
  

 

 

Tilburg University

On the extreme points of the core of neighbour games and assignment games

Hamers, H.J.M.; Klijn, F.; Solymosi, T.; Tijs, S.H.; Pere Villar, J.

Publication date:
1999

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Hamers, H. J. M., Klijn, F., Solymosi, T., Tijs, S. H., & Pere Villar, J. (1999). On the extreme points of the core of
neighbour games and assignment games. (CentER Discussion Paper; Vol. 1999-43). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/7579f715-83ed-4532-aa3d-4f246f26b161


On the Extreme Points of the Core of

Neighbour Games and Assignment Games

HERBERT HAMERS�, FLIP KLIJN�,
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Abstract

Neighbour games arise from certain matching or sequencing situations

in which only some specific pairs of players can obtain a positive gain.

As a consequence, neighbour games are as well assignment games as line

graph restricted games. We will show that the intersection of the class of

assignment games and the class of line graph restricted games yields the

class of neighbour games.

Further, we give a necessary and sufficient condition for the convexity

of neighbour games. In spite of the possible non-convexity of neighbour

games, it turns out that for any neighbour game the extreme points of the

core are marginal vectors. Moreover, we prove this for assignment games

in general. Hence, for any assignment game the core is the convex hull of

some marginal vectors.
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1 Introduction

In this paper we introduce a class of cooperative games, called neighbour games,

and show that these games satisfy the CoMa-property, i.e. the core of these

games is the convex hull of some marginal vectors. Moreover, we prove that all

assignment games (cf. [10]) satisfy the CoMa-property.

The appealing feature of the CoMa-property is that the extreme points of the

core are exactly those marginal vectors that are in the core. Hence, for these

games it is rather easy to generate core elements. A well-known class of games

that satisfies the CoMa-property is the class of convex games: the core of a convex

game is the convex hull of all marginal vectors, (cf. [9], [5]). A non-convex class

of games that satisfies the CoMa-property is the class of information games, (cf.

[6]), which is a subclass of minimum cost spanning tree games (cf. [3]).

The following two examples describe situations that give rise to neighbour

games. In the first example we consider a sequencing situation in which customers

are lined in a queue and waiting for a taxi. The taxi company that provides the

service has two types of cars: one that transports only one customer (type A) and

one that can only transport two customers (type B). The first customer in the queue

can decide to pick a taxi of type A or wait for the next customer in the queue. In

the latter case they decide both to share a taxi of type B or the second customer

will wait on the third customer. In the latter case the first customer has to pick a

taxi of type A. This procedure is repeated until all customers are transported in a

taxi. Since the costs of sharing a taxi of type B are lower than taking two taxis of

type A, it is obvious that the customers can save costs by sharing a taxi of type B.

However, each customer faces the problem that the cost of a taxi (of type B) is not

fixed, because it depends on the trip to bring the customers to the right locations.

Hence, we have that only customers that are neighbours in the queue can obtain

cost savings, and customers that take a taxi of type A have cost savings equal to

zero. All customers in the queue want to choose a combination of taxis of type A

and B such that their cost savings are maximized. Moreover, they looking for an

allocation of these cost savings that satisfies some specific properties.

The second example can be viewed as a restricted matching problem. Suppose
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a river runs through several countries. To be able to utilize this cheap transporta-

tion possibility, harbours have to be built. Each country is able, from financial

viewpoint, to build at most one harbour. Neighbour countries might join to build a

harbour at their border (which then can serve both countries) and save costs. The

countries are interested in maximizing their cost savings and finding some proper

allocation of these cost savings.

For analysing both examples we can use cooperative game theory, since one

of the topics in cooperative game theory is the investigation of the stability of

allocation rules, i.e. whether the allocation is contained in the core of the related

cooperative game. For this purpose we introduce neighbour games.

A neighbour game can be viewed as an assignment game and as a �-component

additive game (cf. [2]). The latter one is a special type of �-component additive

game (cf. [8]) where the restricted graph is a line graph.

More precisely, we show that the intersection of these two classes of games

yield the class of neighbour games. As a consequence, neighbour games has

many appealing properties, such as: the core is a non-empty set and coincides

with the set of competitive equilibria ([10]), the core is equal to the bargaining set

and the nucleolus coincides with the kernel ([8]), the existence of easy algorithms

to calculate the nucleolus for neighbour games ([4]). Besides, neighbour games

satisfy the already mentioned CoMa-property and some egaliterian solutions can

be easily obtained ([4]).

This paper is organized as follows. Section 2 provides the necessary definitions

of the relevant games and presents the intersection result. Convexity and the CoMa-

property of neighbour games are discussed in Section 3. Finally, the proof of the

CoMa-property of assignment games is provided in Section 4.



4

2 Neighbour games: assignment games and compo-

nent additive games

In this section we introduce neighbour games. We show that the intersection of the

class of assignment games and the class of �-component additive games results in

the class of neighbour games. Before we present this result we need the following

notions from cooperative game theory.

A transferable utility cooperative game is an ordered pair (P; v) where P =

f1; :::; pg is a finite set of players and v : 2P ! IR is a map that assigns to each

coalition S 2 2P a real number v(S), such that v(;) = 0. Here 2P is the collection

of all subsets (coalitions) of P .

Assignment games, introduced by Shapley and Shubik ([10]), arise from bi-

partite matching situations. Let M and N be two disjoint sets. For each i 2 M

and j 2 N the value of a matched pair (i; j) is aij � 0. From this situation an

assignment game is defined in the following way. On the player set M [ N , the

worth of coalition S [ T; S � M;T � N (that will be denoted by (S; T ) later

on) is defined to be the maximum that (S; T ) can achieve by making suitable pairs

from its members. If S = ; or T = ; no suitable pairs can be made and therefore

the worth in this situation is 0. Formally, an assignment game ((M;N); v) is

defined for all (S; T ); S �M;T � N by

v(S; T ) = maxf
X

(i;j)2�

aij j � 2 M(S; T )g;

where M(S; T ) denotes the set of matchings between S and T .

Component additive games, introduced by Curiel et al. ([2]), are a special class

of�-component additive games, discussed in ([8]), which in turn are a special class

of graph restricted games in the sense of Owen ([7]). Let (P; v) be a cooperative

game and let � = (P;E) be a undirected line graph. Then a component additive

game (P;w�) is defined for each S � P by

w�(S) =
X

T2Sn�

v(T );

where Sn� is the set of connected components of S with respect to �.
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The situations discussed in the introduction that motivate the interests for

neighbour games, give rise to a model in which players are lined up in a one-

dimensional queue. In this queue, players can only directly cooperate with at most

one of their neighbours in this queue. From this point of view neighbour games

are defined as restricted assignment games: only pairs that are neighbours in the

queue can be matched. Formally, let P be the player set and � : P ! f1; :::; pg be

an order on P . Obviously, P can be partioned in M and N such that M contains

the players in odd positions and N the players in even positions according to �.

Let aij � 0 if the players i 2M; j 2 N in the pair (i; j) are neighbours, i.e. either

�(j) = �(i) + 1 or �(i) = �(j), and aij = 0 otherwise. Then a neighbour game

is defined for all (S; T ); S �M;T � N by

w(S; T ) = maxf
X

(i;j)2�

aij j � 2 N (S; T )g;

where N (S; T ) is the set of matchings between S and T in which each matching

only consists of pairs (i; j) that are neighbours.

Example 2.1 Let P = f1; 2; 3; 4g be the player set and let � describe the order

1 � 2 � 3 � 4. The pairs that are neighbours with respect to � are (1,2),

(3,2) and (3,4). Hence, all other pairs have a worth equal to zero. Take, for

instance, a12 = 1; a32 = 2; and a34 = 3. Then the corresponding neighbour game

(M [ N;w), where M = f1; 3g and N = f2; 4g, is depicted in Table 2.1.

S f1,2g f1,2,3g f1,2,4g f1,3,4g f2,3g f2,3,4g f3,4g f1,2,3,4g

w(S) 1 2 1 3 2 3 3 4

Table 2.1: a neighbour game.

2

Let (P;w) be a neighbour game that arises from an order � and let (P;w�) be
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the component additive game that arises from this neighbour game and the line

graph � in which the vertices are ordered according to �. It easy to verify that

w(S) = w�(S) for all S � P . Hence, from the definition of neighbour games and

this latter argument we conclude that any neighbour game is as well an assignment

game as a component additive game. The next Proposition shows that also the

reverse holds.

Proposition 2.2 Let NB, A; and CA be the classes of neighbour games, assign-

ment games, and component additive games, respectively, consisting of n players.

Then

NB = A \ CA:

PROOF: From the argument before Proposition 2.2 and the definition of neighbour

games as restricted assignment games if follows that we only need to show that

A \ CA � NB:

Let (P; v) 2 A\CA. Since (P; v) 2 A there exists a partition P = (M;N) and a

non-negative matrix [aij](i;j)2(M;N) that generates (P; v). Since (P; v) 2 CA, there

exists a line graph � that orders the players according to some map �. Because

v(fig) = 0 for all i 2 P , we have that v(fi; jg) = 0 whenever i and j are not

neighbours with respect to �. Since v(fi; jg) = aij we can conclude that (P; v) is

a neighbour game. 2

3 On the extreme points of the core of neighbour

games

In this section we investigate the core of neighbour games. We will present the

result that the core of a neighbour game is the convex hull of the marginal vectors

that are in the core of the game. This property is henceforth called the CoMa-

property. As a consequence, we have that each extreme point of the core coincides
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with at least one marginal vector. Moreover, we give a necessary and sufficient

condition for the convexity of neighbour games. Before we state this result we

will recall the notions of the core, convexity, and introduce the CoMa-property.

The core of a game (P; v) consists of all vectors that distribute the gains v(P )

obtained by P among the players in such a way that no subset of players can be

better off by seceding from the rest of the players and act on their own behalf.

Formally, the core of a game (P; v) is

Core(v) = fx 2 IRP j x(S) � v(S) for all S � P and x(P ) = v(P )g;

where x(S) =
P

i2S xi. In general, the core may be an empty set. A game is

called balanced whenever its core is non-empty.

Assignment games and component additive games are both balanced games.

As a consequence of Proposition 2.2, neighbour games are also balanced. More-

over, Potters and Reijnierse ([8]) showed that for �-component additive games, in

which � is a tree, the bargaining set coincides with the core and the kernel coin-

cides with the nucleolus. Hence, these two features also hold for neighbour games.

Moreover, Raghavan and Solymosi ([11]) provided an algorithm to calculate the

nucleolus of assignment games. This algorithm has been simplified by Hamers et

al. ([4]) to calculate the nucleolus of neighbour games.

In this section we concentrate on the extreme points of the core of neighbour

games. We need the notion of a marginal vector of a game (P; v). Let �(P ) be

the set of all permutations of P = f1; 2; :::; pg. Then the i-th coordinate of the

marginal vector m�(v) is defined by

m�
i (v) = v(fj 2 P j �(j) � �(i)g)� v(fj 2 P j �(j) < �(i)g):

Now, we are able to define the CoMa-property for a cooperative game. A game

(P; v) satisfies the Core is convex hull of Marginals (CoMa-) property if

Core(v) = convfm�(v) j m�(v) 2 Core(v)g: (1)

Hence, the CoMa-property yields that the core is the convex hull of some marginal

vectors.
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A well-known class of games that satisfy the CoMa-property is the class of convex

games. A game (P; v) is called convex if for all i 2 P and all coalitions S and T

with S � T � Pnfig it holds that

v(T [ fig)� v(T ) � v(S [ fig)� v(S):

Shapley ([9]) and Ichiishi ([5]) showed that a game is convex if and only if each

marginal vector is an extreme point of the core. From this result the CoMa-property

follows immediately, since the core is a convex set.

The next example shows that neighbour games need not be convex.

Example 3.1 Consider the player set M = f1; 3g, N = f2g and let the values of

the neighbour pairs be a12 = 2 and a32 = 1: Then the worth of the coalitions of

the corresponding neighbour game ((M;N); w) is given in Table 3.1.

S f1g f2g f3g f1,2g f1,3g f2,3g f1,2,3g

w(S) 0 0 0 2 0 1 2

Table 3.1: a non-convex neighbour game.

Take � such that �(1) = 3; �(2) = 1; and �(3) = 2.

Then m�(w) = (1; 0; 1) 62 Core(w). Hence ((M;N); w) is not convex. 2

The following Proposition provides a necessary and sufficient condition for the

convexity of neighbour games.

Proposition 3.2 Let P be a player set that is partitioned intoM andN according

to the order � : 1 � 2 � ::: � n. Let ((M;N); w) be the corresponding neighbour

game. Then ((M;N); w) is convex if and only if for any triple j � 1; j; j + 1 2

P of consecutive players according to � it holds that w(fj � 1; jg) = 0 or

w(fj; j + 1g) = 0.
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PROOF: We first prove the ’only if’ part. Suppose that w(fj � 1; jg) > 0 and

w(fj; j + 1g) > 0 for some j 2 P . Then

w(fj � 1; j; j + 1g)� w(fj � 1; jg)

= maxfw(fj � 1; jg); w(fj; j + 1g)g � w(fj � 1; jg)

= maxf0; w(fj; j + 1g)� w(fj � 1; jg)g

< w(fj; j + 1g)� w(fjg):

Hence, (P;w) is not convex.

Second, we prove the ’if’ part. For any S � T � P and k 2 PnT we have

w(T [ fkg)�w(T ) =
X

i2A\T

w(fi; kg)

�
X

i2A\S

w(fi; kg)

= w(S [ fkg)� w(S);

where A is the set defined by

A =

8>><
>>:

fk � 1; k + 1g if k 6= 1; n

f2g if k = 1

fn� 1g if k = n
2

Although neighbour games need not be convex, they satisfy the CoMa-property.

Theorem 3.3 Neighbour games satisfy the CoMa-property.

The proof is omitted since Theorem 3.3 is an immediate consequence of Proposi-

tion 2.2 and Theorem 4.5 of the next section.

4 On the extreme points of the core of assignment

games

In this section we show that assignment games satisfy the CoMa-property. We first

show that we can restrict attention to assignment games in which the cardinality
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of the disjoint sets that have to be matched are equal. After that we provide

a relation between the extreme points in the core of assignment games and the

components of the corresponding tight graph. Finally, we provide the proof of the

CoMa-property. However, before we can provide the proof of this result, we need

some preparations.

Let ((M;N); w) be an assignment game. Then an allocation of the grand

coalition, w(M;N), will sometimes, for convenience, be denoted by (u; v) 2

IRM � IRN , where u and v are the vectors that correspond to the payoffs of the

players in M and N , respectively.

The following Lemma, due to Shapley and Shubik ([9]), shows that each pair

(i; j) that is in an optimal matching betweenM andN shares in any core allocation

the reward aij .

Lemma 4.1 Let ((M;N); w) be an assignment game and let � be an optimal

matching between M and N . Then for any (i; j) 2 � and (u; v) 2 Core(w) it

holds that ui + vj = w(fi; jg).

As a consequence of Lemma 4.1, each player that is not matched in an optimal

matching betweenM and N obtains in each core allocation a payoff equal to zero.

Let ((M;N); w) be an assignment game in which jM j<j N j. Let � be an op-

timal matching betweenM andN . Then � induces a setNM � N such thatM and

NM are completely matched, which implies that jM j=j NM j. If ((M;NM ); w)

is the restricted assignment game of ((M;N); w)), then it is straightforward to

verify that there is a one-to-one correspondence between the extreme points of

their cores, i.e. x 2 extfCore(w)g if and only if y 2 extfCore(w)g, where

yi = xi if i 2 M [ NM and yi = 0 otherwise. The following Lemma shows that

it is sufficient to prove the CoMa-property for assignment games that arise from

situations in which jM j=j N j.

Lemma 4.2 Let ((M;N); w) be an assignment game in which j M j<j N j and

let ((M;NM ); w) be the restricted assignment game. If ((M;NM ); w) satisfies the

CoMa-property, then ((M;N); w) satisfies the CoMa-property.
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PROOF: Let y be an extreme point of the Core(w) and let x be the corresponding

extreme point inCore(w). Since ((M;NM ); w) satisfies the CoMa-property, there

exists an order � on (M;NM ) such that x = m�(w). Then it is straightforward to

verify that any order �0 on (M;N), defined by �0(j) = �(j) if j 2 M [ NM and

�(j) �jM [NM j otherwise, leads to the marginal vector m�0

(w) that is equal to

y. 2

As a consequence of Lemma 4.2 we can restrict our discussion in the remain-

ing part of this section to assignment games that arise from situations in which

j M j=j N j. Since then we can regard N as a disjoint copy of M, without loss

of generality we may also assume that one optimal matching between M and N

is the one that matches all identical pairs (i; i). This optimal matching will be

denoted by ��.

Given an assignment game ((M;N); w) and a core allocation (u; v) 2 Core(w),

in the tight graph Gw(u; v) = (V;E), the set of vertices V equals the player set

(M;N) and the edge set is defined by E = f(i; j) j i 2 M; j 2 N;ui + vj =

w(fi; jg)g. In a tight graph we distinguish between two types of edges with re-

spect to ��. All edges corresponding to �� are referred to as thick edges and all

other edges are referred to as thin edges. Note that according to the assumption

on ��, we have that the thick edges are the pairs (i; i). A tight tree, which is

a subgraph of a component of a tight graph, is a tree that covers all vertices of

the component and contains all thick edges. Notice that a tight tree need not

be uniquely determined by the tight graph. The following Lemma establishes a

relation between the extreme points of an assignment game and the components

of the corresponding tight graph.

Lemma 4.3 Let ((M;N); w)be an assignment game. Then (u; v) 2 extfCore(w)g

if and only if each component of the tight graph Gw(u; v) contains at least one

player with payoff equal to zero.

PROOF: First, we show the ’only if’ part. Let (u; v) 2 extfCore(w)g and let C be

a component of Gw(u; v) in which the vertices are (S; T ). Since �� is an optimal
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matching andC is connected, we have that j S j=j T j. Suppose that the restriction

of (u; v) to (S; T ), denoted by (u; v)j(S;T ), has only positive elements. Then by

Lemma 4.1, for sufficiently small � > 0 we have that the vectors x; y 2 IRS �RT

defined by xi = ui + �, yi = ui � � for all i 2 S; xj = vj � �; yj = vj + � for all

j 2 T , are both inCore(wj(S;T )) such that 1
2
x+ 1

2
y = (u; v)j(S;T ). This implies that

also (u; v) itself can be written as a convex combination of two different vectors

in Core(w), which contradicts the fact that (u; v) 2 extfCore(w)g. Hence, the

’only if’ part of the Lemma follows.

To see the ’if’ part, we have to show that the system

u(S) + v(T ) � w((S; T )) for all S �M;T � N; (2)

contains 2 j M j tight equations that are linear independent. Assume that the

tight graph Gw(u; v) can be partitioned in k components, say C1; C2; :::; Ck. Each

component Ci contains a tight tree. Then the system of equations, generated by

the edges of such a tree, is a linear independent system (cf. [1]). Hence, we have
Pk

i=1(j Ci j �1) linear independent tight equations. Combining these equations

with the tight equation in each component, that is generated by the player with

zero payoff, we obtain a system of
Pk

i=1(j Ci j) = 2 j M j linear independent

equations. Hence, we can conclude that (u; v) 2 extfCore(w)g. 2

The following Lemma provides the worth of some specific (r � s)-path coali-

tions. Here, an (r � s)-path coalition consists of all players that are contained

in the path between r and s in a tight graph, where r and s are both in the same

component.

Lemma 4.4 Let (u; v) be an extreme point of the core of an assignment game

((M;N); w) and let (r� s) be a path in a tight tree of Gw(u; v) such that vertex r

corresponds to a player that has a payoff equal to zero in (u; v). If S is an (r� s)

path coalition, then w(S) =
P

j2S\M uj +
P

j2S\N vj:

PROOF: Let � be the complete matching that covers S, except r in case the

cardinality of S is odd, and consists only of edges contained in the (r � s) path.

Without loss of generality we may assume that u1 corresponds to the vertex r, i.e.
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u1 = 0. Then from the definition of �, the definition of a tight graph, and the

assumption that u1 = 0 it follows that

X
j2S\M

uj +
X

j2S\N

vj =
X

(i;j)2�

aij: (3)

From the definition of an assignment game and (3) we have that

w(S) �
X

j2S\M

uj +
X

j2S\N

vj: (4)

Since (u; v) is a core-element we have that

X
j2S\M

uj +
X

j2S\N

vj � w(S): (5)

Combining (4) and (5) completes the proof. 2

Now, we can present the main result of this section.

Theorem 4.5 Assignment games satisfy the CoMa-property.

PROOF: Let (u; v) be an extreme point of an assignment game ((M;N); w). We

have to show that there exists some order � on the player set (M;N) such that the

corresponding marginal vector m�(w) coincides with (u; v). First we prove the

case when the tight graph Gw(u; v) is connected, i.e. the tight graph consists of

only one component. Let Tw(u; v) be a tight tree of Gw(u; v) and let x = (u; v)

be such that xi corresponds to the payoff of player i. Then Lemma 4.3 implies

that there exists a vertex r in the tight tree, in which player r has a payoff equal

to zero. Next, we will label the vertices in the tight tree via a depth first search

procedure. More specifically, initially all vertices in the tight tree are unlabeled.

In the following procedure we label the vertices by the increasing sequencing of

numbers 1; 2; :::; 2 jM j.

Step 1: give vertex r label 1.

Step 2: let a be the vertex that is labeled last, say by k;

Procedure:
(i) if there exist a thin edge that connects a with an unlabeled vertex b, then give
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vertex b label k + 1, and repeat Step 2; otherwise go to (ii)

(ii) if there exists a thick edge that connects awith an unlabeled vertex b, then give

vertex b label k + 1, and repeat Step 2; otherwise go to (iii)

(iii) if there exists no edge that connectsawith an unlabeled vertex then return to the

lowest labeled vertex b that is connected with a, set a:=b and repeat the Procedure.

Let � be the order on the players that is generated by the labels assigned in the

described depth first search procedure. We will show that m�(w) = x. Let Sj be

the set of the first j labeled players in the depth first search procedure. We prove

that

w(Sj) =
X
i2Sj

xi: (6)

Let player m be the player that is labeled last in Sj . Then coalition Sj can be

partitioned in Sj(1) and Sj(2), where Sj(1) are the players on the unique path

from r to m and Sj(2) are all other players of Sj . Then Lemma 4.4 implies that

that

w(Sj(1)) =
X

i2Sj(1)

xi: (7)

Obviously, the proof is completed if Sj(2) = ;. Hence, we may assume that

Sj(2) 6= ;. We now show that there exists a matching on Sj(2) that consists only

of thick edges and covers Sj(2). Let a 2 Sj(1) and let b 2 Sj(2) be such that

(a; b) is an edge in the tight tree. Since there exists a path from a to m, there are at

least three edges incident to a. Since vertex b is visited using edge (a; b) before m

is visited, it follows from item (i) in the depth first search procedure that (a; b) has

to be a thin edge. Obviously, all vertices in Sj(2) are labeled before m is labelled

the depth first search procedure. Since each vertex is incident to a thick edge, we

can conclude that there exists indeed a matching of Sj(2) that consists only of

thick edges. This observation gives

w(Sj(2)) =
X

i2Sj(2)

xi (8)
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since the optimal matching is provided by the thick edges. Now, we have

w(Sj) � w(Sj(1)) + w(Sj(2))

=
X

i2Sj(1)

xi +
X

i2Sj(2)

xi

=
X
i2Sj

xi

� w(Sj);

where the first inequality holds since the merger of optimal matchings of Sj(1) and

Sj(2) gives a matching for Sj , the first equality holds by (7) and (8), the second

equality since Sj(1) and Sj(2) form a partition of Sj and the second inequality

holds since x is in the core of the assignment game.

From (6) it follows immediately that

m�
j+1(w) = w(Sj+1)� w(Sj) = xj+1;

which completes the proof in case the tight graph consists of one component.

Second, we prove the case in which the tight graph consists of more than one

component. Suppose Gw(u; v) consists of k components, say C1; :::; Ck. Then

from the first part it follows that there exists an order �i on the player set Si of Ci

such that m�i(w) = xjSi for all 1 � i � k. Then it is straightforward to show that

m�(w) = x where � = (�1; �2; :::; �k). 2

The following example illustrates the outcome of the procedure used in the

proof of Theorem 4.5 and shows that an extreme point can be generated by several

marginal vectors.

Example 4.6 Let x = (0; 1; 0; 1; 0; 1; 0; 1) be an extreme point of the core of an

assignment game (N;w). A tight tree that corresponds to x is depicted in figure

4.1. The weight of an edge is 1 if the edge is contained in the tight tree and 0

otherwise. The number in a vertex denotes the corresponding player.
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Figure 4.1: the tight graph Gw(x).

Then the procedure, starting in the vertex corresponding to player 1, can give the

order � = (1; 2; 3; 4; 5; 6; 7; 8) and �� = (1; 6; 7; 2; 3; 4; 5; 8), respectively. Then

it is easy to verify that m�(w) = m��

(w) = x.

From the observations in Example 4.6 we propose the following allocation rule

for a game (N;w) that satisfies the CoMa-property:

(w) =
1

j f� : m�(w) 2 Core(w)g j

X
�:m�(w)2Core(w)

m�(w):

Obviously, if (N;w) is convex, then  equals the Shapley value. Otherwise  can

be considered as a generalized Shapley value with the property that its outcome is

in the bary center of the core.
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