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Abstract

Microeconomic surveys are usually subject to the problem of item nonresponse, typically associated with

variables like income and wealth, where confidentiality and/or lack of accurate information can affect the

response behavior of the individual. Follow up categorical questions can reduce item nonresponse and

provide additional partial information on the missing value, hence improving the quality of the data. In

this paper we allow item nonresponse to be non-random and extend Manski’s approach of estimating

bounds to identify an upper and lower limit for the parameter of interest (the distribution function or its

quantiles). Our extension consists of deriving bounding intervals taking into account all three types of

response behavior: full response, partial (categorical) response and full nonresponse. We illustrate the

theory by estimating bounds for the quantiles of the distribution of amounts held in savings accounts. We

consider worst case bounds which cannot be improved upon without additional assumptions, as well as

bounds that follow from different assumptions of monotonicity.
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1 Introduction
The aim of economic surveys is to collect data to provide the possibility to  study social and

economic trends in the population of interest. For example, at a microeconomic level, important

questions in household surveys focus on the savings behavior of the household, the distribution

of wealth, and the distribution of income. Longitudinal studies such as the Panel Study of

Income Dynamics (PSID), the Health and Retirement Survey (HRS), and the Asset and Health

Dynamics Among the Oldest Old (AHEAD) are usually thought of as high quality data providers

for microeconomic studies. These panels, however, are subject to the problem of missing data.

Non-negligible missing data occurs when a significant amount of individuals in the panel gives

no answers to any of the questions in the survey (unit nonresponse) or provides answers to some

of the questions in the survey, but not all (item nonresponse). Item nonresponse is usually

encountered in questions where individuals are asked to disclose their income, earnings or

wealth with an exact amount. Nonrandom item nonresponse complicates the use of the data

since it will generally result in a sample which is not representative of the population of interest.

If not accounted for appropriately, nonrandom nonresponse can bias the results of studies which,

for example, try to explain why people save, analyze the income distribution, or forecast

accumulation of household wealth.

Item nonresponse can be treated in two stages: at the data collection level and at the

estimation stage. At the data collection level, the problem of item nonresponse might be reduced

by adding follow up questions in which initial non-respondents only need to reveal some

categorical information about their savings, wealth or incomes. This technique to reduce the

problem of nonresponse, is motivated by the claim that certain cognitive factors, such as the

belief that the interviewer requires very precise information and/or confidentiality reasons, may

explain why people are more reluctant to disclose information on assets and incomes, compared

to other social and economic variables (see, for example, Hurd et. al, 1997). Juster et al. (1997)

examined the 1993 wave of the HRS panel and showed how categorical questions can

dramatically cut nonresponse rates in questions related to assets; for example, answers on

savings accounts showed an initial nonresponse rate of 28% but a combination of categorical

questions reduced this to only 8% of full nonresponse. Juster et al. (1997) also emphasize that

categorical questions may have secondary effects on the response behavior: for example, one

might think that individuals who answer in brackets at early stages of the interview will have a

tendency to answer in brackets at later stages, resulting in loss of exact information. Opposite

to this, however, they observe that individuals learn that a good approximation to asset values

is sufficient, so that at later stages in the interview, they immediately provide rounded amounts,

thus avoiding the lengthier categorical questions. Hurd et al. (1997) discuss the role of
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categorical questions in the panel data AHEAD, and the effectiveness of this type of questions

on reducing item nonresponse. They also point out how the design of the categorical questions

can influence response and can lead to biased estimates of location measures of interest (the so

called anchoring effect).

Initial non-respondents who either answer ‘don’t know’ or ‘refuse’, when asked about

a specific amount, often face one of two possible types of categorical questions. The first is

range cards, where the individual is shown a complete  range of categories partitioning all

possible amounts, so that the respondent can choose the interval containing the amount in

question; range cards also include the possibility to answer ‘don’t know’ or ‘refuse’. The second

type of categorical questions is known as unfolding brackets; here, initial non-respondents are

asked to answer ‘yes’, ‘no’, ‘don’t know’ or ‘refuse’ to a question such as ‘is the amount $x or

more?’; this question is asked various times - usually three to four times with different values

of $x. If the respondent ends by answering with an inconclusive statement, such as ‘don’t know’

or ‘refuse’, no further follow up questions are asked. Both methods have their advantages and

disadvantages. The main advantage of unfolding brackets is that, although an initial non-

respondent can end up answering with ‘don’t know’ or ‘refuse’ at some point of the unfolding

bracket design, it is likely that, before this happens, he or she will reveal partial information

about the amount in question; on the other hand, initial non-respondents that face a range card

may often choose the option ‘don’t know’, without providing any partial information at all. If

participants answer questions over the telephone, unfolding brackets is the only possible design

in terms of categorical questioning, since range cards cannot be used in telephone interviews.

A problem with unfolding brackets is that they are more time consuming than range cards.

Moreover, range cards typically allow for more choices of categories than unfolding brackets.

Finally, unfolding brackets lead to‘the anchoring effect’, meaning that the order in which

category bounds are asked affects the answer of the respondent (see Hurd et al., 1997); this

order plays no role in range cards where all the bounds are given simultaneously.

Once the raw data is collected, with or without the use of categorical questions, item

nonresponse remains a potential problem. Ideally, inference requires a full set of data

representative of the population under study; in case of item nonresponse, some people provide

full information, some may provide partial information and some no information at all. One way

to deal with this is simply to ignore nonresponse units, and conduct inference using only those

individuals that provide full information. Completely random item nonresponse or exogenous

selection is the underlying assumption that makes this practice feasible. An alternative is to

impute the missing values; imputation allows the researcher to obtain a full set of data while

using all the available information in the sample. A conventional way to impute missing

observations is to use a hot-deck approach. This methodology assumes that the complete sample
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can be used as a pool of donors of information on the missing value for nonresponse individuals.

The underlaying  assumption is that, although item nonresponse can be nonrandom, item non-

respondents are not different from respondents that have similar characteristics, given by a set

of variables X. The observed values on the variables of interest from respondents can be used

to impute those of non-respondents with similar values of X. In other words, item nonresponse

is assumed to be random conditional on X. Juster et al. (1997) show that hot-deck imputation

can also benefit from follow up categorical questions. Comparing conventional hot-deck

imputation with hot-deck imputation using bracket response they found that conventional hot-

deck imputation  understates population estimates of non-housing wealth by at least 19%. 

Since the seminal work by Heckman (see Heckman, 1979, for example), it is well known

that if item nonresponse is non-random, simply deleting item non-respondents can lead to a

selection bias. To solve this selection problem one could use a selectivity model that takes

account of selectivity bias and avoids the assumption of complete (or conditional)  random item

nonresponse. This leads to a class of parametric and semiparametric models which generalize

the original Heckman model. These models typically impose some parametric and

semiparametric restrictions on the conditional distribution of the variable of interest Y given

covariates X, and on the item nonresponse mechanism.

Although selectivity models and imputation procedures are well established methods to

deal with item nonresponse, both procedures share the problem that they require additional

assumptions. Since the early 1990's Charles Manski has put forward a new approach to deal with

censored data in the form of item nonresponse which avoids such assumptions; see Manski

(1989, 1990, 1994, 1995), but also Heckman (1990). This approach is usually concerned with

the full conditional distribution function of a variable Y given a specified value of some vector

of variables X. The idea is that, without additional assumptions, the parameter of interest is

identified up to a bounding interval. Item nonresponse is allowed to be nonrandom. Let *  be

a binary random variable that takes the value one if  y is observed and the value zero otherwise,

so that each member of the population is characterized by (Y, *, X). A random sample from the

population will reveal (*, x) for all observations, while  y will only be observed if *=1. It is not

possible to identify the distribution function of (Y, *, X), since the censored-sampling process

is uninformative with respect to the distribution function of the sub-population with *=0. Prior

information can be used to derive bounding intervals around the distribution function of the

whole population. For example, the fact that the range of the distribution function for non-

respondents is in the [0,1] interval, leads to the so called worst case bounds, where the distance

between the upper and the lower bound is driven by the conditional probability of nonresponse

(see Manski, 1995); these bounds cannot be improved upon without making additional

assumptions. Nonparametric assumptions such as monotonicity or exclusion restrictions, can



FY|x(y) ' FY|(x,*'1)(y)P(*'1|x) % FY|(x,*'0)(y)P(*'0|x)

FY|(x,*'1)(y)

FY|(x,*'1)(y)
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(1)

lead to narrower sets of bounding intervals on the unknown parameter of interest that improve

on the worst case bounds (see Vazquez et al. (1999) for an application to earnings). 

In this paper we extend Manski’s approach by allowing the possibility of initial non-

respondents being directed to a categorical question where they can reveal partial information.

Thus three sub-populations are distinguished: full respondents, bracket respondents and full non-

respondents. We show how worst case bounds on the unknown distribution function and

quantiles can be narrowed by taking into account bracket response. We apply this to estimate

bounds on the quantiles of the distribution of savings in a representative sample of the Dutch

population. In this sample, the initial item nonresponse rate is approximately 40%, but since

initial non-respondents are routed to a range card categorical question, the final item

nonresponse rate drops to only about 12% of the total sample.

The remainder of this paper is organized as follows. Section 2 reviews Manski’s (1995)

worst case bounds and derives a new set of worst case bounds taking into account categorical

information. In this section, we also explore the assumption of monotonicity when the worst

case set of bounds depends on three levels of response. Section 3 describes the data used in the

empirical illustration. Section 4 explains the estimation technique and discusses the empirical

results. Section 5 concludes.

2 Theoretical framework 
2.1 Worst Case bounds on the distribution function
In this section we start by reviewing Manski’s (1995) worst case set of bounds for the

conditional distribution function of a variable Y, at a given y 0 ú, and given X = x 0 ú . Wep

assume that there is no unit nonresponse in the sample, no item nonresponse for the variables

in x, and no measurement error such as under or over reporting the value of Y. Let the dummy

variable * model item nonresponse, i.e *=1, if Y is observed and zero otherwise. With this,

F (y), the conditional distribution function for the whole population, can be expressed asY|x

follows:

Under the assumptions that we have made,  is identified for all x in the

support of X.  can be estimated using some nonparametric estimator. Similarly,

P(*=1|x) and P(*=0|x) are identified and can be consistently estimated, since we are assuming



FY|(x,*'1)(y)P(*'1|x) # FY|x(y) # FY|(x,*'1)(y)P(*'1|x)%P(*'0|x)

*1 ' 1 if full response on Y
*2 ' 1 and *1 ' 0 if response in bracket
*2 ' 0 and *1 ' 0 if full nonresponse

FY|(x,*'1)(y) ' FY|(x,*'0)(y)

FY|(x,*'0)(y) FY|x(y)

0#FY|(x,*'0)(y)#1

 For simplicity, and according to the range card categorical questions used in our2

empirical example, from this point onwards we assume the brackets are the same for all sample

observations; this would be easy to generalize, however.
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(2)

(3)

complete  response on *  and X. If we assume that *  is  independent  of Y conditional on X, then

 and all expressions in the right hand side of (1) are identified; this is

the assumption of exogenous selection. In general, however, * can be related to Y, and

 is then not identified, so that  is not identified either. With no additional

assumptions, all we know about the distribution function for the nonresponse sub-population

is that . Applying this to (1) gives

This expression shows Manski’s (1995) basic worst case upper and lower bounds. The

width between these bounds is equal to P(*=0|x). The larger the probability of nonresponse, the

wider the interval between upper and lower bound and the less information we obtain about the

unknown distribution function. Unless one makes additional assumptions or has additional

information on the item non-respondents, these bounds cannot be improved upon.

If the survey allows initial non-respondents to disclose partial information on the

dependent variable with a categorical question - which we assume to be of a range card type -,

the sample can be split into three sub-populations. Using the categorical information leads to a

new set of bounds that can be more informative about the unknown distribution function than

expression (2); we call these new bounds also the worst case set of bounds, because, similar to

expression (2), the new set does not require additional assumptions.

Allowing initial non-respondents to disclose partial information implies that response can

be at three levels according to two observed dummy variables *  and * :1 2

The partition in (3), leads to the following expression replacing (1):2



F(y|x) ' F(y|*1'1,x)P(*1'1|x) % F(y|*1'0,*2'1,x)P(*1'0,*2'1|x)
% F(y|*1'0,*2'0,x)P(*1'0,*2'0|x).

0 # F(y|*1'0,*2'0,x) # 1

and

F(L(y)|*1'0,*2'1,x) # F(y|*1'0,*2'1,x) # F(U(y)|*1'0,*2'1,x)

F(y|*1'1,x)P(*1'1|x) % F(L(y)|*1'0,*2'1,x)P(*1'0,*2'1|x)

# F(y|x) #

F(y|*1'1,x)P(*1'1|x) % F(U(y)|*1'0,*2'1,x)P(*1'0,*2'1|x) % P(*1'0,*2'0|x)

P(*1'0|x)%P(*1'0,*2'1|x) F(U(y)|*1'0,*2'1,x)&F(L(y)|*1'0,*2'1,x)&1 ,

L(y)#y#U(y)

F(50,000|*1'0,*2'1,x) F(25,000|*1'0,*2'1,x)

F(y|*1'0,*2'1,x)$F(50,000|*1'0,*2'1,x)

P(*1'0|x)'P(*1'0,*2'1|x)%P(*1'0,*2'0|x)

F(U(y)|*1'0,*2'1)&F(L(y)|*1'0,*2'1)&1
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(4)

(5)

(6)

(7)

The censored-sampling process does not identify all elements in (4) as it is not

informative about F(y|* =0, * =0,x), and not fully informative about F(y|* =0, * =1,x); all we1  2 1  2

know about these two expressions is that

where L(y) and U(y) are the bounds of the brackets containing y, i.e. . For example,

if we have bounds f.0,00 - f.25,000, f.25,000 - f.50,000, and $ f. 50,000, then  both

 and are identified by the data, because partial

respondents indicate whether their y value is between the specific values of f. 25,000 and

f.50,000. For values of y above or equal to f.50,000, for example, we know that

. Applying (5) to (4) leads to the following worst case

set of bounds:

In (6) the width between upper and lower bounds is equal to

where  is equal to the initial nonresponse probability

not considering categorical questions. Clearly, (7) is almost equal to P(*=0|x), but if a nonzero

percentage of the population answers to the bracket question, and if the brackets are not too

large, the expression    will be negative and the

bounds in (6) will be sharper than those in (2). Therefore, using follow up categorical questions



 See Pages 10 to 13 for a discussion.3
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generally will improve upon Manski’s original worst case bounds.

2.2 Bounds on the distribution function and monotonicity

Manski (1995) employs the concept of monotonicity to illustrate the consequences of imposing

weak additional assumptions when dealing with censored data. Vazquez et al. (1999) illustrate

this empirically and show that the use of a  monotonicity assumption leads to narrower bounds

than the worst case bounds. In these studies, bracket response was not an issue and with only

two populations (item respondents and item non respondents), the concept of monotonicity

implied only three possible relations between the two sub-population distributions: F(y|*=0, x)

= F(y|*=1,x), F(y|*=0, x) # F(y|*=1,x) and F(y|*=0, x) $ F(y|*=1,x). The choice among these

three can be made on the basis of prior beliefs on response behavior.

In the presence of bracket response, the three sub-populations lead to 28 possible

relations among the three distribution functions (see Appendix A). Each of these implies a

different monotonicity assumption. Not all 28 relations are equally plausible, and many of them

will appear to be inconsistent with the full response and bracket response data in our empirical

example. We will, therefore, only derive the bounds under three monotonicity assumptions which

seem to be a plausible interpretation of our data ; the other 25 cases can be derived in a similar3

way. 

We will use the following short hand notation:

                            Original notation:                                                          Shorthand notation:

F(y|* =1,x) F1 1

F(y|* =0, * =1, x) F1 2 01

F(y|* =0, * =0, x) F1 2 00

F(U(y)|* =0, * =1 x) F(u)1 2

F(L(y)|* =0, * =1 x) F(l)1 2

P(* =1|x) P(1)1

P(* =0, * =1|x) P(01)1 2

P(* =0, * =0|x) P(00)1 2

P(01)+P(00)=P(* =0|x) P(0)1



This suggests that it may be worthwhile to distinguish between initial non-respondents4

who do not know the answer and those who refuse to give the answer. We do not pursue this

here, since the distinction is not present in the data of our empirical example.
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In terms of this notation, our three choices from Appendix A are F #F #F , 00 1 01

F #F #F   and F #F  .1 01 00, 1 01

The inequality F  # F  can partially be checked from the data since the data identifies F1 01 1

at all values of y and F at all bracket bounds. In Section 4 we will show that in the empirical01 

example it is reasonable to impose F  # F  (and not F  = F  or F  $ F ). This assumption1 01 1 01 1 01

implies that at each value of y (savings, say, as in our empirical example), the conditional

probability of savings for full respondents is below that of bracket respondents. Thus, full

respondents, on average, are higher savers than bracket respondents. A reason for this

monotonicity assumption could be that higher savers keep better records of their savings and can

track the exact amount more easily. In this view bracket respondents do not know the exact

amount, but once they are routed to a question where exact knowledge is not important, they

have no problem on disclosing partial information.

The relation F #F #F  implies that, in addition to F  # F , full non-respondents are1 01 00 1 01

those who tend to have the lowest savings. This could be explained from a similar lack of

information argument. If respondents are better informed the higher their savings are, people

with low savings will more often not even know enough to determine in which bracket their

savings are. On the other hand, this inequality is in contrast with the often given argument that

full non-respondents tend to have high savings and refuse to reveal the amount due to privacy

concerns.4

The final monotonicity assumption we consider is F #F #F . This implies that the00 1 01

highest savers in the population tend to be full non-respondents. This assumption implies that

initial non-respondents consists of two groups. On the one hand for low savers confidentiality

is not an issue but lack of exact information prevents them from answering the initial question.

They have no problem providing partial information in brackets. On the other hand, there is a

group of initial non-respondents with high savings  who refuse to provide any information on

their savings amount for confidentiality reasons.

Notice that the monotonicity assumption given by F #F  is implied by the other two1 01

types of monotonicity. Therefore, we refer to F #F  as the weak monotonicity assumption,1 01  

since it assumes nothing about the distribution function of full non-respondents. On the other

hand, F #F #F  and F #F #F  are non-nested. We will refer to them as Monotonicity 1 and00 1 01 1 01 00

Monotonicity 2, respectively.



F1 # F01

0 # F00 # 1

and

max[F1,F(l)] # F01 # F(u)

F1P(1) % max[F1,F(l)]P(01)

# Fy|x #

F1P(1) % P(00) % F(u)P(01)

P(0) % P(01) F(u)&max[F1,F(l)]&1 &P(00)

F1 # F01 # F00

F1>F(l) F1 # F01 F1>F(l)
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(8)

(9)

(10)

(11)

(12)

The Weak Monotonicity assumption
The weak monotonicity assumption

implies

Applying (9) to (4) leads to the following set of upper and lower bounds

The width between upper and lower bounds in (10) equals

Comparing (11) to (7) shows that the bounds in (10) will be sharper than bounds in (6)

if . If the monotonicity condition is satisfied, i.e  , we can still have 

for values of y not too close to the lower limit of their bracket, showing that weak monotonicity

can be useful.

Monotonicity 1
The monotonicity assumption



max[F1,F(l)] # F00 # 1

and

max[F1,F(l)] # F01 # F(u)

F1P(1) % max[F1,F(l)]P(0)
# Fy|x #

F1P(1) % F(u)P(01) % P(00)

P(0)%P(01) F(u)&max[F1,F(l)]&1 &P(00)max[F1,F(l)]

F00# F1 # F01

max[F1,F(l)] P(00)%P(01) &F(l)P(01) F1>F(l)

P(00)F1%P(01) F1&F(l) F(l)P(00)

max[F1,F(l)]P(00)
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(13)

(14)

(15)

(16)

implies

and applying (13) to (4) leads to the bounds

The width between upper and lower bounds in (14) equals

The lower bound in expression (14) differs with respect to the lower worst case bound

in (6) by  . If   the difference between the lower

bounds  equals ; otherwise the difference is . In both cases

it is positive, so that bounds in (14) are sharper than those in (6). We can also compare bounds

under the Weak Monotonicity assumption with bounds based on Monotonicity 1; again, their

lower bounds differ by  so that bounds in (14) are sharper than those in (10)

as long as P(00) is positive.

Monotonicity 2
The monotonicity assumption

implies



0 # F00 # F1

and

max[F1,F(l)] # F01 # F(u)

F1P(1) % max[F1,F(l)]P(01)

# Fy|x #

F1[P(1)%P(00)] % F(u)P(01)

P(0)%P(01) F(u)&max[F1,F(l)]&1 &P(00)[1&F1]

F1>F(l)

P(00)[1&F1]

F1>0

P(00)[1&F1]

" 0 [0,1]

q(",x) FY[q(",x)]$"
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(17)

(18)

(19)

Applying (17) to (4) leads to the bounds

The width between upper and lower bounds in (18) is

The lower bound differs from that in (6) only if , whereas the difference with the

upper bound in (6) equals . The bounds in (18) are thus sharper than those in (6)

as long as ; this can be seen by comparing expression (7) and (19). Expression (10) -

bounds under Weak Monotonicity - and expression (18) have the same lower bound, and since

the upper bound of expression (10) is identical to the upper bound in (6), the total difference

between (10) and (18) equals . Whether bounds in (18) are narrower than bounds

in (14) cannot be determined from a theoretical point of view, since Monotonicity 1 and

Monotonicity 2 are non-nested.

2.3 Bounds on Quantiles
Distributions for variables like income, savings, etc., are often described in terms of quantiles.

For , the "-quantile of the conditional distribution of Y given X=x, is the smallest

number  that satisfies :



q(",x) / inf {y: FY|x(y)$"}

lb(y,x) # FY|x(y) # ub(y,x)

inf {y:lb(y,x)$"} $ inf {y:FY|x(y)$"} $ inf {y:ub(y,x)$"}

q(",x)'4 q(",x)'&4
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(20)

(21)

(22)

For " >1, we set , and for  " <0, . The bounds for the quantiles

follow from those for the distribution functions by ‘inverting’ (2), (6), (10),(14) and (18): these

can be written as

for appropriate choices of lb(y,x) and ub(y,x), all of them non-decreasing functions of y. Inverting

this gives:

Plugging in the bounds on the distribution function in (2), (6), (10), (14) and (18) in (22)

thus yields bounds on the conditional quantiles of Y. Each set of upper and lower bounds can be

represented in terms of the distribution function, in which case the percentage of nonresponse

is interpreted as the vertical width between bounds in a graph of the distribution function, or by

means of the quantiles, in which case nonresponse is reflected by the horizontal width between

bounds in the same graph.

3 The Data
We use the 1993 wave of the CentER Panel. This panel is a joint venture between the VSB

foundation and CentER for Economic Research (Tilburg University) and aims at providing a

better understanding of household savings and household financial decision making in The

Netherlands (see Nyhus (1996) for more detailed information). We will illustrate the usefulness

of the bounds derived above with an empirical example concerning savings of Dutch individuals.

The panel, dating from 1992, collects economic, sociological and psychological

information from approximately 3000 households in the Netherlands; the participants are

members of the surveyed households of age 16 or more. The panel is made up of two different

sub-panels, the Representative sub-panel and the High Income sub-panel. The Representative

sub-panel contains approximately 2000 households and is designed to be representative of the

Dutch population. The High Income sub-panel, with approximately 1000 households, should



 The survey distinguishes between savings accounts linked to a checking account with5

the postal bank and other savings and deposit accounts. We only consider the latter.

 The 755 individuals represent a total of 686 households. Thus 9.1% of our sample6

belong to the same household as other individuals in the sample. Given this small percentage we

continue our analysis assuming independence between savings and response behavior of all

individuals in the sample.
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represent units in the top decile of the income distribution. In both sub-panels data are collected

by means of a computerized system. We restrict attention to the Representative sub-panel only,

so that our initial sample contains 2794 individuals.

The survey contains five different sections. One of these sections, named ‘assets and

loans’, provides information about individuals’ assets such as the value of their shares, housing

wealth and savings accounts. We will consider the variable savings. As many other panels, the

CentER Panel shows a significant percentage of nonresponse for this variable. Questions on

savings are designed such that initial non-respondents are routed to a range card type of

categorical question. Initially, participants are asked how many savings accounts they possess.

All 2794 individuals from the Representative sub-panel answered this question; 2039 individuals

report to have zero savings account and the remaining 755 have one or more of such accounts.5

Our empirical example concerns the amount of savings in the first savings accounts of these 755

individuals.6

Table 1: Means (standard deviations) and Percentages (standard errors) for a selection of social and

economic variables.

Representative sub- Units with zero Units with at least

sample savings accounts one savings account

Units 2794 2039 755

Age 44.5 (16.3) 44.2 (16.2) 45.2 (16.7)

% Male 51 (0.9) 46 (1.1) 64  (1.7)

Family size 2.62 (1.31) 2.70 (1.34) 2.40 (1.21)

Education level* 2.30 (0.75) 2.24 (0.73) 2.46 (0.81)

% of house owners 60 (0.9) 58 (1.0) 66 (1.7)

% with savings accounts 27 (0.8) 0.00 100

Number of savings

accounts

0.43 (1.60) 0.00 1.42 (1.70)

*The variable education level measures the educational achievement of individuals on a scale from 1 to 4, where 1 indicates minimum

schooling (primary education) and 4 indicates an advanced university degree.
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Table 1 shows summary statistics for some socio-economic variables for the participants

in the Representative sub-panel. On average, those who hold one savings account are older than

those who hold zero savings account and belong to smaller households. Holders of savings

accounts have higher educational achievement than non-holders and are more likely to own a

house. Females are less likely to hold a savings account than males.

The initial question on the first savings account (asked only to individuals with at least

one savings account) is as follows,

‘...What was the balance of your 1  account on 31 December 1992?st

              1 - ‘any amount’ in Dutch guilders

              Don’t know...’

A total of  455 individuals answered this question with a specific amount. The minimum

amount reported was f.1 and the maximum f.228,767. The median for this group was f.6,000

with a standard deviation around the mean equal to f.29,494. 300 individuals answered ‘Don’t

know’, implying a 39.7% initial nonresponse rate. This latter group was routed to the following

range card type categorical question.

‘...Into which of the categories mentioned below did the balance of your 1  savings account gost

on 31 December 1992?’

Each initial non-respondent could choose one of the intervals mentioned in Table 2 or

the ‘Don’t know’ option. Out of 300 initial non-respondents, 207 gave an answer in one of the

intervals. The remaining 93 are full non-respondents. Thus the range card question reduces full

nonresponse from 39.7% to 12.3% so that it seems worthwhile to take the range card

information into account.

Table 2 shows the distribution of bracket respondents; 38% of the initial 300 non-

respondents report that their savings are in one of the lowest two categories: this corresponds

to 55% of the 207 bracket respondents. Since the median for full respondents is f.6,000, this

already suggests that, relative to full respondents, the bracket response individuals might tend

to have lower savings.
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Table 2: Distribution of range card answers of initial non-respondents.

Category Limits for each category Percentage of

respondents

Category  1 less than fl. 2,000 22 %

Category 2 f. 2,000  -  f. 5,000 16 %

Category 3 f. 5,000  -  f. 10,000 11 %

Category 4 f. 10,000  -  f. 15,000 6.7 %

Category 5 f. 15,000  -  f. 20,000 3.3 %

Category 6 f. 20,000  -  f. 25,000 3.0 %

Category 7 f. 25,000  -  f. 30,000 1.3 %

Category 8 f. 30,000  -  f. 40,000 2.0 %

Category 9 f. 40,000  -  f. 50,000 0.3 %

Category  10 f. 50,000  -  f. 100,000 1.3 %

Category  11 f. 100,000  -  f. 150,000 0.3 %

Category  12 f. 150,000  -  f. 200,000 0.3 %

Category  13 f. 200,000  -  f. 300,000 0.7 %

Category  14 f. 300,000 or more 0.7%

Category  15 don’t know 31 %

4 Estimating the Bounds
In this section we apply the theory of Section 2 to the data on savings discussed in

Section 3.We first estimate expressions (2) and (6) to show how bracket response can

significantly improve Manski’s (1995) original worst case set of bounds. We then examine the

data to motivate the Weak Monotonicity condition in Section 2.2. Finally, we estimate the

bounds under the three monotonicity assumptions.

The bounds in (2), (6), (10), (14) and (18) are functions of conditional expectations of

observed quantiles and can be estimated using the available sample and, for example,

nonparametric regression by means of kernel estimators (see for example Härdle and Linton,

1994). In our case, however, due to the small number of observations, we do not condition on

any variable X, but instead use sample fractions to estimate the probabilities: since studies of the

distribution of savings, income, etc., are usually expressed in terms of the quantiles, we use the

estimated bounds to retrieve and report the bounds on the quantiles (see Section 2.3).

The distance between any upper and lower bound at each of the quantiles reflects



max[F1,F(l)]
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uncertainty due to item nonresponse; in order to measure uncertainty due to sampling error we

place confidence bands around the estimated upper and lower bounds. Expressions (10), (14)

and (18) involve estimation of . Analytic derivation of the asymptotic distribution

of this estimator would be complicated; instead, we use a bootstrap method to find the

confidence bands. This method consists on randomly re-sampling 500 times form the original

data with replacement to estimate two-sided 95% confidence bands for both the upper and lower

bound. We use the same bootstrap procedure to derive confidence bands for the estimates of the

bounds in (2) and (6), although in these cases it would be straightforward to derive the pointwise

asymptotic distribution. In the figures below, we report the upper confidence band for the upper

bound: each point of the upper confidence band provides a 97.5% one-sided confidence band for

the upper bound. Likewise, we report the lower confidence band for the lower bound. The

(vertical) region between these two at each quantile shows an estimated interval that takes

account of uncertainty due to both, sampling error and item nonresponse: with probability of at

least 95% this region will contain the population quantiles of interest.

4.1 Estimating Worst Case bounds
Figure 1 shows the estimated upper and lower bound for Manski’s (1995) basic worst case

bound where bracket information is not taken into account (expression (2)). The solid curves are

the estimated upper and lower bounds whereas the dashed curves are the estimated upper and

lower pointwise 97.5% confidence bands for each of the estimated bounds. We can see that the

horizontal distance between estimated upper and lower bounds equals approximately 0.4,

reflecting the initial percentage of item nonresponse.
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Table 3 gives a range of estimated quantiles with the corresponding pointwise confidence

intervals corresponding to Figure 1.The distance between upper and lower bounds  is very wide

for any quantile. For example, with at least 95% confidence, the median is between f.350 and

f.42,000; this width seems too large to be of practical relevance.

Table 3: Estimated bounds and confidence intervals on savings (in Dutch Guilders) based on

expression (2); Worst Case without bracket information.

Quantiles Confidence Lower bound Upper bound Confidence

interval (Lower) interval(Upper)

20  Percentileth ƒ 0 ƒ 0 ƒ 2,400 ƒ 3,500

25  Percentileth ƒ 0 ƒ 0 ƒ 3,806 ƒ 5,400

30  Percentileth ƒ 0 ƒ 0 ƒ 5,935 ƒ 9,122

40  Percentileth ƒ 0 ƒ 0 ƒ 11,929 ƒ 19,958

50  Percentileth ƒ 350 ƒ 800 ƒ 26,725 ƒ 42,000

60  Percentileth ƒ 1,500 ƒ 2,400 ƒ 200,000 max

70  Percentileth ƒ 4,345 ƒ 6,000 max max

75  Percentileth ƒ 6,413 ƒ 9,300 max max

80  Percentileth ƒ 9,300 ƒ 11,850 max max

90  Percentileth ƒ 20,000 ƒ 27,093 max max



F1#F01

F01 0 [F(l),F(u)]

F1, F(l) F(u)

F(l) F(u)
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Figure 2 shows the estimates of the worst case bounds where we include the information

provided by the population of bracket respondents (expression (6)).

Table 4: Estimated bounds and confidence intervals on savings (in Dutch Guilders) based on

expression (6): Worst Case, Bracket information included.

Quantiles Confidence Lower bound Upper bound Confidence

interval (Lower) interval(Upper)

20  Percentileth ƒ 0 ƒ 0 ƒ 2,000 ƒ 2,000

25  Percentileth ƒ 0 ƒ 197 ƒ 2,000 ƒ 3,000

30  Percentileth ƒ 200 ƒ 606 ƒ 2,710 ƒ 4,893

40  Percentileth ƒ 1,260 ƒ 2,000 ƒ 5,000 ƒ 5,850

50  Percentileth ƒ 2,000 ƒ 3,023 ƒ 9,122 ƒ 10,000

60  Percentileth ƒ 4,755 ƒ 5,000 ƒ 12,255 ƒ 15,000

70  Percentileth ƒ 7,925 ƒ 10,000 ƒ 20,000 ƒ 25,000

75  Percentileth ƒ 10,000 ƒ 12,320 ƒ 27,274 ƒ 34,938

80  Percentileth ƒ 13,509 ƒ 16,265 ƒ 37,000 ƒ 72,021

90  Percentileth ƒ 25,000 ƒ 29,990 max max

The interpretation of the curves in Figure 2 is similar to that of Figure 1. Comparing these

two figures clearly shows how using the categorical questions can dramatically improve the

knowledge provided by the bounds. Comparing Table 3 and Table 4 also shows the improvement

of accounting for bracket information. For example, the width of the confidence interval for the

median is reduced from f.41,650 in Table 3 to f.8,000 in Table 4; although the width is still large,

the improvement is substantial.

4.2 Estimating Bounds with different assumptions of Monotonicity
Section 2 derives three bounding intervals according to three different assumptions of

monotonicity. All three of them include the assumption ; we first motivate this

assumption using the data of our empirical example. Although F  is unknown we know that01

; we use the sub-samples of full respondents and bracket respondents to

estimate  and . Figure 3 shows a plot of these estimates.

The solid step functions in Figure 3 are the estimates of  and  using the sub-

sample of bracket respondents. The dashed curve is the estimate of the distribution function F1

using the sub-sample of full respondents. We see that, except at the very high quantiles of the



[F̂(l)&F̂1]/F̂ F̂

[F̂(l)&F̂1] F̂2'[ ˆvar(F̂(l))% ˆvar(F̂1)]

F̂1 [F̂(l),F̂(u)] F1#F01

F1

F(l)

The test is based on  where  stands for the estimated standard deviation7

of  such that .
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distribution,  is in or below the area enclosed by  suggesting that , except

perhaps for very high y.

Table 5 gives the cumulative probability for various saving values; the column ‘full

response’ corresponds to point estimates for  and the column ‘bracket response’ are point

estimates of . Column 3 shows the results of testing whether the difference between each

pair of probabilities is significantly different from zero;  under the null, this test statistic should7

be asymptotically standard normal. The results confirm that the distribution for full respondents

is below that of bracket respondents except for very high values of y, and that the difference is

significant for values from f.5,000 to f.40,000. Thus, Figure 3 together with the evidence in

Table 5 motivate the weak monotonicity assumption.

Figure 4 shows the estimates for the bounds in (10), based on the weak monotonicity

assumption. As in previous figures, the solid curves are the estimated upper and lower bounds

on the quantiles of the distribution and the outside dashed curves are the estimated upper and

lower confidence band for the upper and lower bound, respectively.
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Table 5: Frequencies for the first savings account and test for the difference between full respondents

and bracket respondents.

Full response Bracket response Significance test

Units 455 207

## f 2,000 guilders 0.308 (0.022) 0.324 (0.033) 0.534

## f 5,000 guilders 0.470 (0.023) 0.551 (0.035) 2.509

## f 10,000 guilders 0.629 (0.023) 0.710 (0.032) 2.627

## f 15,000 guilders 0.719 (0.021) 0.807 (0.027) 3.108

## f 20,000 guilders 0.770 (0.020) 0.855 (0.024) 3.234

## f 30,000 guilders 0.884 (0.015) 0.918 (0.019) 1.693

## f 40,000 guilders 0.916 (0.013) 0.947 (0.016) 1.800

## f 50,000 guilders 0.941 (0.011) 0.952 (0.015) 0.736

## f 100,000 guilders 0.978 (0.007) 0.971 (0.012) -0.713

## f 150,000 guilders 0.987 (0.005) 0.976 (0.011) -1.376

## f 200,000 guilders 0.993 (0.004) 0.981 (0.010) -1.889
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Table 6: Estimated bounds and confidence intervals on savings (in Dutch Guilders) based on

expression (10).

Quantiles Confidence Lower bound Upper bound Confidence

interval (Lower) interval(Upper)

20  Percentileth ƒ 0 ƒ 0 ƒ 1,348 ƒ 1,750

25  Percentileth ƒ 0 ƒ 197 ƒ 1,878 ƒ 2,400

30  Percentileth ƒ 200 ƒ 606 ƒ 2,400 ƒ 3,755

40  Percentileth ƒ 1,260 ƒ 2,000 ƒ 4,990 ƒ 5,935

50  Percentileth ƒ 2,000 ƒ 3,023 ƒ 8,955 ƒ 10,000

60  Percentileth ƒ 4,755 ƒ 5,000 ƒ 12,255 ƒ 15,000

70  Percentileth ƒ 7,925 ƒ 10,000 ƒ 20,000 ƒ 25,000

75  Percentileth ƒ 10,000 ƒ 12,320 ƒ 27,274 ƒ 31,530

80  Percentileth ƒ 13,509 ƒ 16,265 ƒ 37,000 ƒ 66,136

90  Percentileth ƒ 25,000 ƒ 29,990 max max

Table 6 gives some of the quantiles in Figure 4. In this case the median of the distribution

is between f.2,000 and f.10,000 with (at least) 95% confidence. Comparing this and other

quantiles in Table 6 to those in Table 4 shows that imposing the weak monotonicity assumption

does not lead to a great improvement compared to the worst case bounds; this is also clear from

comparing figure 2 to 4.

The Monotonicity 1 and Monotonicity 2 assumptions involve F  which cannot be00

retrieved from the data; we need additional information on the population of full non-

respondents. One possibility is to look at various variables that could be related to wealth. The

CentER Data Panel provides information on ownership of cars, boats and other vehicles and on

financial debts.

Table 7 subdivides the 755 individuals into the three sub-samples under study. The

columns show the percentages of individuals that own the reported vehicles. The last column

shows the percentage of individuals who have some form of financial debt with banks, a private

financial institution, individual or retail companies. Furthermore, for the groups of full and partial

savings respondents we break down the ownership rates by savings quantiles. The numbers in

brackets are the standard errors for the estimated percentages. The table shows that for full non-

respondents, the estimated ownership percentages are slightly higher than for the others, for all

vehicles. This sub-sample also has the lowest percentage of financial debt. The rates per quantile

suggest that ownership rates increase with savings, while debt holding falls with savings. Taken

together, these findings suggest that individuals full non-respondents hold the highest amounts
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Table 7: Percentage (standard error) for various items of wealth for the sub-populations full

respondents, bracket respondents and full non-respondents.

Units Owners of Owners of Owners of Owners of Individuals

cars motorbikes boats caravans with debts

* =11 455 0. 648 (0.022) 0.033 (0.008) 0.016 (0.006) 0.101 (0.014) 0.20 (0.019)

    Low 25% 0.536 0.018 0.0264 0.0720 0.324

(0.048) (0.012) (0.015) (0.024)  (0.044)

   25%-50% 0.632 0.0264 0.0088 0.0720 0.212

(0.045) (0.015) (0.0087)  (0.024)  (0.038)

   50%-75% 0.684 0.0520 0.0264 0.088 0.148 

(0.044) (0.021) (0.015) (0.027) (0.033)

   High 25% 0.740 0.0352 0.0088 0.176 0.116

(0.041) (0.017) (0.0087) (0.036)  (0.030)

* =0, * =11 2 207 0.71 0.0435 0.058 0.092 0.26

(0.032)  (0.014) (0.016)  (0.020)  (0.031)

    Low 25% 0.640 0.0384 0.232 0.368 0.272

(0.066) (0.027) (0.058) (0.067)  (0.062)

   25%-50% 0.680 0.0388 0.020 0.0760 0.212

(0.065) (0.027) (0.019) (0.037)  (0.057)

   50%-75% 0.792 0.0200 0.080 0.116 0.272

(0.056) (0.019) (0.038) (0.044)  (0.057)

   High 25% 0.772 0.0760 0.0388 0.136 0.288

(0.058) (0.037)  (0.027) (0.048)  (0.063)

* =0, * =01 2 93 0.731 (0.046) 0.129 (0.035) 0.065 (0.025) 0.129 (0.035) 0.17 (0.039)

of savings. This evidence would support the argument that when individuals are faced with a

question on their savings, those who do not initially give an exact amount consist of two groups.

On the one hand we have low savers who are not fully aware of the amount of their savings

account; once they are given the chance to answer a range card question they will do so. The

rest, who still do not disclose information about their savings, even in a categorical question, are

those who will typically have high savings. They may refuse to reveal information about their

savings, for example, because of confidentiality reasons. Thus, the above argument supports the

Monotonicity 2 assumption leading to the bounds in (18). Figure 5 presents the estimates for

these bounds.
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Comparing Figure 5 with Figure 2 shows that bounds under Monotonicity 2 are sharper

than the worst case bounds, particularly at the lower quantiles of the distribution. Table 8

compares point estimates of the worst case bounds with bracket information - column 3 - to

bounds under the Monotonicity 2 - column 4 -. The third row in each cell shows the width

between upper and lower bound. This comparison shows that monotonicity leads to an

improvement for quantiles up to the 80  percentile of the distribution.th

Finally, Figure 6 shows the consequence of estimating the bounding intervals based on

Monotonicity 1 (expression (14)). Although Table 7 suggests that Monotonicity 2 is more

plausible than Monotonicity 1, it is interesting to compare the estimates of the bounds under the

two assumptions. Both Monotonicity 1 and Monotonicity 2 lead to narrower bounds than the

Weak Monotonicity (compare Figures 4 and 5 and Figures 4 and 6). Monotonicity 2 leads to

narrower bounds for the lower quantiles, while Monotonicity 1 improves precision at the higher

quantiles.
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Table 8: Comparing point estimates from bounds estimated in (6) and bounds estimated in (18). Point

estimates are based on 95% confidence bands.

QUANTILES POINT ESTIMATES Point estimates of expression (6): Point estimates of expression

Worts case and bracket response. (18). Bounds with Monotonicity

(with 95% confidence) 2. (with 95% confidence)

20  Percentile Lower bound:th

Upper bound:

Difference: fl. 2,000 fl. 1,425

fl. 0.00 fl. 325

fl. 2,000 fl. 1,750

25  Percentile Lower bound:th

Upper bound:

Difference: fl. 3,000 fl. 1,794

fl. 0.00 fl. 606

fl. 3,000 fl. 2,400

30  Percentile Lower bound:th

Upper bound: 

Difference: fl. 4,693 fl. 2,559

fl. 200 fl. 1,196

fl. 4,893 fl. 3,755

40  Percentile Lower bound:th

Upper bound:

Difference: fl. 4,590 fl. 3,935

fl. 1,260 fl. 2,000

fl. 5,850 fl. 5,935

50  Percentile Lower bound:th

Upper bound:

Difference: fl. 8,000 fl. 6,324

fl. 2,000 fl. 3,676

fl. 10,000 fl. 10,000

75  Percentile Lower bound:th

Upper bound:

Difference: fl. 24,938 fl. 20,298

fl. 10,000 fl. 11,232

fl. 34,938 fl. 31,530

80  Percentile Lower bound:th

Upper bound:

Difference: fl. 58,512 fl. 51,311

fl. 13,509 fl. 14,825

fl. 72,021 fl. 66,136

90  Percentile Lower bound:th

Upper bound:

Difference: not defined not defined

fl. 25,000 fl. 27,000

max max
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5 Conclusions 

In this paper we have extended the approach of Manski (1994, 1995) to deal with item

nonresponse in micro surveys. Manski proposes to estimate bounds around the unknown

conditional distribution function of the variable of interest. This approach does not fully identify

the unknown distribution function. It avoids making additional assumptions on the data

generating process. The extension in this paper consists of deriving bounds taking into account

that initial non-respondents can sometimes provide partial information on the variable of interest.

This is the case when they are routed to questions of a categorical nature, such as range card or

unfolding brackets questions. Using the bracket information from these categorical questions can

improve the bounds since they allow initial non respondents to provide information in the form

of brackets. We derive and compute bounding intervals of a worst case type for the quantiles

of savings in a Dutch cross section. For this variable the initial nonresponse rate approximates

40%. Once non- respondents are faced with the choice to provide information in the form of

direct bracket response, the percentage of full nonresponse is reduced to 12.3%. Accordingly,

we find much narrower worst case bounds if we take the brackets information into account. We

also derive bounds that make use of several monotonicity assumptions; because we are dealing

with three sub-populations - full respondents, bracket respondents and full non-respondents -

there are many different monotonicity assumptions that can be made. We consider three of them,

and interpret them using two different reasons for nonresponse: lack of information and concerns

about confidentiality. We investigate the information available in the data to select, derive and

estimate two bounding intervals under the concept of monotonicity which are in line with our

data.
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Appendix A: Monotonicity Assumptions
Bock A1

F   #  F   #  F F   #  F   #  F F   #  F   #  F1 00 01 1 01 00 01 1 00

F   $  F   $  F F   $  F   $  F F   $  F   $  F1 00 01 1 01 00 01 1 00

Complete ordering of the distribution function for the three sub-populations

Block A2

F  $ F   and  F  $ F00 01 00 1

F  $ F   and  F  $ F01 00 01 1

F  $ F   and  F  $ F1 00 1 01

F  # F   and  F  # F00 01 00 1

F  # F   and  F  #  F01 00 01 1

F  #  F   and  F  #  F1 00 1 01

This table displays all cases where the maximum or the minimum of the three functions is known, but where no assumption

is made on the relationship between the remaining two.

Bock B

F   =  F   =  F1 01 00

F   =  F   #  F F   =  F   #  F F   =  F   #  F1 01 00 1 00 01 01 00 1

F   =  F   $  F F   =  F   $  F F   =  F   $  F1 01 00 1 00 01 01 00 1

This block displays all relationships involving an assumption of equality. The first corresponds to the exogenous selection

assumption. 

Bock C

F   =  F F   =  F F   =  F1 01 1 00 01 00

F   #  F F   #  F F   #  F1 01 1 00 01 00

F   $  F F   $  F F   $  F1 01 1 00 01 00

This block displays all single relationships between two of the three functions. Nothing is assumed on the missing third.
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