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*

Disjunctive Permission Structures

Robert P. Gilles’ Guillermo Owen?

February 1999

Abstract

In many (internal) organization structures economic decisions are made
through a chain of decision makers. In this paper we give a game theoretic
analysis of such hierarchical organization structures: Every participant has to
get permission for his actions from at least one chain consisting of superiors.
This assumption forms the foundation of the disjunctive approach to coopera-
tive games with a permission structure. A computational method for the study
of these disjunctive games with a permission structure is provided.

We show that the disjunctive approach implies that there is competition
among superiors over the leadership of a subordinate, which may lead to a
higher payoff of the subordinate in the presence of more superiors. This fea-
ture is used to show that even in the presence of small transaction costs the
formation of a hierarchical production organization may be Pareto superior to
the situation without such a hierarchical firm.
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1 Introduction

Our goal is to analyze the consequences of the adoption of a hierarchical authority
structure on the set of players in the context of a cooperative game with transferable
utilities. In this analysis we suppose that the authority structure is exogenously given
and puts certain constraints on the behavior of the players in the game.

The motivation to analyze the consequences of a hierarchical authority structure
on a cooperative game is that in many economic organizations one adopts a hierar-
chical authority structure. Here we consider an abstract authority structure in which
certain players dominate certain other players in the sense that the superiors have
well specified veto power over the activities undertaken by their subordinates. The
consequences of these specified forms of constraints on any cooperative game are then
studied using the general analytical and computational framework outlined in Owen
(1986).!

For example consider a production situation with three players, described by the
set N ={1,2,3}. Suppose that only player 1 is productive and creates an output of
one unit. This can be described by a cooperative game with transferable utilities given
by v:2Y¥ - Rwithv(F)=1if1 € F C N, and v (F) = 0 otherwise. This is an
example of a unanimity game. Next suppose that players 2 and 3 are both superiors
of player 1. What are the consequences of this hierarchical authority structure for the
productivity as well as the rewards of the three decision makers involved? There are
several possibilities to specify the power of the superiors in the authority situation
over their subordinates. In the conjunctive approach developed in Gilles, Owen and
van den Brink (1992), Derks and Gilles (1995), and van den Brink and Gilles (1996)
it is assumed that every player has complete veto power over the actions undertaken
by his subordinates. Here and in van den Brink (1997) this assumption is modified
to the other standard case in which a subordinate only has to get permission from
at least one superior within the hierarchical authority structure. Thus an action of
a certain player has to be authorized by a chain of subsequent superiors within the
hierarchy. To distinguish this approach from the conjunctive approach we denote this
behavioral model as the disjunctive approach.’

Let us consider the three-player example of a hierarchical production situation.
In a conjunctive hierarchy player 1 has to obtain permission to produce from both

his superiors, who are players 2 and 3. Hence, this conjunctive production situation

LOwen (1986) provides an analysis of cooperative games with limited communication. His method
can however be transfered easily to the analysis of games with authority structures as is the case in
Gilles et al. (1992) and this paper.

2For an alternative approach we refer to Winter (1989).



can be represented as a game v, : 2 — R with v, (N) = 1 and v, (E) = 0 for any
E ¢ N. (The game v, is usually called the “conjunctive restriction” of the original
game v.) In contrast, within a disjunctive hierarchy player 1 has to obtain permission
to produce from either player 2 or player 3 or both. Such a production situation can
be represented by a game vy : 2V — R with vg (E) = 1 if E € {12,13,123}® and
vq (E) = 0 otherwise. The game v, is referred to as the disjunctive restriction of the
original production game v.

In general we represent a situation with a hierarchical authority structure as a
cooperative game with a permission structure, consisting of a set of players, a cooper-
ative game with transferable utilities describing the potential outputs of the various
coalitions, and a mapping that assigns to every player a subset of (direct) subor-
dinates describing the authority structure. Now a coalition can only form if every
member is authorized to participate and thus for each member there is at least one
direct superior within that coalition. This leads to a reduced collection of formable
coalitions. A coalition can only generate its potential output if it is autonomous
within the hierarchical authority structure. By adopting that only autonomous coali-
tions generate their potential output, we get a restriction of the original cooperative
game, which is called the disjunctive restriction. This exactly what is pursued in the
three player example.

With the use of the disjunctive approach we are able to evaluate the consequences
of the adoption of a hierarchical production organization. In the case that this hier-
archy has a single topman, there may arise competition regarding the authority over
a subordinate among his direct superiors. In this analysis we use the Shapley value
of the disjunctive restriction as a utility function that assigns to each player in the
situation an expected payoff. In general the subordinate as well as the topman in the
hierarchy achieve higher payoffs than the competing direct superiors of the productive
subordinate.

As a natural consequence we derive that in the presence of small transaction costs
a disjunctively hierarchical organization of production may be Pareto superior to a
market organization. Here the owner of the production facility separates ownership
from control by allowing a middle tier of managers within the production organiza-
tion. The competitiveness among those managers increases the expected payoff of
the owner of the production facility. On the other hand, the hierarchical production
organization provides shelter for the market participants in the form of a reduction

of their transaction costs. This analysis goes beyond the Coasian approach to the

3Here we use for convenience the notation 12 = {1,2}, 123 = {1, 2, 3}, etc..



nature of the firm (Coase (1937)) in the sense that a separation of ownership and
control as well as the hierarchical rules depend on the size of the transaction costs in
the market.

We emphasize that the analysis and model presented in this paper should be
distinguished from the literature on link and network formation as developed in, e.g.,
Myerson (1977), Owen (1986), Aumann and Myerson (1988), and Qin (1996). In
those contributions the structures studied are based on equivalent communication
relationships in which the participants have equal status. Here we deal instead with
non-equivalent, hierarchical authority relations in which the participants have unequal

status.

2 Disjunctive permission structures

The notion of a game with a permission structure has been introduced by Gilles,
Owen and van den Brink (1992). Let N = {1,...,n} be a finite set of players. A
cooperative game with transferable utilities — or a TU-game — on N is a function
v:2V — R such that v() = 0. The collection of all TU-games on N is denoted by
GN. We remark that G is a (2" — 1)-dimensional real vector space.

A permission structure on N is a mapping S: N — 2V. In our setting j € S(i)
means that player ¢ is a superior of player j in the permission structure S on N.
We call a player j € S(i) a successor of i in S. Finally, the mapping S:N — 2N
is the transitive closure of S, i.e., for every player : € N j € S (z) if there exists
a finite sequence ji,...,jx in N (K € N) such that i = 71, j = jk, and for every
1 £ k£ K —1it holds that jx1 € S(jx). The players j € §(z) are called the
subordinates of player ¢ in S. A permission structure S acyclic if for every player
i € N it holds that i & S (). In this paper we assume that each permission structure
is acyclic.

Furthermore, we define Bg := {i € N | S7'(i) = 0}, where for every player i € N
we have S71(i) = {j € N | i € S(j)}. It is clear that for every acyclic permission
structure S on N it holds that Bg # (). A permission structure S on N is strictly
hierarchical if it is acyclic and |Bg| = 1, where for every finite set P we denote by
|P| € N the cardinality of that set. Without loss of generality we may assume that
for any strictly hierarchical permission structure S we have Bg = {1}.

A triple (N,v,S) is a game with an acyclic permission structure when
v € GV and S is an acyclic permission structure on N. A game with a permission

structure describes the potential output of the players as well as a (hierarchical)



authority structure on that collection of players. However, it does not yet indicate
how the authority structure S affects the potential outcomes of cooperative behavior
described by the game v.

In this paper we assume that the authorization of at least one direct superior is
necessary and sufficient for a player to enter in cooperation with other players. In
this case a coalition & C N is “formable” if for every member i € E there is at least

one direct superior present in that coalition.

Definition 2.1 A coalition E C N is (disjunctively) autonomous in the acyclic
permission structure S if for every i € E\ Bs: S71(i) N E # 0.

Definition 2.1 can be restated by noting that a coalition £ C N is disjunctively
autonomous if and only if for every player ¢+ € E there exists a collection of players
{j1,---yJm} C E with j; € Bg, jm = i, and for every 1 < k < m — 1 we have
k1 € S(J)-

We denote by ¥g C 2V the collection of all disjunctively autonomous coalitions in
the acyclic permission structure S. With reference to the introduction the collection
Vs exactly describes the class of all formable coalitions based on the disjunctive

approach.

Lemma 2.2 Let S be an acyclic permission structure. Then (), N € Wg and for every
E FevVvs: FEUF € Vg.

Proof. Evidently ) € Ug as well as N € Ug. Take E, F € Ug. Let i € E\ Bg. Then
by Definition 2.1 ) £ S~' (i) N E C S (i) N [E'U F]. Similarly for i € F'\ Bg. This
shows that £ U F € Ug. [}

In Example 2.5 we will show that Wg does not have to be closed for taking in-
tersections. The knowledge that finite unions of autonomous coalitions are again
autonomous leads us to the introduction of the maximal autonomous subcoalition of

any given coalition in the setting of an acyclic permission structure.

Definition 2.3 Let S be an acyclic permission structure on N and let E C N. Then

the subcoalition given by
Y(E):=U{FeV¥g | FCE}

is the (disjunctively) autonomous part of E in S.



From Lemma 2.2 it follows that for every coalition £ C N 1 (E) € ¥g and so ¢ (E)
is the largest autonomous subcoalition of E in S. Moreover, ¢ (¢ (E)) = v (E) and
Vg={E CN | E=v¢(F)} Ifa coalition is not autonomous, it can only “form”
indirectly through the addition of other players to create an autonomous superset.

These related coalitions are introduced in the following definition.

Definition 2.4 Let E C N be a coalition. A coalition F' C N is an (disjunctive)

authorizing set for E in the acyclic permission structure S if
1. FeVg and EC F, and
2. there does not exist a G € Vg such that EC G C F and G # F'.
The collection of all authorizing sets for E in S is denoted by As (E) C V.

Clearly, £ € Vg if and only if for every member ¢ € E there is an authorizing set
F; € Ag ({i}) with F; C E. Another characterization of autonomous coalitions with

the use of authorizing sets is given by

Vg ={ECN |2 (E)={E}} and Ug= [ As(E).

ECN

Furthermore we mention that for every non-empty coalition ) # E C N it holds that

As a special case we have the “empty” permission structure Sy defined by Sy (i) =
() for every i € N. Obviously, Ug, = 2V and for every E C N we have g, (E) = {E}
and g, (F) = E. Later we will use the empty permission structure to show that the
disjunctive approach indeed generalizes the standard approach to cooperative games.

We conclude this section with an example to illustrate these concepts.

Example 2.5 Take N = {1,2,3,4,5}. We introduce the permission structure S by
S (1) ={2,3}, S(2) = {4}, S(3) = {4,5}, and S (4) = S (5) = 0. We can represent
this strictly hierarchical permission structure by a directed graph on the set of players
N. This graph is given in Figure 1.

From the graph it is clear that authorizing sets for individual players are just collec-
tions of players on paths in the graph from that particular player to the leader in the
hierarchy, player 1. We can deduce that

2As ({4}) = { {1’274}7 {1v3’4} } C Us.

This immediately shows that the intersection of two (disjunctively) autonomous coali-
tions does not have to be autonomous. Namely, {1,4} = {1,2,4} N {1,3,4} & Ug.

6



Figure 1: Hierarchy used in Example 2.5.

To illustrate autonomous parts of a particular coalition we take the coalition £ =
{1,2,5} & Ug. It is evident that its autonomous part is given by ¢ (E) = {1,2} € V.
This illustrates the general property that for every non-autonomous coalition F ¢ Ug
we have that ¢ (E) ¢ E.

3 Disjunctive restrictions

Let v € GV be a TU-game on the set of players N. We assume that v(E) represents
the potential output of the coalition £ C N in case this coalition forms. However,
if F/ is not disjunctively autonomous in the permission structure S, the authority
exercised prevents the coalition F from forming. In fact only its autonomous part
¢ (EF) C E is able to form within S.

We therefore introduce a mapping Pg: GY — GV, which assigns to every game

v € GV its disjunctive restriction, given as the game Pg (v) € GV with
Ps(v) (E) = v (B)), ECN.

Obviously, for the empty permission structure P, (v) = v for every v € GV,

In order to analyze the properties of the mapping Ps on GV we recall two well
known bases for the (2" — 1)-dimensional real vector space GV, namely the standard
basis and the unanimity basis. The standard basis of GV is given by the games
{zg | EC N, E # 0} defined by

zp(F) =

1 if E=F
0 if E4£F



It is easy to see that in terms of the standard basis the game v € GV can be expressed

as

v = Z ’U(E) *ZE- (1)
ECN
E#)
The unanimity basis of GV consists of the collection of unanimity games {ug | £ C

N, E # ()} given by

up(F) =

1 fECF
0 otherwise

In terms of the unanimity basis the game v € GV can be expressed as

v="> AE)-ug, (2)

E£0

where the quantity A,(F) is referred to as the dividend of coalition E in game v
given by Ay(E) = Y pep (1) (F).

The next lemma provides a deeper insight into the properties of the mapping Pg
for any given acyclic permission structure S using the two bases of the space GV. The
proof is very similar to the proof of the characterization of the Conjunctive restriction

as given in Gilles, Owen and van den Brink (1992) and is therefore omitted.

Lemma 3.1 Let S be an acyclic permission structure on N. The mapping Ps is a
linear projection of the rank |[¥g| on GV . Its kernel — or null space — is spanned by
the standard basis games {zg | E & Vg} and its image is spanned by the unanimity
games {ug | £ € Yg}.

Next we investigate the dividends of the coalitions within the disjunctive restriction
of a certain game in a given acyclic permission structure. Authorizing sets turn out
to be of crucial importance in this analysis.

Let E C N be a coalition. We define 2% (E) C 2V as the collection of all
finite unions of authorizing sets for F, i.e.,, F' € A% (FE) if and only if there exist
F,e2s(F) (1 <q=< Q) such that F' = UqQ:1 F,. 1t is clear that

A (F) C AL (F) C Ys.
Theorem 3.2 Let v € GN. Then its disjunctive restriction on S is given by

Psw)=3 0 Y A(E)+ > 8p(F)-AJ(F) - up,

EcVs |\ Feagl(B) Fedg(E)

where



1. AN E) ={FCN|EecUAs(F)},
2. As(E) :={F C N | E e A% (F)\ Us (F)}, and

3. for every E € Vg and F € AL (E): 6p(F) = Ay, (F) € Z with wp = Ps (up)

and 7 the collection of all whole numbers.
A proof of Theorem 3.2 is included in Appendix A of this paper.

The numbers 6g(F) € Z for coalitions E,F C N as introduced in Theorem 3.2
are clearly independent of the game v, and therefore determined completely by the
structure as described by S. We propose as an unproven conjecture that 6g(F) €
{-=1,0,1} for all E,F € 2V, In certain cases this can be confirmed and a formula
for these numbers can indeed be derived. To illustrate this, an analysis is given in
Appendix B of this paper. However, a general proof of the conjecture is not available
yet.

We complete our discussion of the disjunctive restriction of a cooperative game by

focussing on the properties of the restricted game. We recall that a game v is called
monotone if for all £, F C N with E C F: v(E) < v(F),

superadditive if for all E, F C N with ENF = () we have v(E)+v(F) S v(EUF),
convex if for all £, F C N it holds that v(E) +v(F) S v(EUF) +v(ENF), and

balanced if the core of the game v is not empty, i.e., there exists z € RY with
YoienTi=v(N)and Y . px; = v(E) for every £ C N.

The next result states that all properties as described above, except the convexity of
a game, are natural properties of disjunctive restrictions of arbitrary monotone games

on strictly hierarchical permission structures.

Theorem 3.3 Let (v, S) be a monotonic game with an acyclic permission structure.

Then the following properties hold:
1. Pg (v) is a monotone game.
2. If v is superadditive, then Ps (v) is superadditive as well.
3. If v is balanced, then Pg (v) is balanced as well.

4. If S is strictly hierarchical, then Pg (v) is monotone, superadditive, and bal-

anced.



Proof. Let (v, S) be such that v is monotone and S is acyclic.

1. Take E, F C N with E C F. Then ¢ (E) C ¢ (F') and by monotonicity of v
Ps (v) (E) = v(¢ (E)) = v(@ (F)) = Ps (v) (F).

2. Let v be monotone and superadditive, and let E,F C N with ENF = .
Then, ¢ (E) Ny (F) = 0. Also, ¢ (E) U1 (F) € U and, thus, ¢ (E) Uy (F) C
¥ (F'UF). Now by monotonicity and superadditivity of v this implies that

Ps (v) (E) +Ps (v) (F) = v (¢ (E)) + v (¢ (F) v (¥ (E) Uy (F))
Sv(W(EUF)) =Ps(v)(EUF).

3. Let v be monotone and balanced. Then there exists € RY with >,y z; =
v(N)and ), px; 2 v (FE) for every E C N. We show that x is a core allocation
of Ps (v) as well. Namely,

Y zi=v(N)=v(¥(N)="Ps(v)(N) and
€N

Zl‘ Z v (E) 2 v (¢ (E) =Ps(v) (E).

4. Without loss of generality we may assume that S is a strictly hierarchical per-
mission structure with 1 € N at the top-level, i.e., B¢ = {1}. This implies that
for every coalition E C N either 1 € ¢ (E) or ¢ (E) = (.

First, that Ps (v) is monotone follows immediately from the proved assertion 1.
Second, Pg (v) has a non-empty core. Namely, take z: N — R with
() =1
e { 0  otherwise
x is a core imputation of Pg (v). Namely by definition we have that Pg (v) (E) >
0 only if ¢ (E) # 0. Hence, Ps(v)(E) > 0 implies that 1 € E. Thus if
Ps (v) (E) > 0:
Ps (v) (E) = v(¢ (E)) S o(E) So(N) =21 =) .
i€E
Third, Ps (v) is superadditive.
Take E, F C N with ENF = (). From the fact that S is strictly hierarchical it
clearly follows that either 1 € For1 € For 1 ¢ EUF. Thus, either ¢ (E) = ()
or ¢ (F) = ) or both. Without loss of generality we may assume that ¢ (F) = (.
Then

Ps (v) (E) +Ps (v) (F) = v(y (E)) = v (EUF)) = Ps (v) (EU F).

10



Figure 2: Hierarchy used in Example 3.4.

This completes the proof of the assertion. [

Convexity is a particularly desirable property of a game, since it implies balancedness
and superadditivity in combination with some geometric properties of the core. The
next example however shows that although a game may be monotone and convex and
the permission structure is strictly hierarchical, the disjunctive restriction does not

have to be convex.

Example 3.4 Take N = {1,2,3,4}. We introduce the permission structure S by
S(1) = {2,3}, S(2) = {4}, S(3) = {4}, and S(4) = (). We can represent this
strictly hierarchical permission structure by a graph on the set of players N. This
graph is given in Figure 2.

Let v be a game given by v(N) = 4, v(134) = v(124) = 3, v(14) = 2, and v(F) =
0 otherwise. It may be clear that v is monotone and convex, and therefore also
superadditive and balanced. Take w = Pg(v). Then w is given by w(N) = 4,
w(124) = w(134) = 3, and w(F) = 0 otherwise. This shows that w is indeed

monotone, superadditive, and balanced, but also that w is not convex. Namely,

w(124) + w(134) = 6 > 4 = w(N) + w(14).

4 A computational method

Next we develop a method to compute the disjunctive restriction of an arbitrary

game using multilinear extensions introduced by Owen (1972). Let v € GV. Then its

11



multilinear extension (MLE) is the function f,:[0,1]" — R given by

folxy, ... ) = Z A (E) - {Hmz}

ECN el

Evidently f, is a multilinear function, which coincides with the worth v(FE) at the
extreme points of the unit cube [0,1]Y C RY. We interpret the MLE of a game
as a probabilistic expectation. Namely, we can rewrite f,(z1,...,2,) = E[v(£)],
where £ is a random variable whose values are subsets of N given the probabilities
Pr{i € £} = x; and under the assumptions that the n events {i € £} are stochastically
independent.

It is our goal to derive the MLE of the disjunctive restriction Pg (ug) of the
unanimity game ug for £ C N. With this in mind we introduce two operators. The
operator ® is denoted as independent multiplication and is completely characterized

by the following properties:

e For every (z1,...,z,) €[0,1]Y and all E, F C N:

e Let a,b,c be three multilinear functions on [0, 1]". Then
(a+b)®c=(a®c)+ (b®c) and
a®@(b+c)=(a®b)+ (a®c).

The second operator is denoted as disjunctive addition & and for every two multilinear
functions a and b on [0, 1]V it is defined by

a®b:=1—(1—a)®(1-0).

Let € be the random coalition variable with independent probabilities (x1, ..., z,) €
[0, 1], Now for all F,G C N define the events A := {F C £} and B := {G C &}.
Then Pr{A} = [[;c;2; and Pr{B} = [, 7;. We conclude from the above that

Pr(AAB)=Pr{FUGC&}= [] 2 =Pr(A)@Pr(B).

1€ FUG

Similarly we derive that
Pr(A v B) =Pr(A) @ Pr(B).

12



Next let S be an acyclic permission structure. Now take ¢ € N and take probabilities
x € [0,1]V. We define h;(z) as the probability that there exists an authorizing set for
{4} in the random coalition £. Since such an authorizing set is in fact a permission

path from some j; € Bg to 7, we know that £ contains such a set if and only if

1. 7€ & and

2. there is at least one superior j € S7!(i) which has an authorizing set in £.

This leads to the conclusion that

hi(z) =z:@ @ hy(x).
JeS=H(@)
Since for j € Bg it simply holds that h;(z) = x; we now have derived a recursive
method for computing the multilinear function h;(z) (i € N), which expresses the
probability that ¢ has an authorizing set in £.
Finally from the computational rules it follows that for any coalition £ C N the

probability that E has an authorizing set in &£ is given by

he(z) = ) hi(z).
i€E
We thus conclude that the MLE of Pg (ug), where ug is the unanimity game belonging
to F, is exactly given by the multilinear function hg. Since we now have the MLE of
the disjunctive restriction of any unanimity game on S we therefore have the MLE
of the disjunctive restriction of any game v to the acyclic permission structure S.
In the following example and the next subsections we use this method to compute

the MLE of certain games.

Example 4.1 By applying the computational method developed in this subsection
we analyze a game with a strictly hierarchical permission structure, which does not
satisfy the requirements in Proposition B1 as given in Appendix B. We show that the
formula given there indeed does not hold and thus this result cannot be extended.
Take N = {1,...,6} as the set of players and let S be a strictly hierarchical permission
structure described in Figure 3.

To compute Pg (u{ﬁ}) we follow the outlined recursive procedure for computing all

multilinear functions h;, i € N. We get the following expressions:
hl(l' ) = I

13



Figure 3: Hierarchy used in Example 4.1.

ho(x) = x129

hs(x) = zi23

hy(z) = x12914

hs(x) = wslha(z) ® hs(z)] =

= I123%5 + T1T2T5 — T1T2L3T5
he(z) = welha(z) & hs(z)] =

= X1X3T5T6 + T1T2T5%6 + T1T2T4Te — T1T2T3T5T6 — T1T2L4T5X6
As argued before hg is the MLE of Pg (u{ﬁ}) and thus

Ps (U{G}) = U{1,356} T U{1,2,56} T U{1,2,4,6} — U{1,2,3,56} — U{1,2,4,56}-

Now in Py (ugs;) we have that N € 2% ({6}). Also, N ¢ g ({6}). From the formula
given in Proposition B1 it now would follow that 65 ({6}) € {—1,1}. However, from
ugy () = 0 if B # {6}. Thus, it has to be
concluded that 65 ({6}) = 0. This shows that even in relatively simple cases, that do

the expression above and the fact that A

not satisfy the requirement as formulated in Proposition B1, we have a refutation of
the conjecture that in general 6y (F) € {—1, 1}.

5 Some applications

In this section we present several applications of the results derived in the previous

sections. First, we use the Shapley value to analyze the competitive features within an

14



acyclic permission structures. The Shapley value, as introduced by Shapley (1953),
can be regarded as a normative allocation rule, satisfying certain fairness properties,
and thus can be used to express the value of a certain player in a certain situation.
We show that the Shapley values of superiors of the same subordinate decreases as
more players enter that hierarchical level or tier, while the value of the subordinate
increases. Second, this competitive feature is used to show that in a certain situation
in the presence of small transaction costs the formation of a disjunctive permission

structure is Pareto superior to a market organization.

5.1 The exercise of authority in hierarchies

Consider a hierarchical production organization in which there is only a single pro-
ductive participant, or “worker.” We adhere to the literature on the theory of the firm
by assuming that this worker is at the bottom of the hierarchy.* Within such a situ-
ation we show that in a disjunctive hierarchy this worker can exploit the multiplicity
of second tier managers and can claim a higher payoff.

Formally, let N = {1,2} U P with p = |P| 2 1. Player 1 € N is assumed to be
the unique chief officer in the hierarchical production organization while 2 € N is the
unique worker. The set P describes the tier of direct superiors of the worker. Thus

we arrive at a strictly hierarchical permission structure S given by

P ifi=1
Sti)={ {2} ifieP .
0 ifi=2

The description is completed by taking v = wug and remarking that the triple
(N, v, S) now represents a situation as discussed above. In the disjunctive approach
all direct superiors ¢ € P can independently authorize any productive activity of the
worker 2 € N. We show that they actually “compete” over the right to exercise that
authority.

Formally we can express this type of “competition” by regarding the disjunctive
restriction Pg (v). We apply the computational method introduced before. The
MLE’s for the different singletons are given by:

hl(a:) = I
hi(r) = x1x; wherei € P

“Here we refer to van den Brink (1996) for a discussion of this assumption and its consequences
for the description of hierarchical production organizations.
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]~

hQ(iE) = (—1)k+1 Z ZL’ll'QHiE'Z‘
k=1 ECP ek
|E|=k

Here hy is the MLE of Pg (v). We can easily derive that

p

Ps () =D (DM N g,

k=1 ECP
\E=k

where for every F C P we have

i (F) 1 fEU{l,2} C F
u p— .
g 0 otherwise

The consequences of competition between the superiors in P can be shown by the
Shapley value ¢, (Ps (v)) of the players j € N in the game Pg (v). We derive

_ (=Dl p(p+3)
¢1(Ps (v)) = @5 (Ps (v)) = ; k+2 K-k 2p+D)pr2)
and for every ¢ € P
() (p—1)! 2

(Ps (v)) = = )
#i(Ps (v)) kz_; E+2 (k—D!'p—k-=1! pp+1)(p+2)
This shows that for larger p the Shapley values of players 1 and 2 are increasing,
while the values of the competing superiors i € P are diminishing. A further analysis
of these properties is given in the axiomatization of the Shapley value for games with

a disjunctive permission structure in van den Brink (1997).

5.2 Markets and hierarchical production organizations

In this subsection we consider the production of an output directly through the market
mechanism versus the formation of a disjunctive production organization. We show
that in the presence of relatively small transaction costs related to the use of the price
mechanism such a hierarchical production organization is Pareto superior.

We consider a very simple production situation. Given is a production process
which converts one (composite) input into one output. All incomes are generated by
the sale of this single output on an unspecified commodity market. We assume that
the owner of the production process can achieve a certain level of output by herself
denoted by p > 0. Additional output is achieved by obtaining additional units of
the input. This situation can be represented by the specifically designed TU-game
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w € GV in which the player set is given by N := {0} U P, where 0 € N is the
production process and ¢ € P are owners of additional units of input, and for which

we let

U):Q'Uo—i‘zw)i, (3)

icP
where ug, respectively wug;, is the unanimity game with respect to {0}, respectively
{0,i}. Obviously, the input of player i € P generates one additional unit of the
output.
We modify the game w in different fashions to describe two organization struc-

tures, one through the market mechanism and one through a hierarchy.

A market organization.

First we consider a market organization with one-sided transaction costs. The owner
of the production facility 0 is assumed to purchase additional units of the input market
with one-sided transaction costs. Here the owners of the input ¢ € P are subjected
to a cost of ¢ > 0 for each unit sold. Hence, the owner 0 of the production process
has no explicit market transaction costs. The output of the production organization

in this situation can be described by the game

(%1 Z:’UJ—CZ'LLZ', (4)
ieP
where u; is the unanimity game for {i} with i € P. We assume that for all input
providers ¢ € P the transaction costs are the same.
The expected payoff in the situation that all transactions take place through the

market mechanism is now given by the Shapley value of the game vy, i.e.,
D 1 ,
@o (V1) =0+ 2 and ¢, (v1) = 3 —c, 1€P
where we let p = |P| 2 1.

A disjunctive hierarchy.

An alternative organization would be to separate ownership and control of the pro-
duction process and allow the input market participants ¢ € P to enter into an
organization structure involving partial control of the production process. Such a
hierarchical production organization is described by an acyclic permission structure
S:N' — 2N' where N := {a,b} U P. Here player a is the owner of the production
process 0, while b is the controlled production process itself. Thus, we consider that

the original production process 0 is separated into an “owner” and the production
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process itself, described by {a,b}. If all i € P enter the hierarchical production
organization we describe the resulting hierarchy S by

P ifi=a
S()=4< {b} ifieP .
0 ifi=0b

The permission structure S gives exactly the same structure as discussed in Subsection
5.1. Thus, we expect that there will be competition between the second tier managers
1 € P over the leadership of the production technology b.

From the description it is clear that owners of the input take partial control of the
production facility itself. Now the output of this hierarchical production organization

is described by vy := Pg (w'), where

w’:Q-uvaZuib (5)

icP
is a modification of the original game w given in equation (3) by replacing 0 by b. This
replacement indicates the actual separation of ownership and control with regard to
the production process. We assume that the separated owner is not productive, but

has the top position in the hierarchy. Now

p(p+3) p
= = . - d
2 1
@, (V) = 0 +-, i€ P.

plp+1)(p+2) 3

A comparison of both organizations.

With the use of the Shapley values as evaluations of the different production or-
ganizations we now are able to give a comparison. In particular we identify when
the disjunctively hierarchical production situation with separation of ownership and

control is Pareto superior to the market mechanism with one-sided transaction costs.

1. The owner of the production process has to gain by allowing the disjunctive

organization of the production. This is the case when

Po (V1) <@g (v2) + ¢y (v2) -
This is equivalent to

o< +1)(p+2). ©
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2. An individual input supplier i € P has to gain from entering the hierarchical

production organization. This is the case when

@; (v1) < @; (v2) .

This results into the requirement that

1 20
PTG @)

From the analysis above we deduce that for any transaction cost ¢ > 0 the organi-
zation of production by a disjunctive hierarchy is weakly Pareto superior to a direct
organization of production through the market mechanism if condition (6) is satis-
fied. If one allows a lower bound on the transaction costs ¢, one can deduce that for
many combinations of productivity (¢) and size (p), a disjunctive hierarchy is strongly

Pareto superior to the use of the market mechanism.

6 A comparison with the Conjunctive approach

In the conjunctive approach to games with a permission structure analyzed in Gilles,
Owen, and van den Brink (1992), Derks and Gilles (1995), and van den Brink and
Gilles (1996) it is assumed that each superior has veto power over the actions under-
taken by his subordinates. Hence, a player has to get permission of all his superiors
before he can engage in productive cooperative behavior.

Let S be an acyclic permission structure. A coalition £ C N is formable within
the conjunctive approach if each superior of each member is also a member of F| i.e.,
if for every i € E: S71(i) C E. Thus, the collection of all conjunctively autonomous

coalitions is given by
bs:={FECN|ENS(N\E)=0}.

As a preliminary result we compare this collection with the collection of all disjunc-

tively autonomous sets Wg.

Lemma 6.1 For every acyclic permission structure S it holds that &g C Vg, i.e.,

every conjunctively autonomous coalition is also disjunctively autonomous.

Proof. Take a conjunctively autonomous coalition £ € ®5. From ENS(N\ E) =0
it follows that for every player i € E there is no j € N \ E such that i € S(j). u
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A similar comparison is made in Proposition 3.1 in van den Brink (1997), who investi-
gates the consequences of the removal of certain authority relations from the permis-
sion structure on the class of autonomous sets. He found that for strictly hierarchical
permission structures the class of disjunctively autonomous coalitions is increasing
in the number of authority relations, while the class of conjunctively autonomous
coalitions is decreasing in the number of authority relations. Thus, the conjunctive
exercise of authority discourages coalition formation, while the disjunctive exercise of
authority facilitates coalition formation.

Next define for every coalition £ C N its conjunctively autonomous part by
o(E):=U{F € &5 | F C E}. Following Gilles et al. (1992) we now introduce a map-
ping Rs: GY — GV, which for every v € GV is defined by Rs(v)(E) := v(o(E)), E C
N. We call Rs(v) the conjunctive restriction of v € GV on S. A second comparison
of the disjunctive and conjunctive approaches to games with a permission structure

is to compare the ranges of the mappings Ps and Rg.
Lemma 6.2 For every acyclic permission structure S we have that ImRg C Im Ps.

The proof of this lemma results directly from application of Lemma 6.1, Lemma 3.1,
and the results shown in Gilles et al. (1992).

We remark that there exist games of which the conjunctive and the disjunctive restric-
tions are different, i.e., Im Ps\Im Rg # 0. (These examples can easily be constructed

with the use of acyclic permission structures such as described in, e.g., Example 2.5.)
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Appendix A: Proof of Theorem 3.2.

The proof of Theorem 3.2 is conducted through a series of lemmas. In the sequel
we take a fixed coalition £ C N. Furthermore, we define wg := Pgs(ug) as the

disjunctive restriction of the unanimity game ug on the acyclic permission structure
S on N.

Lemma A1l. For every non autonomous coalition ' ¢ Wg with the property that
ECy(F): Ay (F)=0.

PrOOF. By definition it holds that

Aug(F) = 3 (=) Pl ().

HCF

Let G := F\ ¢ (F). Clearly GN E = (). Since F is not autonomous it is evident that
G # (). Next take j € G and let H C F'\ {j}.

If E C ¢ (H), then clearly wg(H) = wg(H U{j}) = 1.

If E\ ¢ (H) # 0, then obviously wg(H) = wg(H U {j}) = 0.

This shows that for every H C F'\ {7}

Now rewrite

Aup(F) = ) (=) g (H)

HCF

= Y (=) g (H) + (1) P g (H U {5}))

HCF\{j}

= Z (—)FH (wg(H) — wep(H U {j})) = 0.

HCF\{j}

This shows the assertion. |
Lemma A2. For every coalition F' € g (E): A, (F) = 1.

PROOF. For every strict subset G of F' it holds that either G ¢ Vg or £\ G # 0.
(This is a consequence of the definition of the collection s (F).)

In both cases it follows that F \ ¢ (G) # 0. This implies that for every strict
subcoalition G of F' it holds that wg(G) = 0 and so A,,(G) = 0. Furthermore,
wg(F) =up(y (F)) = ug(F) = 1, which implies that

Aup(F) = wp(F) = 3 Aup(G) =1.

GCF, G£F
This shows the assertion. [ ]

Lemma A3. For every coalition F' ¢ A% (E): A, (F) =0.
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PROOF. Define F:= U{G € U (E) | G C F}. By definition it holds that F C F.
For the case that F' = () it is evident that wg(F) = ug(i (F)) = 0 since then
from the definition of authorizing sets E \ ¢ (F) # (). This immediately shows that
A, (F)=0.

So we may restrict ourselves to the case that F # §. Clearly F' € A3 (E) C Ug.

Hence, by the fact that F' ¢ 2% (E) it follows that F'\ F 0. But it also holds that
ECF Cqy(F).

If F ¢ Vg, then by Lemma Al it holds that A, . (F) = 0. So, we suppose that
F e Vg ie, F=v¢(F). Take G:=F\F £ 0 and let j € G. Take H C F\ {j}.
Then it is obvious that E C F C ¢ (H). So, wg(H) = ug(yy (H)) = 1. Tt is also

clear that wg(H U {j}) = 1. We therefore may conclude that for every coalition
H C F\{j} it holds that wg(H) — wg(H U {j}) = 0. Hence,

A (F) = Y (=)F Ml (H)

HCF
= N (~)FE (wp(H) — we(H U {5})) =
HCF\{5}
This shows the assertion. [ |

With the use of the lemmas as stated and proved above we are able to prove Theo-
rem 3.2.

PROOF OF THEOREM 3.2.
Let v € GV and define w = Pg (v) as its disjunctive restriction on the acyclic permis-
sion structure S. Now we write the game v as follows:

v= ZAU(E

Take any coalition £ C N then by combination of Lemma A1, Lemma A2 and
Lemma A3 we derive that for wg := Pg (ug) it holds that

Z Ug + Z AwE

Hedg(E) Hew%(B)
H Ws(E)

Next define for every H € A% (F)
6u(B) = Aup (H) = > (=) wp(G),
GCH

then it is evident that these numbers are independent of the original game v. More-
over, since for every G C N it holds that wg(G) € {0,1} we may conclude that these
numbers are whole. This implies by linearity of the mapping Ps that

w—ZA ) Ps (ug)
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= > AE) S Y uH+ > éu(E

ECN HelUg(E HeAE(E)
H&’le( )

Rewriting this formula leads to

w= Y Z A(F)+ Y 6u(F)-Ay(F

Ee€¥s \ Feug'(E) Fellg(E)

This completes the proof of Theorem 3.2.
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Appendix B: Determination of 65 values

In this appendix we show that for certain situations the 6y can be determined pre-
cisely. This is stated as a proposition below.

Definition Let E C N be a coalition. Take any F' C N such that E C F. The
essentiality of the coalition F' for E in the acyclic permission structure S is the
natural number

ng (F):=#{GeAs(E)| G C F}.
It immediately follows that a coalition £ C N is disjunctively autonomous if and
only if for every F' C N with F C F it holds that ng (F) = 1.

Proposition B1 Let S be an acyclic permission structure on N and let £ C N be
a coalition such that for every coalition F' € 2g (E) there exists a player i € F' such
that i ¢ G for every G € g (E)\ {F'}. Then for every coalition H € % (E) it holds
that

op(E) = (=1)m=E+ ¢ £ 11},

PRrROOF. By the definition of the number §z(E) and the proof of Theorem 3.2, we
only have to show that under the conditions as put on the coalition £ C N it holds
that for every F' € A% (E)

By (F) = (—1)41,
In order to prove this we use induction on the natural number 1y (F'). First suppose
that ng (F') = 1, then by Lemma A2 in the appendix
FeAg(E) and A, (F) =1=(-1)%.

Let K := ng (F) 2 2 and assume by the induction hypothesis that the formula as
given above is true for all coalitions G € A% (F) with g (G) = K — 1. Obviously it
holds that wg(F') =1 and so

Nup(F) =1=) " Ay, (G).
GCF
G#F

Since by Lemma A3 A, (G) = 0 for every coalition G ¢ 25 (E) we may restrict
ourselves to the coalitions G C F with G € A% (E) and G # F.
By the induction hypothesis

Bup(F)=1= 3 (-1ym=@.
GCF, G#£F
Geux(E)

By the conditions as put on the coalition F it follows that F' contains precisely k,(KLLk),

subcoalitions G € A (EF) with the property that 5 (G) = k, where 1 < k < n. This
implies that

K—-1
B K! pi1 | 2 for K even
AwE(F)_l_;k!(K—k:)! U™ =0 for Kodd
This completes the proof of Proposition B1. [ ]
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