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Sender-Receiver Games
�

Ronald Peetersy Jos Pottersz

May 1999

Abstract

Standard game-theoretic solution concepts do not guarantee meaningful commu-

nication in cheap-talk games. In this paper, we de�ne a solution concept which

guarantees communication for a large class of games by designing a behavior pro-

tocol which the receiver uses to judge messages sent by the sender on acceptability.

For that, we will make use of the Nash equilibrium concept for which truth-telling

is a consequence. Uniqueness is nevertheless not a consequence, but after reasonable

selection it is. Further, we will come to a method to compute all equilibria very

easily.

JEL classi�cation: C72, D82.

Keywords: Noncooperative game theory, Signalling, Sender-Receiver games.

Introduction

In signalling games the importance of the fact that the parties understand what the signals

mean is often underestimated. Many authors give a hint in the story companying their

model but in the model itself this fact is very often suppressed. In Cho and Kreps' beer-

and-quiche game for instance (see Cho and Kreps (1987)) the fact that `drinking beer' is

a signal of a `strong type' can only be derived indirectly from the fact that the payo� for

a strong type `drinking beer' is higher than for a strong type `eating quiche'. The story

becomes less intriguing but clarity would have been served if the signals would have been

`I am strong/weak' under the condition that `lying' is costly. If parties in a conict try to

�We would like to thank P.Jean-Jacques Herings, Hans Reijnierse and Dries Vermeulen for their useful

suggestions.
yDepartment of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The

Netherlands, E-mail: R.J.A.P.Peeters@kub.nl
zDepartment of Mathematics, Nijmegen University, P.O. Box 9010, 6500 GL Nijmegen, The Nether-
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give a signal by `burning money' (Van Damme (1989), Hurkens (1995)) it should be clear

what this signal means (`I do not frighten away from blackmailing you?') and that it has

something to do with the decisions that follow. This is especially urgent, if the signal is not

given but could have been given. In Crawford and Sobel (1982) it is mentioned in passing

that the signal y is a `noisy estimate' of the real value of a variable m. By the way, the

word `noise' is here used in the unusual sense that the informed player causes the noise

deliberately: he is telling the truth but not the whole truth. In sender-receiver games the

messages sent by the sender are meant to convey information about the type of the sender

to the bene�t of both players. In the model the messages are just points in a message

space and the only distinction between messages is the cost of sending the message. Very

often this is not enough to convey any information.

If every message can tell everything, no message is telling anything.

Some recent papers on sender-receiver games (e.g. Rabin (1990), Farrell (1993), Zapater

(1993)) recognize this fact and an a priori relation between a message and the information

that can be transmitted by the message, is assumed: messages are like letters, they contain

information. We see this as a necessary extension of the theory, not because of the little

predictive power of the theory (`everything goes') but because it predicts something that

will not (cannot) occur (without assuming that the receiver is `clairvoyant' and then there

is no need for messages). Another tendency one can observe in the more recent literature

on signalling games is the choice for rationalizability concepts instead of Nash equilibrium

concepts to explain behavior (see e.g. Hurkens (1995)). Also Rabin advocates this idea

eloquently. In the theory followed in this paper we return, at a higher level, to Nash

equilibrium behavior.

In this paper we will formulate a theory for communication between rational agents and

we will use the theory in the paper of Rabin (1990) as a `pi�ece de r�esistence' for our theory.

Partially we will go along with Rabin's theory. We shall agree with him in the following

points:

(1) Messages are bearers of information and not just points in a message space. There

must be an a priori relation between messages and types. Messages are telling some-

thing about the type of the player. Rabin emphasizes that the same information can

be conveyed by di�erent messages and that mostly more natural language is used

than prosaic statements as \My type is a type from S". In our opinion di�erent mes-

sages conveying the same information can be identi�ed without any problem. Not

the phrasing of the information is important but the information itself. Moreover,
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using more natural language often implies more ambiguity. Many interpretations of

a message are possible. A message like \You should invest in my company" (Rabin)

can interpreted as \Given my type, it is a good (better or the best?) action for you

(or for me?) that you invest in my company". In this paper we will assume that only

the prosaic but unambiguous messages \My type is a type from S" (in the sequel

denoted by [S]) are available.

(2) The main issue is the formulation of behavior rules according to which the credibility

of messages can be determined. In Rabin's theory this part is played by |what

he calls| credible message pro�les. We will introduce acceptable message pro�les

(AMP's) and completely acceptable message pro�les (CAMP's). The idea behind

both concepts is the same: it must be safe for the receiver of the message `to believe

the messages in the pro�le'.

(3) In Rabin's theory there is essentially only one credible message pro�le. In our theory

we end up with a unique maximal CAMP for a generic class of games.

It is here that important di�erences between the two theories appear, namely:

(1') The de�nition of (completely) acceptable message pro�les rests on Nash equilibrium

behavior. It is not necessary that every (selected) message `triggers' the best action

for the types mentioned in the message but that it induces the best action for the

types sending the message among the actions that can be induced by a message in the

pro�le (under the assumption that the receiver believes the messages in the message

pro�le and only these messages) and that the receiver does not regret his credulity.

In a credible message pro�le the types mentioned in the messages of the pro�le are,

by de�nition, telling the truth and therefore di�erent messages mention disjoint sets

of types. Types, not mentioned in any message of the pro�le, can do whatever they

like, because their choice does not inuence the receiver's choice of action. We do not

assume that the messages in a pro�le are disjoint or that types tell the truth. This

will be a consequence of the de�nition of a (completely) acceptable message pro�le

as a Nash equilibrium.

(2') A second di�erence with Rabin's theory lies in the fact that we do not need a message

pro�le theory that selects (by iterated strong dominance) the rationalizable strategy

tuples from the strategy tuples `admitted by the credible message pro�le'. Nash

behavior is always rationalizable. We, however, select from the completely acceptable

message pro�les the one that gives the receiver the maximal payo�.
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As `the proof of the pudding is in eating it', we will frequently compare the predictions

made by Rabin's theory with the outcomes of our method. In fact, a bit prematurely, the

di�erences can be illustrated by two very simple examples.

Example 1 (Rabin (1990), Example 8)

a1 a2 a3
t1 10 0 8

t2 6 8 0

a1 a2 a3
t1 10 4 0

t2 0 0 4

pt1 = pt2 =
1

2
:

In this example there are two types t1 and t2. The �rst matrix gives the payo�s to the

sender, the second matrix the payo�s to the receiver. Rabin's theory predicts that type t1

will always induce action a1 and that type t2 does also induce action a1 but might try to

do better with an other message. The question is, what other message? According to the

theory we will develop in the next sections there are two possible message pro�les, namely

f[t1]; [t2]g and f[T ]g. Under the �rst message pro�le type t1 triggers (i.e. send [t1], the

message is believed and the best response is chosen by the receiver) the action a1 and t2

triggers the action a3. Both types prefer the outcome corresponding with a1 and f[t1]; [t2]g

is not a CAMP. Only the message pro�le f[T ]g remains. Anyhow, type t2 cannot induce

the receiver to use the weakly dominated action a2.

Example 2 (Rabin (1990), Example 9)

a1 a2 a3
t1 2 -1 0

t2 -1 -2 0

a1 a2 a3
t1 3 0 2

t2 0 3 2

pt1 = pt2 =
1

2
:

Rabin claims that all types induce action a3. Further he deems the message [t1] not to be a

credible message. By the way, it should be noted that Rabin returns here to a (restricted)

Nash behavior. We �nd in this example one CAMP: f[T ]g with payo� vector [(0; 0); 2].

The reader may wonder why the message [t1] is not acceptable. Sending the message [t1]

will trigger the action a1, if the receiver believes that the chance that type t1 is sending

this message is higher than 2

3
. So he has to �nd out what message type t2 would have sent.

As well by sending [t2] as by sending [T ] type t2 would betray his type (if type t1 sends

message [t1] with high probability). So sending the message [t1] and thereby `destroying'

the credibility of this message is a good option for type t2. Type t1 is not able to prevent

this.
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1 The model

A sender-receiver game is a 2-person strategic game with incomplete information. Player 1

is the sender and has one of �nitely many types t 2 T . Player 1 knows his type. Player 2

is the receiver; he does not know the type of the sender but he has an a priori probability

distribution p = pT > 0 on the set of types T which is also known by the sender. The

receiver chooses an action a from a �nite set of actions A. The payo� to player 1 is Ut;a,

if his type is t and the action a is chosen. For player 2 the payo� is Vt;a.

It may be pro�table for both players, if the sender reveals some information about his

type and he has a �nite setM of messages at his disposal to do so. Sometimes it is assumed

that messages are costly, i.e. there is a cost function c:M ! R+ . In this paper we will

assume that messages are costless (c = 0). We collect the payo�s in two T � A-matrices

U = (Ut;a) and V = (Vt;a). So, the problem is given by

hp 2 �(T ); U; V :T � A! R;Mi:

If we model this situation, naively, as a Bayesian game, the strategy space of player 1

consists of the set of stochastic T �M -matrices X and the strategies of player 2 are the

stochastic M � A-matrices Y , i.e.

X = (Xt;m)t2T;m2M with X � 0 and
X
m2M

Xt;m = 1 for all types t

Y = (Ym;a)m2M;a2A with Y � 0 and
X
a2A

Ym;a = 1 for all messages m:

The number Xt;m denotes the probability that type t sends message m. The interpretation

of the numbers Ym;a is similar.

If player 1 and player 2 play the strategies X and Y , respectively, the stochastic T �A-

matrix Z(X; Y ): = X � Y gives the probabilities that type t is met by action a. So, type t

of player 1 maximizes

U(X; Y j t): =
X
a2A

Zt;aUt;a

and player 2 maximizes

V (X; Y ): =
X
t2T

p(t)[
X
a2A

Zt;aVt;a]:

The set of Bayesian equilibria consists of the Nash equilibria of the jT j + 1-person `agent

normal form game'. This nonempty set inherits from his 2-person origin the property to
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be the irredundant union of �nitely many maximal convex (and exchangeable) subsets, the

so-called Nash components (see Borm et al. (1996)).

For use later on, we remind the reader that the pure best responses to a strategy X can

be found by Bayesian inference: for a message m 2M we de�ne the conditional probability

vector �Xm under the condition that X is played and message m is received:

�Xm(t): =
p(t)Xt;mP
t2T p(t)Xt;m

:

The best reaction to message m is an action that maximizes a! V ( �Xm; a).

However, as many authors have argued (cf. a.o. Rabin (1990), Farrell (1993)), Nash

equilibria do not explain how the communication between the agents takes place. To make

this point clear, let us consider the following situation:

T = ft1; t2g; A: = fa1; a2g; U = V =

a1 a2
t1 1 0

t2 0 1

In this situation of common interests it is clear that type t1 will try to convince player 2

to play a1 and that type t2 will do the same with action a2. Moreover, player 2 will

be easily convinced. So, di�erent types must send di�erent messages to communicate

their types. And, in fact, the strategy X in which di�erent types send di�erent messages

together with the strategy Y wherein player 2 `understands the message' and chooses the

appropriate actions is a Nash equilibrium. It is however unclear how player 2 will be able

to `understand the message'. Let us assume that there are three messages called `blue',

`red' and `yellow' and that type t1 sends message `blue' and type t2 sends message `red'.

Then player 2 has to infer that `blue' means t1 and `red' means t2 but he will not be able

to do so, as it could also be the other way around that `red' means type t1 and `blue' type

t2 (also forming a Nash equilibrium with the right guess of player 2). Even if we assume

that sending messages is costly, these messages can not discriminate between these two

symmetric types. There must be an a priori relation between types and messages. The

most obvious solution for this problem is to see messages as `bearers of information', they

contain information, preferably about the types of player 1. Maybe that is the reason why

in daily life people do not just send an envelope of a particular color with the appropriate

number of stamps on it (a costly message) but put a letter in it:

The medium, even if it is an expensive medium, is not the message.

In the literature many lines are devoted to necessary conditions that make communication

between agents possible. Players should `share a meaningful su�ciently rich vocabulary'
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and `have a common understanding to interpret statements according to their literal mean-

ing' (Farrell (1993)). We do not discuss these issues. Certainly, they are interesting, just

as the observation of Rabin (1990) that `messages should come from a common language

pre-dating the speci�c strategic situation (...) with which the agents can richly describe

all relevant strategic issues' and `that agents, most likely, will use more natural language,

such as \You should invest in my company.".' This is, however, not the subject of this

paper.

In fact, we will make a short-cut by saying that the agents have a communication chan-

nel with su�cient possibilities. So, if player 1 uses a certain language (or smoke signals),

player 2 understands the language (or the smoke signals). If player 1 uses metaphors or a

code, player 2 understands the metaphors or has a decoding mechanism.

If player 2 does not get all the information he wants to have, the reason is not

the insu�ciency of the communication channel but player 1's unwillingness to

give him that information.

In the sequel we will even assume that the message space consists solely of the unambiguous

messages [S] saying \My type is one of the types in S" for S 2 2Tnf;g. The message [T ] is

used to convey no new information. Therefore, it is not necessary for player 1 `to babble',

`to speak gibberish' or `to remain silent'; he can simply use the message [T ], in case he

does not want to convey information.

After we have removed the possible insu�ciency or ambiguity of the communication

channel (and not earlier), the real issue of the paper emerges: the credibility of messages.

After player 2 has found out what player 1 is telling him about his (player 1's) type, he

has to decide if he can trust the information he has obtained. Before we come to this issue,

we will answer two related questions, namely what will player 2 do, if he does not get any

`credible' information and what, if he gets the information [S] and believes the message?

We assume that both players are expected utility maximizers and that both players are,

moreover, Bayesian players. Accordingly, if player 2 gets no (new) credible information,

he will play an action aT that maximizes
P

t2T p(t)Vt;a; if he gets the information [S] and

he has no reason for doubt, he will maximize
P

t2T pS(t)Vt;a. By pS we mean the `Bayesian

update' of p under the condition that t 2 S is true (believed). To make things easier we

assume that, for all S 2 2Tnf;g, the function a!
P

t2T pS(t)Vt;a has exactly one optimal

action aS and also that for each type t 2 T the values of Ut;a are di�erent. We call such a

triple generic. Almost all triples (p; U; V ) satisfy these conditions, i.e. any triple (p; U; V )

can be made generic by an arbitrary small perturbation of (p; U; V ).

We call the action aT (in fact, `always choosing aT whatever the message may be') the
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default strategy of player 2. For player 1 the default strategy is `sending the message [T ]

whatever his type may be'. Note that the pair of default strategies form a Nash equilibrium

(as deviating behavior of one of the players is not rewarded by the other player), and that

the players have a common interest to do better than the default strategy. That is the only

reason why player 1 takes the e�ort (and maybe the cost) to send a message and player 2

tests the messages on credibility. By transferring the information [S], player 1 tries to

convince player 2 to deviate from the default action aT to aS. So, player 2 must formulate

some behavior rules saying how he investigates the credibility of messages [S] given the

information (p; U; V ). These rules should be formulated without any reference to a speci�c

game and should be applicable to every speci�c game. Furthermore, player 1 must know

how player 2 comes to his judgement. He must know the behavior protocol.

So, we come to the following chronology:

t=0 The players get acquainted with each other's way of expressing themselves, learn a

common language rich enough to communicate messages like \My type is a type in

S".

t=1 Player 2 tells player 1 how he will form his opinion about the credibility of messages,

his behavior protocol. Here the common language is challenged more seriously. One

may fear that smoke signals are no longer adequate.

t=2 Player 1 and 2 learn the type space T , the action space A, the payo� matrices U and

V and the a priori probability distribution p. Here the common meeting ends.

t=3 Player 1 is informed privately about his type. Player 2 knows that this happens.

t=4 Player 1 sends a message [S] from M = 2Tnf;g and player 2 receives the message

and learns that player 1 tries to convince him to deviate from the default action aT

to aS.

t=5 Player 2 forms his opinion about the credibility of [S] by using the earlier communi-

cated decision rules (see t = 1).

t=6 and acts accordingly.

Stage t = 0 may be deleted, if the players know that they will understand each other, and

stage t = 6 is an automatism. We will use the word `trigger' or `induce' for the combination

of the steps t = 5 and t = 6. The remaining issue is the formulation of player 2's behavior

protocol that he tells player 1 in stage t = 1, that player 1 will use to select his message in
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stage t = 4 and that player 2 will use in stage t = 5.

A part of the protocol has been written already, namely that both players are Bayesian

players who maximize expected utility. Being a paradigm in game theory and in many

economic theories, we assume that the players do not have any problem to believe these

statements. Notice, however, that also the main part of the protocol, how to form an opin-

ion about the credibility of messages, should be convincing for both players. In particular,

player 1 should be convinced that player 2 will really apply his protocol in stage t = 5.

Then he can use it to anticipate player 2's behavior in stage t = 4. To make anticipation

possible it is necessary that player 1 knows that player 2 accepts or does not accept a mes-

sage as a credible message and not something in between. The behavior protocol should

not introduce a new kind of ambiguity.

Remark 1 Up to now we called accepted messages credible. But, in fact, player 2 is not

interested in the truth of a message (that a type sending a message [S] is indeed a member

of S) but that it is pro�table for him to accept [S] and to switch from the default action aT

to action aS. He is an expected utility maximizer and not a searcher for truth. Therefore,

we will call messages that pass player 2's tests acceptable instead of credible.

2 Acceptable message pro�les

In Rabin (1990) a formulation of a possible behavior protocol can be found. It is called a

credible message pro�le. The author puts, however, severe restrictions on credible messages

with the consequence that in many examples where you would expect some meaningful

communication, this turns out to be impossible. The main property of a credible message

(pro�le) that the author requires, is the optimality of the chosen action aS for all types

mentioned in the message [S]. In our opinion this is a too severe restriction. If both

players can gain with respect to the default equilibrium payo�, they may also have reasons

to send and to believe some messages. This is the idea we will try to elaborate in the present

paper. With the previously mentioned papers it will have in common that the acceptability

of messages can not be derived from the message alone but only from the message as a

member of a family of other acceptable messages. The reason to call a message acceptable

is partially found in the presence of other acceptable messages. To avoid even the slightest

suspicion of an in�nite regress we introduce the concept of an acceptable message pro�le.

Before we come to the de�nition of an acceptable message pro�le, we introduce the

following notation:

a �t �a if Ut;a � Ut;�a and a ��
t �a if Vt;a � Vt;�a:
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The meaning is: if a �t �a and player 1 has type t, he weakly prefers action a to action �a;

if a ��
t �a and player 2 thinks that the type of player 1 is t, he weakly prefers action a to

action �a. As we assume that (p; U; V ) are generic, the relations �t and �
�
t are asymmetric.

Let C be any non-empty collection of messages in M . Then we de�ne a strategy for player

2, Acc C :M ! A (accept the messages in C and no other), by

Acc C([S]) :=

(
aS if [S] 2 C

aT if [S] 62 C
:

If player 1 knows that player 2 will accept the messages from C and none of the messages

outside C, each of his types will send a message [S] that triggers the best action (aS) of

the actions that can be induced by a message from C or by a not acceptable message. We

call such a strategy Rev C : T !M (reveal your type according to C):

Rev C(t) = [S] =)

(
aS �t a �S for all [ �S] 2 C and aS �t aT if [S] 2 C

aT �t a �S for all [ �S] 2 C if [S] 62 C
:

Then each of the strategies Rev C is, by de�nition, a best response to Acc C.

The following example shows that Rev C may consist of more than one strategy.

Example 3

a0 a1
t1 0 1

t2 0 1

t3 0 1

a0 a1
t1 3 1

t2 3 6

t3 3 1

pti =
1

3
; i = 1; 2; 3:

All types of player 1 prefer action a1 to the default action a0. The messages [t1; t2], [t2] and

[t2; t3] are the messages that trigger action a1. If these messages are elements of a message

pro�le C, every strategy in which each type sends one of these messages is an element of

Rev C.

In fact, we restrict the domain of Rev C to strategies in which types who want the same

action, send the same message, i.e. if RevC(t) = [S] and Rev C(t
0) = [S 0] with aS = aS0,

then [S] = [S 0]. So, in Example 3 all types send message [t1; t2] or [t2] or [t2; t3]. The idea

is that each message triggering action a is only sent with the purpose to induce a. There is

no additional information sent. Or, to say it di�erently each message [S] will be considered

to contain the information \play aS" and not to contain any residual information. In the

example the message [t2] can be sent by each of the types. Truth telling is not focal, if

this implies residual information e.g. my type is with high probability t2, if [t2] is sent in

Example 3.
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De�nition 2.1 A collection C is called an acceptable message pro�le, if Acc C is also a best

response to the strategies Rev C , i.e. if (Rev C;AccC) is a Nash equilibrium.

Although this concept does not solve the communication problem between the players,

it is at least a �rst stepping stone in the uncertain world of communication. If player 2

believes the messages from C and no other messages and player 1 plays a best response

to that strategy, player 2 will, after all, be justi�ed to have believed the messages from C.

Acceptable message pro�les are viable ways of communication, once the players can agree

upon the choice of an acceptable message pro�le without any further communication.

We will address this important issue later on. First we will investigate the merits of an

acceptable message pro�le.

The following proposition shows the remarkable fact that every acceptable message pro�le

generates an acceptable message pro�le T (C) with the same payo�s as C in which every

type is `telling the truth' and the messages mention disjoint sets of types.

If C is a message pro�le and a is an action from A we de�ne T (a j C) to be the set of

types ft : Rev C(t) triggers the action ag. Let AC be the set of actions a with T (a j C) 6= ;.

The message pro�le T (C) consists of the messages [T (a j C)] for all a 2 AC. Note that

T (a j C) is not dependent on the choice of Rev C.

Proposition 2.2 (a) Let C be any message pro�le. Then the best responses to any Rev C

are the strategies with [S]! aT (aS j C) if aS 2 AC.

(b) C is an acceptable message pro�le if and only if aS = aT (aS j C) for all messages [S] 2 C

with aS 2 AC.

(c) If C is an acceptable message pro�le, T (C) is also an acceptable message pro�le with

the same payo�s for both players. The acceptable message pro�le T (C) has the additional

properties that t sends message [T (a j C)] if and only if t 2 T (a j C) (`truth telling') and

that di�erent messages mention disjoint sets of types.

Proof (a) If Rev C is played by the sender and player 2 receives the message [S], his

updated belief over the types is pT (aS j C) and, by de�nition, aT (aS j C) is the best reaction to

that belief. The reaction to messages never sent is immaterial.

(b) This follows immediately from (a).

(c) The types sending the message [S] in Rev C, will send the message [T (aS j C)] in

Rev T (C), as aS is also induced by the message [T (aS j C)] and the actions that can be

triggered by any message from T (C) is a subset of faS : [S] 2 Cg [ faTg. The reaction

of the receiver to [S] in Acc C , namely aS, is the same as the reaction of the receiver to

[T (a j C)] in Acc T (C), because (Rev C; Acc C) is an equilibrium (apply (b)). Then it is clear
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from (a) that Acc T (C) is a best response to Rev T (C). /

From Proposition 2.2, (c) follows that we can restrict the attention to acceptable message

pro�les in which all types tell the truth and di�erent messages mention disjoint sets of types.

Every payo� vector generated by an acceptable message pro�le can also be generated by

an acceptable message pro�le with these additional properties.

De�nition 2.3 We call acceptable message pro�les in which all types tell the truth and

di�erent messages never contain the same type completely acceptable message pro�les

(CAMP).

Here we show a slight preference for truth telling:

If the same result can be reached by being honest as well as by being dishonest,

we assume that players prefer honesty.

An additional advantage is that there are less CAMP's and it may be easier to �nd all of

them.

In the next proposition we prove that in antagonistic games (i.e. if a �t b is equivalent to

b ��
t a for all t 2 T and all a; b 2 A), only the message pro�le C: = f[T ]g is completely

acceptable. For common interest games (i.e. if a �t b is equivalent to a ��
t b for all

t 2 T and all a; b 2 A), there is only one completely acceptable message pro�le in which

all types reveal all relevant information. This is not necessarily the `separating' message

pro�le C0: = f[t] : t 2 Tg, since di�erent types may have the same most preferred action.

Proposition 2.4 (a) In an antagonistic game only the message pro�le f[T ]g is com-

pletely acceptable.

(b) In a common interest game there is exactly one completely acceptable message pro�le

that guarantees all types of player 1 their highest payo�.

Proof (a) Let (U; V ) be the payo� matrices in a generic antagonistic game. We prove

that no pro�le C with more than one element is completely acceptable. Let [S] and [S 0]

be two di�erent (and therefore disjoint) messages from a completely acceptable message

pro�le C. If aS = aS0 , then S[S 0
� T (aS j C) and all types in S[S

0 send the same message.

Then the types in S or the types in S 0 do not tell the truth. If aS 6= aS0, the types in S

prefer aS to aS0 and for the types in S 0 the opposite preference holds. For player 2 the

preferences are opposite and therefore, it is better for player 2 to respond [S] with aS0 and

[S 0] with aS. The strategy AccC is not a best response.

(b) Every type t has exactly one best action a(t). Collect the types with the same best
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action as t in a set R(t). Consider the message pro�le C: = f[R(t)] : t 2 Tg. Then the

messages in C induce a partition on T , the message [R(t)] triggers the action a(t), i.e.

aR(t) = a(t) (by common interest) and therefore the types in R(t) send the message [R(t)]

to obtain their highest payo�. Therefore, T (C) = C. So, the message pro�le C is completely

acceptable.

Let C 0 be a di�erent completely acceptable message pro�le also triggering the best

action for each type and [R] is a message from C 0. All types in R must have the same

best action and therefore R � R(t) for some type t. If there is no equality, there is a type

in R(t), triggering the action a(t) by means of a di�erent message [R0] 2 C 0. Then also

R0
� R(t). So, R [ R0

� T (a(t) j C 0) and the types in R [ R0 send the same message in

RevC0. Then some type is not telling the truth. /

3 Some examples and the behavior protocol.

In the following examples we compute completely acceptable message pro�les in a rather

ad hoc way. In Section 4 we will do it in a more systematic way.

We assume, in all examples, that all types have the same probabilities. We only give

the U - and V -matrix. If a payo� has an upper index �, it means that the payo� is slightly

larger than the given number (to make the example generic). Most of the examples are

from Rabin (1990).

Example 4 (Rabin (1990), Example 1)

a1 a2 a3
t1 10 0* 0

t2 0 10 5

t3 0 10 5

a1 a2 a3
t1 10* 0 0

t2 0 10 7

t3 0 0 7

For the moment we assume that all messages will be believed.

t1 : a1 � a2 � a3 [t1]; [t1; t2]; [t1; t3] �! a1

t2 : a2 � a3 � a1 [t2] �! a2

t3 : a2 � a3 � a1 [t3]; [t2; t3]; [T ] �! a3

The �rst block gives the preferences of the types, the second block the actions `triggered'

by the messages. The �rst inconsistency with a completely acceptable message pro�le lies

in the fact that t3 will send message [t2] to trigger his most preferred action a2. He will do

so, as long as [t2] is available. So, we have to delete [t2]. So, under truth-telling type t2 can

only send [t2; t3] or [T ] to trigger his second best action a3 and type t3 can do the same.

13



Then type t1 will send [t1] and the types t2 and t3 will send truthfully the message [t2; t3].

Both of them could also send [t3] or [T ]. This gives an acceptable but not a completely

acceptable message pro�le. There are two completely acceptable message pro�les, namely

C0: = f[T ]g and C1: = f[t1]; [t2; t3]g. The latter one is more pro�table for both players.

Rabin comes to the conclusion that the message [t1] is credible and that the message [t2] is

incredible. The credibility of [t2; t3] is not commented upon. We think Rabin would reject

this message because some type does not get his highest payo�.

Example 5 (Rabin (1990), Example 2)

a1 a2 a3
t1 1 -2 0

t2 -2 -1 0

a1 a2 a3
t1 3 0 2

t2 0 3 2

t1 : a1( [t1]) � a3( [T ]) � a2( [t2])

t2 : a3( [T ]) � a2( [t2]) � a1( [t1])

If message [T ] is in the message pro�le, type t2 will send this message. If we delete [T ],

we get the message pro�le C1: = f[t1]; [t2]g. This is not a completely acceptable message

pro�le, since type t2 will send the not-acceptable message [T ]. Rabin's theory predicts

that the types will reveal themselves, even when some types would prefer that no such

revelation takes place. We come to the opposite conclusion: type t2 would not allow type

t1 to reveal himself or at least player 2 has reasons to mistrust message [t1] too.

Example 6 (Rabin (1990), Example 5)

a0 a1 a2 a3
t1 -1 7 6 0

t2 -1 6 7 0

t3 -1 0* 0 6

a0 a1 a2 a3
t1 5 6* 7 0

t2 5 7 6 0

t3 5 0* 0 6

We give the preferences of the types and the messages that trigger these actions:

t1 : a1( [t2]; [t1; t2]) � a2( [t1]) � a3( [t3]) � a0( [t1; t3]; [t2; t3]; [T ])

t2 : a2( [t1]) � a1( [t2]; [t1; t2]) � a3( [t3]) � a0( [t1; t3]; [t2; t3]; [T ])

t3 : a3( [t3]) � a1( [t2]; [t1; t2]) � a2( [t1]) � a0( [t1; t3]; [t2; t3]; [T ])

The messages [t1] and [t2] will used by the types t2 and t1, respectively. Both messages

must be deleted to obtain a completely acceptable message pro�le. So, the best the sender

can get is action a1 for the types t1 and t2 by sending the message [t1; t2] and action a3

for type t3 by message [t3]. Rabin concludes that the types strongly prefer to reveal if the

type is t3 or not. This is exactly what our theory predicts.
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Example 7 (Rabin (1990), Example 10)

a0 a1 a2 a3 a4 a5 a6 a7 a8
t1 0 10 0* 0 5 -1 -1 -1 -1

t2 0 5 10 0* 0 -1 -1 -1 -1

t3 0 0 5 10 0* -1 -1 -1 -1

t4 0 0* 0 5 10 -1 -1 -1 -1

a0 a1 a2 a3 a4 a5 a6 a7 a8
t1 3 4 0 0 4 5 0 0 0

t2 3 4 4 0 0 0 5 0 0

t3 3 0 4 4 0 0 0 5 0

t4 3 0 0 4 4 0 0 0 5

t1 : a1( [t1; t2]) � a4( [t1; t4]) � : : :

t2 : a2( [t2; t3]) � a1( [t1; t2]) � : : :

t3 : a3( [t3; t4]) � a2( [t2; t3]) � : : :

t4 : a4( [t1; t4]) � a3( [t3; t4]) � : : :

If we want to keep the message [t1; t2] in a completely acceptable message pro�le, the

messages [t2; t3] and [t1; t4] must be removed and we �nd the completely acceptable message

pro�le C1: = f[t1; t2]; [t3; t4]g. Also the message pro�le C2: = f[t2; t3]; [t1; t4]g is completely

acceptable. The union of these two pro�les, however, is not acceptable. If C = C1 [ C2 is

used for communication, Acc C is not a best response to Rev C: T (C) = f[t1]; [t2]; [t3]; [t4]g.

Here we see a quite serious problem to deal with. There is more than one CAMP and

some types, namely t1 and t3, prefer to use message pro�le C1 and the other types, t2 and

t4, prefer message pro�le C2. Rabin believes that the fully pooling equilibrium is a very

plausible equilibrium in this game. Our conclusion is di�erent, for the moment. Although

there are problems (see Remark 2), the players should at least try to coordinate on one of

the two CAMP's.

All these examples give us an indication for a senseful behavior rule for player 2.

No message [S] will be accepted unless there is a completely acceptable message

pro�le containing [S].

Remark 2 If a message [S] is a member of two di�erent completely acceptable message

pro�les, the reaction of player 2 will be the same. So, it is not important for player 2 to

know which completely acceptable message pro�le player 1 has in mind but it is important

for him to know that all types of player 1 use the same completely acceptable message

pro�le. He has, however, no means to check this and di�erent types have an incentive to

use di�erent (completely acceptable) message pro�les. In Example 7 e.g. we have seen

that the types t1 and t3 prefer C1 and that the types t2 and t4 like to use C2.
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Because the receiver determines the behavior protocol, he is not willing to coordinate on

a certain message pro�le if there is another one that gives him a better payo�. He is only

willing to coordinate on a CAMP if there is no other CAMP which is better (in payo�) for

him. We will call such a CAMP maximal.

Note that most triples (p; U; V ) admit only one maximal CAMP, meaning that every

triple with more than one maximal CAMP can be transformed into a triple with only one

maximal CAMP by an arbitrarily small perturbation of V . So, having only one maximal

CAMP is a generic property.

Summarizing the assumptions made with respect to the behavior of both players we come

to the following behavior protocol:

(1) Both players maximize expected utility and are Bayesian players.

(2) Player 2 will accept a message if and only if it is a member of the maximal completely

acceptable message pro�le.

(3) If a message [S] is accepted, player 2 will choose action aS; if a message is not

accepted, the default action aT is chosen. So, messages triggering the same action

are considered to be equivalent; there is no residual information.

In order to handle the behavior rules adequately both players must be able to determine all

(maximal) completely acceptable message pro�les. How they can �nd them is the subject

of the next section.

4 Determining completely acceptable message pro-

�les.

In this section we will show how the players can determine the completely acceptable

message pro�les. We start with an undirected graph. The node set N consists of messages

[S] with aS �t aT for all t 2 S. If a message [S] contains a type t with aT �t aS, such

a type prefers to send any not acceptable message (triggering aT ) to [S]. We connect two

di�erent messages [S] and [S 0] if the messages are `compatible' in the sense that they can

occur together in the same CAMP. There are two conditions to be satis�ed. The �rst

condition is S \ S 0 = ;. This implies e.g. that the message [T ] cannot be connected

with any other message. The second condition that connected messages must satisfy is

that none of them undermines the credibility of the other, where we say that message [S 0]

undermines (the credibility of) message [S] if there is a type t 2 S such that aS0 �t aS. In
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the graph obtained in this way we look for maximal cliques. A clique is a subset of nodes

of which each pair is connected. They form a complete subgraph. A clique is maximal if it

cannot be extended to a larger clique.

Proposition 4.1 If the messages in a clique form a partition of T , they form a completely

acceptable message pro�le and conversely every completely acceptable message pro�le is a

maximal clique in the graph just de�ned.

Proof In a completely acceptable message pro�le the messages are disjoint, there is no

type t occurring in a message [S] 2 C with aT �t aS or a pair of message [S] and [S 0] such

that aS0 �t aS for some type t 2 S. We must also exclude aS0 �t aS for a type t 2 S. As

(p; U; V ) are supposed to be generic, we �nd aS0 = aS. Under RevC types triggering the

same action are supposed to send the same message. Then there are types in S or in S 0

not telling the truth.

Conversely, we must prove that a maximal clique that forms a partition gives a com-

pletely acceptable message pro�le. Suppose the messages [S1], [S2]; : : : ; [Sq] form a maxi-

mal clique and
Sq

i=1 Si = T . For all types t in Si we have aSi �t aSj for j 6= i (Sj does not

undermine Si) and aSi �t aT (otherwise [Si] was not a node of the graph). Let C be the

message pro�le consisting of the messages [Si] for i = 1; : : : ; q. Note that di�erent mes-

sages trigger di�erent actions. At most one of these actions is aT . If none of the messages

trigger aT , every type t 2 Si sends the message [Si] and T (C) = C. Then C is an acceptable

message pro�le by Proposition 2.2 and every type tells the truth. Since C is also a partition

of T , it is a completely acceptable message pro�le. If aSi = aT for an index i, then all

types in Si strictly prefer the default action aT to all attainable actions aSj (j 6= i). Under

RevC they will all send message [Si] or the same not acceptable message. Whatever they

send, the receiver will response with aT (= aSi). By consequence, (RevC;AccC) is a Nash

equilibrium. So, also in this case we �nd a completely acceptable message pro�le. /

In Example 4 the nodes of the graph are the messages [t1], [t2], [t3], [t2; t3] and [T ], because

aT = a3 �t2 a1 = aft1;t2g and aT = a3 �t2 a1 = aft1;t3g. Further, aft2g = a2 �t3 a3 = aft3g,

which implies that in the graph the node [t2] is not connected with the node [t3]. So, we

come to the following graph:

[t1] [t2] [t3]

[t2; t3]

[T ]

X
X
X
X
X
X
X
X
X
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We see that the graph contains two maximal cliques covering T , namely C0 = f[T ]g and

C1 = f[t1]; [t2; t3]g. Note that these collections are the same as found earlier in an ad hoc

way. When C0 is used the (expected) payo� becomes [(0; 5; 5); 14
3
]; when C1 is used the

(expected) payo� becomes [(10; 5; 5); 24
3
]. Obviously, C1 gives player 2 a larger payo� than

C0. So, C1 is the unique maximal CAMP.
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