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DOUBLE CHECKING FOR TWO ERROR TYPES

J.J.A. Moors*

March 8, 1999

Abstract

When auditors have to check large populations of recorded values, they use sampling
methods nowadays. From the number of errors found in the sample, an upper confidence
level for the fraction of errors in the population can be derived. Thereby, it is assumed
that all auditor’s checks were faultless.

Auditors may make mistakes, however: errors in the sample may remain unnoticed,
a correctly recorded value may be seen as an error by the auditor. Consequently, it is
important to check the auditing process itself. In this paper, this is done by checking a
subsample of the checked values once more - now by an expert who is assumed to work
flawlessly. The numbers of both types of auditor’s error have to be combined with the
number of errors found in the first sample; from these, an upper confidence limit for the
population error fraction has to be derived.

As a first step, the maximum likelihood estimators for the parameters involved are
presented here. Then, the desired upper limit can be calculated by similar methods as

used in Moors et al. (1997).

Key words: auditing, confidence limit, double inspection, error types, inspection er-

rors, quality control, repeated checks.
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1 The model

In a very large population of recorded values, an unknown fraction p; is recorded incor-

rectly. To estimate p;, an auditor draws a random sample of n values and checks these;

he holds X of them for incorrect. (Random variables will be denoted by capitals.)
However, the auditor is not unfallible: with probabilities ps and ps4, respectively, he

makes the following two errors:

e an incorrectly recorded value is considered correct;

e 3 correct value is viewed as erroneous.

Note that p, and p4 are in fact conditional probabilities. To take into account these
two error possibilities, a random subsample of size m is drawn from the already checked
values. The number of values in this subsample, seen as erroneous by the auditor, is
denoted by X;.

An absolute expert now double checks these m values flawlessly. Among the X,
values, labeled as erroneous by the auditor, he finds Z; values to be correct after all; Z
values are erroneous indeed. Among the remaining m — X; values, the expert finds Y}
new errors - missed by the auditor; W values are correct indeed. The total number of
errors found by the expert is Y = Y] + Z5. Figure 1 shows the probability tree and the

observed numbers, introduced here; Table 1 presents an even simpler overview.

Figure 1. Double checked (sub)sample.
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Table 1. Double checked (sub) sample.

Expert
Auditor  Correct Incorrect Total
Correct W Yi W +Y
Incorrect 7 7o X
Total W+2, Y m

The following binomial distribution Laws follow immediately:
L(Y1) = B(m, p1 p2)
L(Zx) = B[}, (00— ) sl
N
L(Ze) = B[, \/Oo(oo - \/6)]

A simpler representation of the joint distribution of the sextet (W, Xy,Y1,Y, 71, Z5)

1s:

£(Y) = B(1, f’")

L(V|Y) = B(, f) o
L(Z|Y) =Bl -1, ¢A)

/1, Zeindependent, conditionallyonY

Of the original sample, n —m values are checked only once; let Xy denote the number

of errors found by the auditor amoung these. The distribution of Xy = X — X satisfies

L(Xe) = B[\ - II,\/oo(oo . - \/oo)\/A] 1.2)
Xyindependentof (W, X1,Y1,Y, Z1, Zy) '

e) + (o0

Now, (1) and (2) together represent the precise distribution of all random variables

involved. In comparison with (3) in Moors et al. (1997), the distribution of Z; is added.

2 Point estimators

From the expectations

E(Y1) = mpipa, E(Z1) =m(1— pi)ps, B(X) =n[pi(1—ps) + (1 — p1)p4]

the moment estimators for py,ps and ps can be found immediately. The moment

estimator F for p; reads
X Yi—7
=2 1

(2.3)

n m



It has the curious property that the numbers of the two different errors may compen-
sate each other: if Y| = Z;, the estimator reduces to the usual sample fraction of errors.

This is not very satisfactory.

To find the maximum likelihood (ML) estimator, the loglikelihood function is
derived from (1) and (2). Introduce the probability ps that a correct value is found
correct indeed in both checks, and the probability ps that an incorrect value is considered
incorrect indeed throughout:

{ ps = pi(l—p2)

Ds = (1 —Pl)P4

Then the loglikelihood reads
log L(p1, ps, ps) = ¢ + y1log(pr — ps) + 22 logps
+z1log ps +wlog(l — p1 — ps) + 2 log(ps + ps)
+(n —m — x5)log(l — ps — ps)

It will be assumed first that w,y;, 21 and 29 are positive. Equating the three partial

derivatives to 0 leads to the equations for the ML estimates g; for p; (i =1,3,5) :
(@) y191—9s = wl—g,—g;

(b) Y191—G3 — 2293 = Xagz+gs —n —m — Tal — g3—gsx (2-4)

(€) wl—g,—gs— 2195 = Tagst+gs —n—m — T2l — g3—g;
This system can be solved as follows. First of all, (4a)-(4b)+(4c) reduces to
29 gs = 21 g3 (2.5)

while (4a) is equivalent to
y1(1 — g3 — 95) = (w + yl)(gl - 93) (2.6)
Substitution of (5) and (6) in the right-hand side of (4b) gives after some simplification
z11(n — x)gs = x(w + y1)22(91 — 93) (2.7)

Using (5), (4a) can be rewritten as
Y1(z2 — 71 g3) = (W +y1)22(91 — g3) (2.8)

Finally, combination of (7) and (8) gives
T 29
93 =

n X1



This expression even holds for 7; = 0; the only exception is of course the case z; = 0.
Excluding this exception for the moment, the ML estimators for the auxiliary variables

become

Gg = XZQTLXL G5 = XZlTLXl (29)
In principle, the central estimators can be simply derived:

Gl = nX1Y1+X(WZ2—Y1Z1)nX1 (W + Yl)

Gi = X(WH+Y)ZnX\W — X(WZy,—Y17y)

Note that for Z; = 0, the formulae for G; and (75 reduce to expression (6) in Moors
et al (1997).

The foregoing derivation breaks down in several cases; they are studied in detail
below. Cases (a) and (b) apply to the situation that the complete subsample consists
either of correct or incorrect values. Cases (c) and (d) apply to the auditor finding
the complete subsample correct or incorrect, respectively. In (a)-(d) is it assumed that
exactly two of the four variables W, Y7, 7, Z5 have value 0; the cases that three of them

have value 0 can be derived from these.

Casey; = z9 = 0a (2.11)
In this situation all values in the subsample are correct; consequently, there is no way to

obtain information on py. Indeed, the expression for G5 in (10) does not hold any longer,

while G; and (G4 can be simplified to
X
Gi=G35=0, G4 =G5 =—

n
The interpretation is that errors found are considered to be auditor’s mistakes.

Casew =z = 0b (2.12)
Now, no information on p4 is obtainable; (10) reduces to
X
Glzl—G5:1, G2:1—G3:1——

n
The auditor only finds correct values by mistake.

Casez) = 2y = 0c (2.13)



In this case the expression for (¢; in (10) breaks down. Using the reparametrization
Pe = P1P2

D7 =P3+DPs
the loglikelihood may be simplified to

log L(pe, pr) = ¢ + ylog ps + (m — y) log(1 — pe — pr)
+x9log pr+ (n—m—x5) log(1—p7) So, not all parameters p; can be estimated separately.
The ML-equations become

y__m=y _ X nTm—TI
. e 1f96—97 g7 1—g;
with the solutlonX v %
Gg = (71——2)’ G, = 22 (2.14)

n n
Some heuristics will be used now to find an estimator for p; nevertheless. Since the
auditor judges all values - correct or not - in the subsample to be correct, py should be

large and p4 small. Hence, we make the additional assumption

P2=1—pa (2.15)
Then, (11) leads to
Y
Gy =—

m
In this case, only the subsample of size m is used to estimate p;.

Casew =y, = 0d (2.16)
Now, the loglikelihood may be written as log L(ps, ps) = ¢ + ylogps + (m — y) log ps
+ z9log(ps + ps) + (n — m — x9) log(1 — p3s — ps) The ML-equations become

Yy n—m— Xy Ty m—y
_3_ l—9g95—9s5 _93+95 g

g
with the solutionX P \ P
Gy = <m+—2)2’ Gy = (m + Xo)(m — 2») (2.17)
nm

nm
All values in the subsample are seen as incorrect by the auditor: ps should be small and

p4 large. Using assumption (12) once more, this leads to
Zy
Gl —_-
m
Again, uncertainty about py and p,4 leads to discarding the n — m auditor’s observations.
It may even occur that three variables of the quartet (W, Y1, 7}, Z5) are zero; such a
case may be seen as the pairwise occurrence of (a)-(d). Note that the foregoing solutions

are consistent in the sense that both members of such a pair lead to the same solution.

Casew = me (2.18)
This is (a) N (c) with the solution G; = 0.

Casezy = mf (2.19)



Case (a) N (d), G; =0.

Casezy = myg (2.20)
Case (b) N (d) with solution Gy = 1.

Casey, = mh (2.21)
Case (b) N (c) with Gy = 1.

In summary, the ML estimator for p; is given by

Yim forX; =0
Gi=< (n—X)Yin(m—X)+ XY - Y1)nX; for0<X;<m (2.22)
Y —-Yim forXi=m

3 Example

To evaluate the behaviour of the estimators F} and (57 the following nummerical example
was considered:

n=>50, m=20, p; =015 p, =02 p,=0.1
From the binomial distribution in (1) and (2), 100000 replications of the vector

(372, Y, Y, 21, %)
were obtained. For each combination of values, the moment estimate f; and the ML-
estimate g; were calculated. Figure 2 shows a picture of the observed frequency distri-
butions. Table 2 presents some distributional characteristics; the measures for skewness

and kurtosis are the third and fourth standardized moments, respectively.



Figure 2a. Simulated distribution of moment estimator Fj.

Figure 2b. Simulated distribution of ML estimator (.
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Table 2. Characteristics of simulated distributions.

Estimator Mean Variance Skewness Kurtosis
F 0.15013 0.005909 0.1145 3.068
Gy 0.14924 0.005395 0.2373 2.953

Both distributions appear to be quite similar. The ML estimator has a lower variance,
mostly due to the negative values that I} can take.

The simulations were repeated for p; = 0.15 with other values of p; and p4, now
with 50000 replications. The average values of F} and (G; appeared to be quite close
to py: for all combination of (py,pa,ps)-values, the average of F) deviated from p; at
most 4 * 1074, reflecting the unbiasedness of I;. The average GGi-value per simulation
run fell short of p; throughout, the maximum difference being 5.6 * 1073, Table 3 shows

the variances of both estimators.

Table 3. Simulated variance of Gy (and F}) * 1000 : p; = 0.15.

pe O 0.05 0.10 0.15 0.2
P2
0 3.214 4.048 4.618 4.990 5.304
(2.538) (3.733) (4.890) (5.894) (6.776)
0.05 3.487 4.275 4.806 5.170 5.448
(2.771) (4.016) (5.105) (6.164) (7.068)
0.1 3.730 4.455 5.024 5.378 5.647
(2.970) (4.190) (5.409) (6.481) (7.472)
0.15 3.971 4.725 5.189 5.564 5.762
(3.210  (4.511) (5.659) (6.769) (7.664)
0.2 4.211 4.910 5.360 5.662 5.857

(3.427) (4.730) (5.868) (6.872) (7.912)

For p; > 0.1, G; has a lower variance than Fy; for py < 0.05 on the other hand, Fj is

more accurate.
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4 Discussion

Moors et al. (1997) discussed a model for double checking, where the first investigator
(the auditor) could only make one possible mistake: missing an error. Of the many pos-
sible generalizations mentioned there, one was considered here: the additional possibility
is taken into consideration that the auditor finds fault with a correct value.

Both the moment and the ML estimators for the three parameters involved were de-
rived. Note that the ML estimators deviate from the expressions found by Ter Steeg
(1998); the explanation is that Ter Steeg based his derivation on the distribution of
(X,Y1, Z1) only.

The logical next step of course is to find upper confidence levels for the crucial pa-

rameter p;. We plan to do so in the near future.
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