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The Myerson value for union stable systems

E. Algaba� J.M. Bilbao� P. Bormy J.J. López�

�University of Seville, Spain

yTilburg University, The Netherlands

Abstract

We study cooperation structures with the following property: Given any

two feasible coalitions with non-empty intersection, its union is a feasible

coalition again. These combinatorial structures have a direct relationship

with conference structures à la Myerson. Characterizations of the Myer-

son value in this context are provided by means of the introduction of the

concept of basis for union stable systems.

1991 Mathematics Subject Classi�cation: 90D12

Key words: Allocation rules, Myerson value, restricted games

1 Introduction

Several models of restricted cooperation have been proposed, among which are

those derived from communication situations as introduced by Myerson [4] [5].

This line of research was continued by Owen [8], Borm, Owen and Tijs [3], van den

Nouweland, Borm and Tijs [6], van den Nouweland [7], Potters and Reijnierse

[9] and Algaba et al. [1]. In Myerson's model, the bilateral relations among

the players are represented by means of an undirected graph and the feasible

coalitions are those that induce connected subgraphs.

In our restricted cooperation model, if two feasible coalitions have common

elements, these ones will act as intermediaries between the two coalitions in

order to establish meaningful cooperation in the union of these coalitions. These

feasible coalition systems will be called union stable systems. Section 2 formally

introduces our model of restricted cooperation. A relation is established between

Myerson conference structures and union stable systems by means of the basis

of a union stable system. Section 3 introduces the Myerson value for games

restricted by union stable systems and studies in detail some properties of this
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value. The concept of basis allows to extend the axiomatic characterizations

given for the Myerson value given by Myerson [4] and van den Nouweland [7].

2 Union stable systems

De�nition 2.1 Let N = f1; 2; : : : ; ng be a �nite set of players and F � 2N a

system of feasible coalitions. The set system F is called union stable if for all

A;B 2 F with A \B 6= ; it is satis�ed that A [B 2 F .

A communication situation is a triple (N; v;E), where (N; v) is a game and

(N;E) is a simple graph. It is easy to see that the set system F , de�ned by

F = fS � N : (S;E(S)) is a connected subgraph of (N;E)g;

is union stable. However, a union stable system can not always be modelled by a

communication situation. Let F be a union stable system and G � F : We de�ne

inductively the families

G
(0)

= G; G
(n)

=

n
S [ T : S; T 2 G

(n�1); S \ T 6= ;

o
(n = 1; 2; : : :)

Notice that G(0) � G(n�1) � G(n) � F ; since G � F and F is union stable.

De�nition 2.2 Let F be a union stable system and let G � F . We de�ne G by

G = G(k); where k is the smallest integer such that G(k+1) = G(k):

We are interested to obtain, for each union stable family, a minimal subset

that by the above process generates the whole union stable family. Let F be

a union stable system and G � F . If G is union stable, there can be feasible

coalitions which can be written as the union of two feasible coalitions with non-

empty intersection. So, we can consider the following set:

D (G) = fG 2 G : G = A [B; A 6= G; B 6= G; A;B 2 G; A \B 6= ;g:

Note that D (G) is composed of those feasible coalitions which can be written

as the union of two distinct feasible coalitions with non-empty intersection.

De�nition 2.3 Let F be a union stable system. The set B (F) = F n D (F) ; is

called the basis of F , and the elements of B (F) are called supports of F .

We remark that the basis B (F) is the minimal subset of the union stable

system F such that B (F) = F (see Algaba el al. [1]).

De�nition 2.4 Let G � 2N be a set system and let S � N . A set T � S is

called a G-component of S if it is satis�ed that T 2 G and there exists no T 0 2 G

such that T � T 0 � S.

Therefore, the G-components of S are the maximal feasible coalitions that

belong to G and are contained in S. We denote by CG(S) the collection of the

G-components of S.
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Proposition 2.1 The set system F � 2N is union stable if and only if for any

S � N with CF (S) 6= ;, the F-components of S are a partition of a subset of S.

Proof. Let F be union stable. Let C1, C2; be two maximal feasible coalitions

of S. If C1\C2 6= ;, then C1[C2 2 F since F is union stable and C1[C2 � S.

This contradicts the fact that C1 and C2 are F -components of S.

Conversely, assume for any S such that CF (S) 6= ;, that its F -components

form a partition of a subset of S. Suppose that F is not union stable, then there

are A;B 2 F ; with A \ B 6= ; and A [ B =2 F . Hence, there must be an F-

component C1 2 CF (A[B), with A � C1 and an F-component C2 2 CF (A[B),

withB � C2 such that C1 6= C2. This contradicts the fact that the F -components

of A [B are disjoint. 2

It is obvious that if F is a union stable system such that fig 2 F ; for all

i 2 N , then the F-components of S form a partition of S. We have also the

following consequence of the de�nitions.

Proposition 2.2 Let F be a union stable system. Let S � N and consider the

collection FS = fF 2 F : F � Sg : Then, the following conditions are satis�ed:

(a) FS is union stable.

(b) CF (S) = CFS (N).

(c) B (FS) = fB 2 B (F) : B � Sg.

In order to establish a relation between conference structures à la Myerson

and union stable systems, we will give the following results. Moreover, the next

theorem will be essential in order to prove the uniqueness in the axiomatization

of Myerson value in union stable systems.

De�nition 2.5 Let F be a union stable system. The players i; j 2 N , are called

connected by B (F) if there exists a sequence of supports (B1; : : : ; Bk), such that

i 2 B1, j 2 Bk and if k � 2, Bp \Bp+1 6= ;, for all p = 1; : : : ; k � 1.

Theorem 2.3 Let F be a union stable system. Let S 2 F and i; j 2 N , i 6= j.

Then fi; jg � S if and only if i and j are connected by supports in C (F) contained

in S, where C (F) = fB 2 B (F) : jBj � 2g.

Proof. Let fi; jg � S. If S 2 C (F), it su�ces to take k = 1 and B1 = S. If

S =2 C (F), then S = A[B; with A;B 2 F ; and A\B 6= ;: If A;B 2 C (F) then

we obtain the result. Otherwise, we repeat this decomposition and proceeding

in this manner, we obtain the sequence of supports. The converse is obvious. 2

Corollary 2.4 Let F be a union stable system. Let i; j 2 N , i 6= j. Then i

and j are in the same F-component of N if and only if i and j are connected by

C (F) :
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Example. Myerson [4] introduced the term conference, to refer to any set of

two or more players who might meet together to discuss their cooperative plans.

A conference structure CS is any collection Q � fS � N : jSj � 2g : Given a

conference structure Q 2 CS, two players i and j are connected by Q if i = j or

there exists some sequence of conferences (S1; : : : ; Sk) such that i 2 S1, j 2 Sk,

fS1; : : : ; Skg � Q, and Sp \ Sp+1 6= ; for all p = 1; : : : ; k � 1.

If F is a union stable system then the set formed by the non-unitary supports

is a Myerson's conference structure. Conversely, given a Myerson's conference

structure, the set system

F = fS � N : each pair of players i; j 2 S are connected by conferences in Sg

is union stable.

3 The Myerson value: properties and axiomatizations

This section deals with a solution concept for games restricted by union stable

structures: the Myerson value. We recall that this value is the Shapley value �

of the F-restricted game.

De�nition 3.1 Let (N; v) be a cooperative n-person game in coalitional form

and F � 2N a union stable system. The F-restricted game vF : 2N �! R; is
de�ned by

vF (S) =
X

T2CF (S)

v(T ):

A union stable structure is a triple (N; v;F) where N = f1; : : : ; ng is the set

of players, (N; v) is a game v : 2N �! R with v(;) = 0; and F is a union stable

system.

De�nition 3.2 The Myerson value of a union stable structure (N; v;F) is given

by the vector � (N; v;F) = �
�
N; vF

�
:

The following example illustrates the concepts introduced above.

Example. Consider the player set N = f1; 2; 3; 4g and the union stable system

given by F = ff1g ; f1; 2; 3g ; f2; 3; 4g ; Ng : Let v : 2N �! R be the game de�ned

by v(S) = jSj � 1; S 6= ;, and v(;) = 0: Then, B (F) = ff1g ; f1; 2; 3g ; f2; 3; 4gg

and C (F) = ff1; 2; 3g ; f2; 3; 4gg : In this case, it is clear that

vF (S) =

�
jSj � 1 if S 2 F

0 otherwise,

and the Myerson value is � (N; v;F) = 1
12 (5; 13; 13; 5) :

We now consider some properties that would be desirable for an allocation

rule, and we focus on the study of these properties for the Myerson value. The

set of all union stable structures with player set N will be denoted by USN .
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De�nition 3.3 An allocation rule on USN is a map  : USN �! RN , such

that it is component-e�cient and component-dummy, that is,

(1)
P

i2M i (N; v;F) = v(M); for all (N; v;F) 2 USN and M 2 CF (N):

(2) i (N; v;F) = 0; for all i =2
S
M2CF (N)M:

Lemma 3.1 The Myerson value � : USN �! RN is an allocation rule.

Proof. Let (N; v;F) 2 USN . If N 2 F then N is its unique F-component, and

hence
P

i2N � (N; v;F) =
P

i2N �i
�
N; vF

�
= vF (N) = v(N): Suppose, that

N =2 F and, therefore, consider the set CF (N). To each F-component M of N

is associated the game uM , which is de�ned in the following way , with M �xed,

uM : 2
N
�! R; uM (T ) = vF (T \M) =

X
H2CF (T\M)

v(H); for all T � N:

Moreover, for any coalition T � N , CF (T ) =
S
R2CF (N) CF (T \ R); and

hence, it is immediate that vF =
P

R2CF (N) u
R: Taking into account the above

considerations for the game
�
N; vF

�
, we �nd

X
i2M

� (N; v;F) =
X
i2M

�i
�
N;uM

�
+

X
fR2CF (N) :R6=Mg

"X
i2M

�i
�
N;uR

�#
:

Since
P

i2M �i
�
N;uM

�
= vF (M); and �i(N;u

R) = 0; R 6= M; i 2 M; the

above expression implies that
P

i2M � (N; v;F) = vF (M) = v(M):

Component-dummy is immediate since if i =2
S
M2CF (N)M then we have

CF (S) = CF (S n fig), for all S 2 F . Hence, the marginal contributions are

vF (S)� vF (S n fig) = 0; and �i (N; v;F) = 0. 2

De�nition 3.4 An allocation rule  is fair if for all (N; v;F) ; B 2 B (F) ; there

exists c 2 R such that j (N; v;F) � j (N; v;F
0) = c; for all j 2 B; where

F 0 = B (F) n fBg:

So, according to a fair allocation rule all players in a support B lose or gain

the same amount if the support B is deleted. We now extend the axiomatization

of the Myerson value to union stable structures.

Theorem 3.2 The Myerson value is the unique fair allocation rule on USN .

Proof. (a) Uniqueness: Let (N; v;F) 2 USN . Suppose 1 and 2 are two fair

allocation rules on USN . We will prove by induction to the number jC (F)j of

non-unitary supports in the basis of F , that 1 (N; v;F) = 2 (N; v;F).

If jC (F)j = 0, then CF (N) = ffig : fig 2 Fg. Applying component-e�ciency

and component-dummy we obtain that 1 (N; v;F) = 2 (N; v;F).
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Now, assume that 1 (N; v;G) = 2 (N; v;G) for all G with jC (G)j � k�1, and

let jC (F)j = k. Consider C 2 C (F). Fairness implies that there exist numbers

c 2 R and d 2 R such that

1j (N; v;F) � 1j

�
N; v;B (F) n fCg

�
= c;

2j (N; v;F) � 2j

�
N; v;B (F) n fCg

�
= d;

for all j 2 C. Note that by the induction hypothesis

1j

�
N; v;B (F) n fCg

�
= 2j

�
N; v;B (F) n fCg

�
:

So there is a constant � = c� d such that

1j (N; v;F) � 2j (N; v;F) = �; for all j 2 C: (1)

Given M 2 CF (N), by component-e�ciency for 1 and 2, we obtainX
i2M

�
1i (N; v;F) � 2i (N; v;F)

�
= 0:

Applying theorem 2.3 and equality (1) recursively, we get

1i (N; v;F) � 2i (N; v;F) = �;

for all i 2M , with M 2 CF (N), and this impliesX
i2M

�
1i (N; v;F) � 2i (N; v;F)

�
= jM j�:

Therefore jM j� = 0; and hence 1 (N; v;F) = 2 (N; v;F).

(b) Next, we show that the Myerson value is fair. Consider the game (N;w)

given by w(S) = vF (S) � vF
0
(S); for all S � N , where F 0 = B (F) n fBg. Let

k 2 B. We may deduce that w(S) = 0; for all S � N; B " S; and, since for all

coalitions S � N with B � S we have B " S n fkg and so w(S n fkg) = 0: Thus,

we can write for k 2 B

�k(N;w) =
X

fS :B�Sg

(s� 1)! (n� s)!

n!
w(S); where s = jSj; n = jN j:

It follows that �k(N;w) = �p(N;w); for all p 2 B; and we obtain that the

Myerson value is fair. 2

De�nition 3.5 An allocation rule  is called basis monotonic if for all (N; v;F) ;

for all B 2 B (F) ; and for all j 2 B it holds j (N; v;F) � j (N; v;F
0), where

F 0 = B (F) n fBg:
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This condition asserts that all the players always bene�t from reaching an

agreement and cooperate.

Proposition 3.3 Let (N; v;F) 2 USN . If v is superadditive and zero-normalized,

then � (N; v;F) is basis monotonic.

Proof. It su�ces to prove that w(S) � 0 for any S � N such that B � S,

where for all S � N; w(S) = vF (S) � vF
0
(S); with F 0 = B (F) n fBg. Any

maximal feasible coalition of S in F 0 is either a maximal feasible coalition of S in

F or it is contained in an F-component of S. Then, taking the F 0-components

of S and taking into consideration that the game (N; v) is superadditive and

zero-normalized, we obtain

vF
0

(S) =
X

T 02CF0 (S)

v
�
T 0
�
�

X
T2CF (S)

2
4v
0
@ [
fT 02CF0 (S) :T 0�Tg

T 0

1
A
3
5 � vF (S):

2

To provide other axiomatic characterizations for the Myerson value, the next

de�nitions are introduced (see van den Nouweland [7]). We use Ci (F) to denote

the collection fC 2 C (F) : i 2 Cg.

De�nition 3.6 A union stable structure (N; v;F) is called point anonymous if

there exists a function f : f0; 1; : : : ; jDjg �! R such that vF (S) = f (jS \Dj)

for all S � N , where D = fi 2 N : Ci (F) 6= ;g.

De�nition 3.7 An allocation rule  satis�es point anonymity if for all point

anonymous (N; v;F), there exists � 2 R such that

i (N; v;F) =

�
� for all i 2 D;

0 otherwise.

Proposition 3.4 The Myerson value satis�es point anonymity.

Proof. Let (N; v;F) 2 USN be point anonymous. If D = ;, then the restricted

game vF (S) = f (jS \ ;j) = f (0) = 0, for all S � N . Hence, �i (N; v;F) = 0

for all i 2 N . Let D 6= ;. If i =2 D, obviously S \ D = (S n fig) \ D and

�i (N; v;F) = 0. On the other hand, if i; j 2 D applying the symmetry property

of the Shapley value we have �i (N; v;F) = �j (N; v;F) ; and hence f (jDj) =P
i2D �i (N; v;F) = jDj�i (N; v;F) : Therefore, �i (N; v;F) = f (jDj) = jDj = �,

for all i 2 D and �i (N; v;F) = 0; otherwise. �

De�nition 3.8 Let (N; v;F) 2 USN . Then player i 2 N is called super�uous

for (N; v;F) if vF (S) = vF (S n fig) ; for all S � N . An allocation rule 

satis�es the super�uous player property if for all (N; v;F) and every player i 2 N

that is super�uous for (N; v;F) it holds  (N; v;F) = 
�
N; v;FNnfig

�
, where

FNnfig = fF 2 F : F � N n figg :
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Proposition 3.5 The Myerson value satis�es the super�uous player property.

Proof. Let i 2 N be a super�uous player for (N; v;F) 2 USN . We have to

prove � (N; v;F) = �
�
N; v;FNnfig

�
. We observe that i is a zero player in vF

and this implies that �i (N; v;F) = 0. Further, �i
�
N; v;FNnfig

�
= 0, because

i =2
S
M2CF

Nnfig
(N)M and � satis�es component-dummy (lemma 3.1).

For the other players, it su�ces to show that vF (S) = vFNnfig(S); or equiv-

alently, as i is a super�uous player for (N; v;F) ; that vF (S n fig) = vFNnfig(S);

for all S � N . The components satisfy CF (S n fig) = CFNnfig
(S) ; and therefore

vF (S n fig) =
X

T2CF (Snfig)

v (T ) =
X

T2CF
Nnfig

(S)

v (T ) = vFNnfig(S);

for all S � N: 2

De�nition 3.9 An allocation rule  is called additive if for all (N; v;F) and

(N;w;F) then  (N; v +w;F) =  (N; v;F) +  (N;w;F).

We obtain immediately that the Myerson value is additive.

Lemma 3.6 If  is an additive allocation rule that satis�es the super�uous

player property, then  (N; v;F) = 
�
N; vF ;F

�
, for all (N; v;F) 2 USN .

Proof. By additivity of , it su�ces to show that 
�
N; v � vF ;F

�
= 0, for all

(N; v;F) 2 USN . Indeed, for any S � N ,

�
v � vF

�F
(S) =

X
T2CF (S)

�
v � vF

�
(T ) =

X
T2CF (S)

�
v (T )� vF (T )

�
= 0:

Therefore, all players are super�uous for any
�
N; v � vF ;F

�
2 USN . Hence,

taking recursively all players in the same maximal component M 2 CF (N)


�
N; v � vF ;F

�
= 

�
N; v � vF ;FNnM

�
:

For all i 2M; we obtain

i
�
N; v � vF ;F

�
= i

�
N; v � vF ;FNnM

�
= 0;

since i =2
S
H2CF

NnM
(N)H. It follows that i

�
N; v � vF ;F

�
= 0, for all i 2 N .2

Theorem 3.7 The Myerson value is the unique allocation rule on USN that

satis�es additivity, the super�uous player property and point anonymity.
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Proof. Let  be an allocation rule on USN that also satis�es additivity, the

super�uous player property and point anonymity. From lemma 3.6 we deduce

 (N; v;F) = 
�
N; vF ;F

�
. The unanimity games fuS : S 2 F , S 6= ;g form a

basis for the vector space of the F -restricted games (see Bilbao [2]), that is,

vF =
X

fS2F :S 6=;g

�SuS

for some coe�cients �S :Applying additivity, it su�ces to show that  (N;�uS ;F),

is uniquely determined for all S 2 F ; S 6= ; and � 2 R. Fix S and �. If i 2 N nS

then for all coalitions T � N

�uS (T ) = �() S � T () S � T n fig () �uS (T n fig) = �:

We deduce that any player that is not in S is super�uous and hence by the

super�uous player property:

 (N;�uS;F) = 
�
N;�uS ;FNn(NnS)

�
=  (N;�uS;FS) .

Since CFS (N) = CF (S) = fSg; component-dummy implies that

i (N;�uS ;FS) = 0;

for all i 2 N n S: It remains only to compute i (N;�uS;FS) for all i 2 S: First,

for all T � N; we have

(�uS)
FS (T ) =

X
H2CFS (T )

�uS(H) = �() 9H 2 FS , S � H � T .

If H 2 FS then H � S, and hence (�uS)
FS (T ) = � if and only if S � T .

Therefore, (�uS)
FS = �uS implies

(�uS)
FS (T ) = �uS(T ) = �() S � T () S \ T = S.

It follows that there exists a function f : f0; 1; : : : ; jSjg �! R; such that

(�uS)
FS (T ) = f (jS \ T j) ; for all T � N , where f(0) = � � � = f (jSj � 1) = 0,

and f (jSj) = �. Hence (N;�uS ;FS) is point anonymous and applying point

anonymity to the rule , there exists � 2 R such that

i (N;�uS ;FS) =

�
� if i 2 S;

0 otherwise.

Further, CFS (N) = fSg, and using component-e�ciency we getX
i2S

i (N;�uS;FS) = � = jSj �:

Then � = �= jSj and we deduce that  (N; v;F) is the Myerson value. 2
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