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Abstract

Neighbour games arise from certain matching or sequencing situations
in which only some specific pairs of players can obtain a positive gain.
As a consequence, neighbour games are as well assignment games as line
graph restricted games. We will show that the intersection of the class of
assignment games and the class of line graph restricted games yields the
class of neighbour games.

Further, we give a necessary and sufficient condition for the convexity
of neighbour games. In spite of the possible non-convexity of neighbour
games, it turns out that for any neighbour game the extreme points of the
core are marginal vectors. Moreover, we prove this for assignment games
in general. Hence, for any assignment game the core is the convex hull of
some margina vectors.
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1 Introduction

In this paper we introduce a class of cooperative games, called neighbour games,
and show that these games satisfy the CoMa-property, i.e. the core of these
games is the convex hull of some marginal vectors. Moreover, we prove that all
assignment games (cf. [10]) satisfy the CoMa-property.

The appealing feature of the CoMa-property is that the extreme points of the
core are exactly those marginal vectors that are in the core. Hence, for these
games it is rather easy to generate core elements. A well-known class of games
that satisfies the CoMa-property isthe class of convex games: the core of aconvex
gameisthe convex hull of al marginal vectors, (cf. [9], [5]). A non-convex class
of games that satisfies the CoMa-property is the class of information games, (cf.
[6]), which isasubclass of minimum cost spanning tree games (cf. [3]).

The following two examples describe situations that give rise to neighbour
games. Inthefirst examplewe consider a sequencing situation inwhich customers
are lined in a queue and waiting for ataxi. The taxi company that provides the
service has two types of cars. one that transports only one customer (type A) and
onethat can only transport two customers (type B). The first customer in the queue
can decide to pick ataxi of type A or wait for the next customer in the queue. In
the latter case they decide both to share ataxi of type B or the second customer
will wait on the third customer. In the latter case the first customer has to pick a
taxi of type A. This procedure is repeated until all customers are transported in a
taxi. Since the costs of sharing ataxi of type B are lower than taking two taxis of
type A, it is obvious that the customers can save costs by sharing ataxi of type B.
However, each customer faces the problem that the cost of ataxi (of type B) isnot
fixed, because it depends on the trip to bring the customersto the right locations.
Hence, we have that only customers that are neighbours in the queue can obtain
cost savings, and customers that take a taxi of type A have cost savings equal to
zero. All customers in the queue want to choose a combination of taxis of type A
and B such that their cost savings are maximized. Moreover, they looking for an
allocation of these cost savings that satisfies some specific properties.

The second exampl e can be viewed as arestricted matching problem. Suppose



ariver runs through severa countries. To be ableto utilize this cheap transporta-
tion possibility, harbours have to be built. Each country is able, from financial
viewpoint, to build at most one harbour. Neighbour countries might jointo build a
harbour at their border (which then can serve both countries) and save costs. The
countries are interested in maximizing their cost savings and finding some proper
allocation of these cost savings.

For analysing both examples we can use cooperative game theory, since one
of the topics in cooperative game theory is the investigation of the stability of
alocation rules, i.e. whether the allocation is contained in the core of the related
cooperative game. For this purpose we introduce neighbour games.

A neighbour game can be viewed as an assignment game and asac-component
additive game (cf. [2]). The latter oneis a special type of I'-component additive
game (cf. [8]) where the restricted graph isaline graph.

More precisaly, we show that the intersection of these two classes of games
yield the class of neighbour games. As a consequence, neighbour games has
many appealing properties, such as. the core is a non-empty set and coincides
with the set of competitive equilibria ([10]), the core is equal to the bargaining set
and the nucleolus coincides with the kernel ([8]), the existence of easy agorithms
to calculate the nucleolus for neighbour games ([4]). Besides, neighbour games
satisfy the already mentioned CoMa-property and some egaliterian solutions can
be easily obtained ([4]).

This paper isorganized asfollows. Section 2 providesthe necessary definitions
of therelevant gamesand presentstheintersection result. Convexity andthe CoMa
property of neighbour games are discussed in Section 3. Finally, the proof of the
CoMa-property of assignment gamesis provided in Section 4.



2 Neighbour games. assignment gamesand compo-
nent additive games

In this section we introduce neighbour games. We show that the intersection of the
class of assignment games and the class of «-component additive games resultsin
the class of neighbour games. Before we present this result we need the following
notions from cooperative game theory.

A transferable utility cooperative game is an ordered pair (P, v) where P =
{1,...,p} isafinite set of playersand v : 2 — IR is amap that assigns to each
codition S € 27 area number v(.S), suchthat v() = 0. Here2” isthecollection
of all subsets (coalitions) of P.

Assignment games, introduced by Shapley and Shubik ([10]), arise from bi-
partite matching situations. Let A and N be two digoint sets. For each: € M
and j € N the value of a matched pair (¢,7) iSa;; > 0. From this situation an
assignment game is defined in the following way. On the player set M U NV, the
worth of codlition SUT,S C M, T C N (that will be denoted by (5, 7") later
on) is defined to be the maximum that (.5, 7") can achieve by making suitable pairs
fromitsmembers. If S = () or 7' = () no suitable pairs can be made and therefore
the worth in this situation is 0. Formally, an assignment game ((M, N),v) is
defined for dl (5,7),5 € M,T C N by

v(8,T) = max{ Y ay|ueM(S,T)},
(1.4)EL
where M(S, T') denotes the set of matchings between S and 7.

Component additive games, introduced by Curiel etal. ([2]), areaspecial class
of I'-component additivegames, discussed in ([8]), whichinturnareaspecial class
of graph restricted gamesin the sense of Owen ([7]). Let (P, v) be a cooperative
gameand let I' = (P, F) be aundirected line graph. Then a component additive
game (P, wr) isdefined for each S C P by

wr(S) = Y o(T),
TesS\I'

where S\I" isthe set of connected components of .S with respect to I'.



The situations discussed in the introduction that motivate the interests for
neighbour games, give rise to a model in which players are lined up in a one-
dimensional queue. Inthisqueue, playerscan only directly cooperate with at most
one of their neighbours in this queue. From this point of view neighbour games
are defined as restricted assignment games. only pairs that are neighboursin the
queue can be matched. Formally, let P betheplayer setando : P — {1,...,p} be
an order on P. Obvioudly, P can be partioned in M and N such that M contains
the playersin odd positions and /V the players in even positions according to o.
Leta;; > 0if theplayers: € M, € N inthepair (¢, j) areneighbours, i.e. either
o(j)=o(i)+1oro(e) =0o(j), and a;; = 0 otherwise. Then a neighbour game
isdefined forall (5,7),5 C M, T C N by

w(S,T) =max{ Y ai; | peN(5,T)},
(1.4)EL
where V'(S, T') isthe set of matchings between S and 7" in which each matching
only consists of pairs(z, j) that are neighbours.

Example2.1 Let P = {1,2,3,4} be the player set and let o describe the order
1 <2 < 3 < 4. The pairs that are neighbours with respect to o are (1,2),
(3,2) and (3,4). Hence, al other pairs have a worth equal to zero. Take, for
instance, a1, = 1, as; = 2, and az4 = 3. Then the corresponding neighbour game
(MU N,w),where M = {1,3} and N = {2,4}, isdepicted in Table 2.1.

S [{12) [{123) [ {124} | {134} | {23} | {234} | {34} | {1234}

w(S) | 1 2 1 3 2 3 3 4

Table 2.1: a neighbour game.

Let (P, w) be a neighbour game that arises from an order o and let (P, wr) be



the component additive game that arises from this neighbour game and the line
graph I' in which the vertices are ordered according to o. It easy to verify that
w(S) = wr(S) foral S C P. Hence, from the definition of neighbour games and
thislatter argument we conclude that any neighbour gameis as well an assignment
game as a component additive game. The next Proposition shows that also the
reverse holds.

Proposition 2.2 Let N'B, A, and C.A be the classes of neighbour games, assign-
ment games, and component additive games, respectively, consisting of »n players.
Then

NB=ANCA.

PrROOF: From the argument before Proposition 2.2 and the definition of neighbour
games as restricted assignment games if follows that we only need to show that
ANCA C NB.

Let (P,v) € ANCA. Since(P,v) € Athereexistsapartition P = (M, N) anda
non-negative matrix [a;](; ; e, v) that generates (P, v). Since (P, v) € CA, there
exists a line graph I' that orders the players according to some map . Because
v({s}) = 0foradl: e P, wehavethat v({:,j}) = 0 whenever ; and j are not
neighbourswith respect to o. Sincev({¢,j}) = a,; we can concludethat (P, v) is
aneighbour game. O

3 On the extreme points of the core of neighbour
games

In this section we investigate the core of neighbour games. We will present the
result that the core of a neighbour gameisthe convex hull of the marginal vectors
that are in the core of the game. This property is henceforth called the CoMa-
property. Asaconsequence, we have that each extreme point of the core coincides



with at least one marginal vector. Moreover, we give a necessary and sufficient
condition for the convexity of neighbour games. Before we state this result we
will recall the notions of the core, convexity, and introduce the CoMa-property.

The core of agame (P, v) consists of all vectorsthat distribute the gainsv ()
obtained by P among the playersin such away that no subset of players can be
better off by seceding from the rest of the players and act on their own behalf.
Formally, the core of agame (P, v) is

Core(v) = {z € IR" | 2(S) > o(S) foral S ¢ P and z(P) = v(P)},

where z(5) = > ;e ;. In general, the core may be an empty set. A gameis
called balanced whenever its core is non-empty.

Assignment games and component additive games are both balanced games.
As a consequence of Proposition 2.2, neighbour games are also balanced. More-
over, Pottersand Reijnierse ([8]) showed that for I'-component additive games, in
which I is atree, the bargaining set coincides with the core and the kernel coin-
cideswith thenucleolus. Hence, these two featuresal so hold for neighbour games.
Moreover, Raghavan and Solymosi ([11]) provided an agorithm to calculate the
nucleolus of assignment games. This algorithm has been smplified by Hamers et
al. ([4]) to calculate the nucleolus of neighbour games.

In this section we concentrate on the extreme points of the core of neighbour
games. We need the notion of a marginal vector of agame (P, v). Let II(P) be
the set of all permutations of P = {1,2,...,p}. Then the i-th coordinate of the
marginal vector m™(v) is defined by

mi(v) =v({j € P|r(j) <x(@)}) —v({j € P[x() <7()}).

Now, we are able to define the CoMa-property for a cooperative game. A game
(P, v) satisfies the Coreis convex hull of Marginals (CoMa-) property if

Core(v) = conv{m™(v) | m"(v) € Core(v)}. 1)

Hence, the CoMa-property yields that the coreisthe convex hull of some marginal
vectors.



A well-known class of gamesthat satisfy the CoMa-property isthe class of convex
games. A game (P, v) iscalled convex if for all : € P and all coalitions S and T’
with S ¢ 7' C P\{:} it holds that

o(T'U{i}) — o(T) > o(S U {i}) — v(S).

Shapley ([9]) and Ichiishi ([5]) showed that a game is convex if and only if each
marginal vector isan extreme point of thecore. From thisresult the CoMa-property
followsimmediately, since the core isa convex set.

The next example shows that neighbour games need not be convex.

Example 3.1 Consider the player set M = {1,3}, N = {2} and let the values of
the neighbour pairs be a1, = 2 and a3; = 1. Then the worth of the coalitions of
the corresponding neighbour game ((M, V), w) isgivenin Table 3.1.

S {1} [ {2} | {3} | {12} | {13} | {23} | {123}
wS | o] o] o] 2 0 1 2

Table 3.1: anon-convex neighbour game.

Taker suchthat (1) = 3,7(2) = 1, and n(3) = 2.
Then m™(w) = (1,0,1) &€ Core(w). Hence ((M, N),w) isSnot convex. O

The following Proposition provides a necessary and sufficient condition for the
convexity of neighbour games.

Proposition 3.2 Let P beaplayer set that ispartitioned into A/ and N according
totheorder o : 1 <2 < ... < n. Let((M, N), w) bethe corresponding neighbour
game. Then ((M, N),w) is convex if and only if for any triplej — 1,j,5 + 1 €
P of consecutive players according to o it holds that w({j — 1,j}) = 0 or
w({j,j +1}) = 0.



PrOOF: We first prove the *only if’ part. Suppose that w({j — 1,5}) > 0 and
w({j,j+1}) > 0forsome; € P. Then
w{j —1LJ,7+1}) —w{j —1,j})

= max{w({j —1,7}),w{j.J +1})} —w{s - 1,5})

= max{0,w({j,j +1}) —w({j — 1,j})}

< w({y, 7+ 1} —w{s})
Hence, (P, w) isnot convex.
Second, we prove the’if’ part. Forany S ¢ T'C P and k € P\T we have

wT Uk} —w(T) = > w({i,k})

1€ ANT

>3 w({i k)

— (S U (k) = w(S),

where A isthe set defined by
{k—=1,k+1} ifk#1,n

A=< {2} if k=1
{n—1} ifk=n

Although neighbour games need not be convex, they satisfy the CoMa-property.
Theorem 3.3 Neighbour games satisfy the CoMa-property.

The proof is omitted since Theorem 3.3 is an immediate consequence of Proposi-
tion 2.2 and Theorem 4.5 of the next section.

4 On the extreme points of the core of assignment
games

In this section we show that ass gnment games satisfy the CoMa-property. Wefirst
show that we can restrict attention to assignment games in which the cardinality
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of the digoint sets that have to be matched are equal. After that we provide
a relation between the extreme points in the core of assignment games and the
components of the corresponding tight graph. Finally, we provide the proof of the
CoMa-property. However, before we can provide the proof of thisresult, we need
some preparations.

Let ((M,N),w) be an assignment game. Then an alocation of the grand
codition, w(M, N), will sometimes, for convenience, be denoted by (u,v) €
IRM x IRN, where v and v are the vectors that correspond to the payoffs of the
playersin M and N, respectively.

The following Lemma, due to Shapley and Shubik ([9]), shows that each pair
(¢, 7) that isin an optima matching between M and N sharesin any coreallocation
the reward a;;.

Lemma4.l Let ((M,N),w) be an assignment game and let ;. be an optimal
matching between M and N. Then for any (i,j) € p and (u,v) € Core(w) it
holdsthat w; + v; = w({¢,7}).

As a consequence of Lemma 4.1, each player that is not matched in an optimal
matching between M and N obtainsin each core allocation a payoff equal to zero.

Let (M, N),w) beanassignment gameinwhich| M |<| N |. Let x« beanop-
timal matching between A7 and V. Then ¢ inducesaset V), C NV suchthat M and
Ny are completely matched, which impliesthat | M |=| Nas |. If (M, Nas), @)
is the restricted assignment game of ((M, N),w)), then it is straightforward to
verify that there is a one-to-one correspondence between the extreme points of
their cores, i.e. = € ext{Core(w)} if and only if y € ext{Core(w)}, where
y; = a; if 2 € M U Ny and y; = 0 otherwise. The following Lemma shows that
it is sufficient to prove the CoMa-property for assignment games that arise from
sgtuationsinwhich | M |=| N |.

Lemma4.2 Let ((M, N),w) bean assgnment gameinwhich | M |<| N | and
let (M, Nyr), w) betherestricted assignment game. If (M, Ny ), w) satisfiesthe
CoMa-property, then ((M, N), w) satisfies the CoMa-property.
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PROOF: Let y be an extreme point of the C'ore(w) and let « be the corresponding
extremepointin Core(w). Since((M, Ny ), w) satisfiesthe CoMa-property, there
exists an order o on (A, Ny) such that « = m?(w). Then it isstraightforward to
verify that any order o’ on (M, N), defined by o'(j) = o(j) if 5 € M U Ny, and
o(j) >| M U Ny | otherwise, leadsto the marginal vector m”' (w) that is equal to
Y- O

As a consequence of Lemma 4.2 we can restrict our discussion in the remain-
ing part of this section to assignment games that arise from situations in which
| M |=| N |. Since then we can regard NV as a digoint copy of M, without loss
of generality we may also assume that one optimal matching between M and NV
is the one that matches all identical pairs (z,7). This optima matching will be
denoted by p*.

Givenanassgnmentgame((M, N), w) andacoreallocation (u,v) € Core(w),
in the tight graph G (u,v) = (V, E), the set of vertices V' equals the player set
(M, N) and the edge set isdefined by £ = {(¢,7) | 1 € M,j € N,u; +v; =
w({7,7})}. Inatight graph we distinguish between two types of edges with re-
spect to *. All edges corresponding to * are referred to as thick edges and all
other edges are referred to as thin edges. Note that according to the assumption
on p*, we have that the thick edges are the pairs (z,7). A tight tree, which is
a subgraph of a component of a tight graph, is a tree that covers al vertices of
the component and contains all thick edges. Notice that a tight tree need not
be uniquely determined by the tight graph. The following Lemma establishes a
relation between the extreme points of an assignment game and the components
of the corresponding tight graph.

Lemma 4.3 Let((M, N),w)beanassignmentgame. Then(u,v) € ext{Core(w)}
if and only if each component of the tight graph G*’(u, v) contains at least one
player with payoff equal to zero.

PRrROOF: First, we show the’only if’ part. Let (u,v) € ext{Core(w)} andlet C' be
acomponent of G*’(u,v) in which the verticesare (S5, T'). Since p* is an optimal
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matchingand C isconnected, wehavethat | S |=| T' |. Supposethat therestriction
of (u,v) to (S,T), denoted by (u,v)s,r), has only positive elements. Then by
Lemma4.1, for sufficiently small ¢ > 0 we havethat thevectorsz,y € IR° x RT
defined by 2; = u; + ¢, y; = u; —eforadl e € S; z; = v; —e,y; = v; + e for dl
j € T',arebothin Core(w(s,r)) suchthat %x—l—%y = (u,v)|(s,1)- Thisimpliesthat
aso (u,v) itself can be written as a convex combination of two different vectors
in C'ore(w), which contradicts the fact that (u,v) € ext{Core(w)}. Hence, the
‘only if’ part of the Lemmafollows.

To seethe’if’ part, we have to show that the system

u(S) + o(T) > w((S,T)) foral S € M,T C N, ©

contains 2 | M | tight equations that are linear independent. Assume that the
tight graph G*'(u, v) can be partitioned in &£ components, say C, Cs, ..., Cy. Each
component C; contains a tight tree. Then the system of equations, generated by
the edges of such atree, isalinear independent system (cf. [1]). Hence, we have
S (] C; | —1) linear independent tight equations. Combining these equations
with the tight equation in each component, that is generated by the player with
zero payoff, we obtain a system of >°%_ (] C; |) = 2 | M | linear independent
equations. Hence, we can concludethat (u,v) € ext{Core(w)}. O

The following Lemma provides the worth of some specific (r — s)-path coali-
tions. Here, an (r — s)-path coalition consists of all players that are contained
in the path between » and s in atight graph, where r and s are both in the same
component.

Lemma4.4 Let (u,v) be an extreme point of the core of an assignment game
((M,N),w)andlet (r — s) beapathinatight tree of G*'(u, v) such that vertex r
corresponds to a player that has a payoff equal to zeroin (v, v). If S'isan (r — s)
path coalition, then w(.S) = 3= csqnr v + X iesan ;-

PrROOF: Let i be the complete matching that covers S, except » in case the
cardinality of S isodd, and consists only of edges contained in the (r — s) path.
Without loss of generality we may assume that «; correspondsto the vertex r, i.e.
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u; = 0. Then from the definition of 1, the definition of a tight graph, and the
assumption that «; = 0 it followsthat

Yoouit Y ovi= Y ay 3

jeESNM jESNN (4,7)En

From the definition of an assignment game and (3) we have that

w(S) = D uit+ Do v 4
jESNM JESNN
Since (u, v) is a core-element we have that
d.oouit Y v = w(S). (5
jESNM JESNN
Combining (4) and (5) completes the proof. O

Now, we can present the main result of this section.
Theorem 4.5 Assignment games satisfy the CoMa-property.

PROOF: Let (u,v) be an extreme point of an assignment game ((M, V), w). We
have to show that there exists some order = on the player set (M, N') such that the
corresponding marginal vector m™(w) coincides with (u,v). First we prove the
case when the tight graph G*'(u, v) is connected, i.e. the tight graph consists of
only one component. Let 7 (u,v) be atight tree of G*(u,v) and let 2 = (u,v)
be such that =; corresponds to the payoff of player :. Then Lemma 4.3 implies
that there exists a vertex r in the tight tree, in which player » has a payoff equal
to zero. Next, we will label the vertices in the tight tree via a depth first search
procedure. More specificaly, initialy all vertices in the tight tree are unlabel ed.
In the following procedure we label the vertices by the increasing sequencing of
numbers1,2,....2 | M |.

Step 1: givevertex r label 1.

Step 2: let a bethe vertex that is labeled last, say by £;

Procedure:

(i) if there exist a thin edge that connects « with an unlabeled vertex b, then give
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vertex b label £ + 1, and repeat Step 2; otherwise go to (ii)

(i) if there exists athick edge that connects « with an unlabeled vertex b, then give
vertex b label & + 1, and repeat Step 2; otherwise go to (iii)

(i) if thereexistsno edgethat connectsa with an unlabel ed vertex thenreturntothe
lowest |abeled vertex b that is connected with «, set a:=b and repeat the Procedure.

Let = bethe order on the playersthat is generated by the labels assigned in the
described depth first search procedure. We will show that m™(w) = . Let S; be
the set of thefirst j labeled playersin the depth first search procedure. We prove
that

w(S;) = > @i (6)
i€s;
Let player m be the player that is labeled last in 5;. Then coalition S; can be
partitioned in S;(1) and S;(2), where S;(1) are the players on the unique path
from r to m and 5;(2) are al other players of S;. Then Lemma 4.4 implies that
that

w(Si(N) = > @ (7)
ieS;(1)

Obvioudly, the proof is completed if S;(2) = (). Hence, we may assume that
S;(2) # 0. We now show that there exists a matching on S;(2) that consists only
of thick edges and covers S;(2). Leta € S;(1) and let b € S;(2) be such that
(a,b) isan edgeinthetight tree. Sincethere exists apath froma to m, thereare at
least three edges incident to «. Since vertex b isvisited using edge («, b) beforem
isvigited, it followsfromitem (i) in the depth first search procedurethat («, b) has
to be athin edge. Obviously, al verticesin S;(2) arelabeled before m islabelled
the depth first search procedure. Since each vertex isincident to athick edge, we
can conclude that there exists indeed a matching of S;(2) that consists only of
thick edges. This observation gives

w(Si(2)) = > @ (8)

i€5;(2)
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since the optimal matching is provided by the thick edges. Now, we have

w(S;) = w(S(1)) +w(5;(2))
= > wmt ) @
ieS;(1) i€5;(2)
> w(JSj),

wherethefirstinequality holds since the merger of optimal matchingsof S;(1) and
S;(2) gives amatching for S;, the first equality holds by (7) and (8), the second
equality since S;(1) and S;(2) form a partition of S; and the second inequality
holds since « isin the core of the assignment game.

From (6) it followsimmediately that

m§+1(w) = w(Sj41) — w(S;) = w41,

which completes the proof in case the tight graph consists of one component.
Second, we prove the case in which the tight graph consists of more than one
component. Suppose GG*(u,v) consists of & components, say C4, ..., Cx. Then
from the first part it followsthat there exists an order =; on the player set S; of C;
suchthat m™ (w) = z|g, foral 1 <: < k. Thenitisstraightforward to show that
m™(w) = x wherer = (71, T2, .o, Tg)- O

The following example illustrates the outcome of the procedure used in the
proof of Theorem 4.5 and shows that an extreme point can be generated by several
marginal vectors.

Example4.6 Let + = (0,1,0,1,0,1,0,1) be an extreme point of the core of an
assignment game (N, w). A tight tree that corresponds to « is depicted in figure
4.1. The weight of an edge is 1 if the edge is contained in the tight tree and O
otherwise. The number in avertex denotes the corresponding player.
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®
Figure 4.1: thetight graph G ().

Then the procedure, starting in the vertex corresponding to player 1, can give the
order » = (1,2,3,4,5,6,7,8) and 7* = (1,6,7,2,3,4,5,8), respectively. Then
it is easy to verify that m™(w) = m™ (w) = =.

From the observationsin Example 4.6 we proposethefollowing alocationrule

for agame (V, w) that satisfies the CoMa-property:
1

Y(w) = | {m:m™(w) € Core(w)} | 2

mm™ (w)ECore(w)

m”™(w).

Obvioudly, if (N, w) is convex, then v equals the Shapley value. Otherwise~ can
be considered as a generalized Shapley value with the property that its outcomeis
in the bary center of the core.
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