+u1+u2 = max f
z12

ab0
;
z21

a0b
g. Then it is easy to check that

z11 � (u0 + u1 + u2) a
0b0 � 0 and z22 � (u0 + u1 + u2) ab � 0:

This completes the proof. /

Remark If any of the numbers a, b, a0 or b0 vanishes, the matrices Z1 and Z2 become

correlated equilibria associated with Nash equilibria, and Z(A00; B00) = ch E(A00; B00) once

again. So, only if a, b, a0 and b0 are positive, the set Z(A00; B00) has two extreme points Z 0

1

and Z 0

2 (the updates of Z1 and Z2) that are not Nash equilibria and three extreme points

corresponding to Nash equilibria. Note that Z1 + Z2 = Z0 + a0b0 E11 + abE22. So none

of the generators of the cone are in the cone generated by the remaining elements. This

implies that all matrices E11, E22, Z0, Z1 and Z2 are extreme directions of the cone and

that E11, E22, Z0, Z
0

1 and Z 0

2 are indeed the extreme points of Z(A00; B00).

Example Consider the bimatrix game with payo� matrices:

A: =

�
13 9

6 11

�
; B: =

�
4 �2

�2 2

�
:

Then

A0: =

�
7 �2

0 0

�
; B0: =

�
6 0

�4 0

�

and �nally

A00: =

"
7

9
�2

9

0 0

#
; B00: =

"
6

10
0

� 4

10
0

#
:

The matrix Z0 equals

Z0 =

"
8

90

28

90

12

90

42

90

#
:
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The `non-Nash' extreme points of Z(A00; B00) and thus those of Z(A;B) are

Z 0

1 =

"
8

78

28

78

0 42

78

#
and Z 0

2 =

"
8

62
0

12

62

42

62

#
:

Conclusion For almost all 2 � 2-bimatrix games the set of correlated equilibria equals

the convex hull of the equilibrium set. Only if the game has three isolated equilibria the

set of extreme points of Z(A;B) consists of the three Nash equilibria and two additional

points, not corresponding to a Nash equilibrium.
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