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Link monotonic allocation schemesa

Marco Slikkerb

January 18, 1999

Abstract

A network is a graph where the nodes represent players and the links represent

bilateral interaction between the players. A reward game assigns a value to every

network on a fixed set of players. An allocation scheme specifies how to distribute

the worth of every network among the players. This allocation scheme is link

monotonic if extending the network does not decrease the payoff of any player.

We characterize the class of reward games that have a link monotonic allocation

scheme. Two allocation schemes for reward games are studied, the Myerson alloca-

tion scheme and the position allocation scheme, which are both based on allocation

rules for communication situations. We introduce two notions of convexity in the

setting of reward games and with these notions of convexity we characterize the

classes of reward games where the Myerson allocation scheme and the position

allocation scheme are link monotonic. As a by-product we find a characterization

of the Myerson value and the position value on the class of reward games using

potentials.
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1 Introduction

Network structures have been used in several contexts to describe the interaction be-

tween economic agents. The place of an agent in a network will affect not only his own

productivity and bargaining position but also the productivities and bargaining positions

of the other players in the network. Jackson and Wolinsky (1996) provide an overview

of references on networks in a social science context. Subsequently, they study stability

of networks. They describe the economic possibilities of the players depending on the

network structure by a reward function.1 This reward function is then used to study

the relationship between the set of networks that are productively efficient and the set

of networks that are stable, i.e. networks where self-interested agents do not form or

break cooperation. Jackson and Wolinsky (1996) show that there exists a conflict be-

tween stability and efficiency of networks. This conflict is further studied by Dutta and

Mutuswami (1997). They study a game in strategic form to describe the formation of a

network. The possible structures in the strategic form game are evaluated by the agents

using an exogenously given allocation rule assigning payoffs to all players. This allo-

cation rule is a straightforward generalization of the Myerson value for communication

situations (see Myerson (1977)).

In this paper we analyze networks from a cooperative point of view. The analysis of

the stability of a network does not only require a specification of payoffs in this network,

but also in all other possible networks between the agents. A scheme specifying the pay-

offs in all networks is called an allocation scheme. We will focus on allocation schemes

where no agent is ever tempted to prevent the formation of additional cooperation be-

tween agents or to break down cooperation between players. These allocation schemes

are in the same spirit as population monotonic allocation schemes for cooperative games,

introduced by Sprumont (1990), and will be called link monotonic allocation schemes.

As in a population monotonic allocation scheme no player is worse off with additional

cooperation between the players. We will characterize the reward functions for which a

link monotonic allocation scheme exists and additionally study when two specific allo-

cation schemes are link monotonic. The first allocation scheme is based on the Myerson

value. The second allocation scheme will be based on the position value, introduced by

Borm, Owen, and Tijs (1992). As by-products we will characterize the extension of these

allocation rules to the network setting described above using potentials. Additionally,

we will introduce two notions of convexity in the setting of reward games.

The plan of this paper is as follows. Section 2 contains some preliminaries on coop-

1Jackson and Wolinsky (1996) refer to a reward function as a value function.
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erative games and communication situations. In section 3 we describe reward games. In

section 4 we introduce link monotonic allocation schemes, study the relations with pop-

ulation monotonic allocation schemes and provide a characterization of reward games

with a link monotonic allocation scheme. In section 5 we introduce player convex and

link convex reward games. We characterize two allocation rules and characterize the

class of reward games for which the allocation schemes based on these rules are link

monotonic. Finally, section 6 analyzes an example, the symmetric connections model,

introduced by Jackson and Wolinsky (1996).

2 Preliminaries

A cooperative game with transferable utility (TU-game) is a pair (N, v) where N =

{1, . . . , n} denotes the set of players and v is a real-valued function on the family 2N of

all subsets of N with v(∅) = 0. The function v is called the characteristic function of the

cooperative game (N, v). A cooperative game (N, v) is convex if for all S, T ⊆ N with

S ⊆ T and all i ∈ S

v(S)− v(S\{i}) ≤ v(T )− v(T\{i}).

Shapley (1953) showed that every cooperative game (N, v) can be written as a unique

linear combination of unanimity games2 (N, uS)S⊆N , i.e. v =
∑
S⊆N αS(v)uS, where

uS(T ) = 1 if S ⊆ T and uS(T ) = 0 otherwise. The coefficients (αS(v))S⊆N are called

unanimity coefficients. If no confusion on the underlying game can arise we will simply

write (αS)S⊆N instead of (αS(v))S⊆N . Then the Shapley value Φ of the game (N, v) can

be described by

Φi(N, v) =
∑

S⊆N : i∈S

αS

|S|
, for all i ∈ N.

A communication situation is a triple (N, v, L) where (N, v) is a TU-game as described

above and (N,L) an undirected graph, i.e. L ⊆ L̄ := {{i, j} | {i, j} ⊆ L, i 6= j} denotes

a set of links. This undirected graph (N,L) partitions the player set into communication

components, where two players are in the same communication component if and only

if they are connected, i.e. there exists a path between the two players using only links

in L. The resulting set of communication components will be denoted by N/L. The

set of links in graph (N,L) within a coalition S ⊆ N will be denoted by L(S), i.e.

L(S) = {{i, j} ∈ L | {i, j} ⊆ S, i 6= j}. The set of components in the graph (S, L(S))

will be denoted by S/L.

2S ⊆ N denotes that S is a subset of N , S ⊂ N denotes that S is a strict subset of N .
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The graph-restricted game (N, vL) associated with communication situation (N, v, L)

is defined by

vL(S) :=
∑

C∈S/L

v(C), for all S ⊆ N.

The Myerson value µ (cf. Myerson (1977)) for a communication situation (N, v, L)

coincides with the Shapley value of the graph-restricted game,

µ(N, v, L) := Φ(N, vL).

Hence, if (βS)S⊆N denote the unanimity coefficients of the game (N, vL) then

µi(N, v, L) =
∑

S⊆N : i∈S

βS

|S|
, for all i ∈ N.

With a slight abuse of notation we denote the set of links in which player i is involved

by Li.3 Furthermore, denote the set of players involved in at least one link by N(L) :=

{i ∈ N | ∃j : {i, j} ∈ L} = {i ∈ N | Li 6= ∅}. For notational convenience we denote

the full cooperation structure on set S by KS = {{i, j} | {i, j} ⊆ S, i 6= j}}. Note that

L̄ = KN .

3 Reward games

In communication situations the profit that can be obtained by the players depends only

on the (connected) components. In order to allow for influence of the internal structure

within a component on the profit the players can obtain we consider reward games.

A pair (N, r), with N the player set and r : 2L → IR a reward function, will be

called a reward game. For every cooperation structure (N,L) with L ⊆ L̄ the value

r(L) represents the profit that can be obtained by all players together if they cooperate

according to this cooperation structure. Throughout this paper we will assume that

r(∅) = 0, which states that no cooperation between the players implies that no profit

can be made.

Note that the reward function of the reward game (N, r) can be seen as the char-

acteristic function of the TU-game (L̄, r). We will refer to this TU-game as the link

game associated with the reward game (N, r). Since every TU-game can be written as a

unique linear combination of unanimity games, the reward function can be written as a

unique linear combination of characteristic functions of unanimity (link) games, i.e.

r =
∑
A⊆L̄

αAuA.

3In fact this set is a function that depends on the set of links L and the player index i.
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Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997) concentrate on com-

ponent additive reward functions, i.e. r(L) =
∑
S∈N/L r(L(S)). Although we mainly

concentrate on component additive reward games, we do not restrict ourselves to this

class of reward games. A reward game is monotonic if r(L1) ≤ r(L2) for all L1 ⊆ L2.

A reward communication situation is a triple (N, r, L) where (N, r) is a reward game

and (N,L) an undirected graph. The set of all reward communication situations with

player set N will be denoted by RCSN . The set of all communication situations will

be denoted by RCS. Dutta and Mutuswami (1997) introduced the Myerson value for re-

ward communication situations, a generalization of the Myerson value for communication

situations:

µi(N, r, L) :=
∑

A⊆L, Ai 6=∅

αA

|N(A)|
, for all i ∈ N.

Furthermore, they provide a characterization of the Myerson value using component

balancedness and fairness.

The Myerson value for reward communication situations is an example of an allocation

rule for reward communication situations. Such an allocation rule, say γ, assigns a vector

γ(N, r, L) ∈ IRN to every triple (N, r, L). An allocation scheme (xi,L)i∈N,L⊆L̄ for reward

game (N, r) assigns payoffs to all players in all possible networks on the player set.

4 Link monotonic allocation schemes

In this section we will introduce link monotonic allocation schemes. We will relate link

monotonic allocation schemes to population monotonic allocation schemes for cooper-

ative games. Finally, we will characterize the class of reward games that have a link

monotonic allocation scheme.

Dutta and Mutuswami (1997) analyze the formation of a cooperation structure. Given

some allocation rule (e.g. the Myerson value, see section 3) they analyze a link forma-

tion game in strategic form. They conclude that in monotonic reward games the full

cooperation structure will result or a structure that results in the same payoff division

as the full cooperation structure (N, L̄).

Aumann and Myerson (1988) describe a link formation game in extensive form, where

links are formed sequentially. Furthermore, they study a superadditive TU-game where

the full cooperation structure between the players does not result as a subgame perfect

Nash equilibrium. The full cooperation structure need not form since in their example

the formation of a link can decrease the payoff of several players. If the formation of

a link between two players would not decrease the payoff of any player then the full
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cooperation structure would be a subgame perfect Nash equilibrium. In the following we

will consider reward games and we will concentrate on reward games that have allocation

schemes with the property that the formation of a link between two players would not

decrease the payoff of any player.

Definition 1 A vector (xi,L)i∈N,L⊆L is a link monotonic allocation scheme for the reward

game (N, r) if it satisfies the following conditions:

(i) xi,L = 0 for all L ⊆ L, i 6∈ N(L).

(ii)
∑
i∈N xi,L = r(L) for all L ⊆ L.

(iii) xi,L ≤ xi,L∗ for all i ∈ N and L ⊆ L∗ ⊆ L̄.

The first condition makes sure that if a player does not cooperate with any other player

then he receives zero payoff. The second condition states that the value of a network is

divided among the players forming the network (efficiency). The third condition makes

sure that no player ever has a reason to prevent the formation of any link (monotonicity).

The notion of link monotonic allocation scheme is inspired by the notion of population

monotonic allocation scheme (cf. Sprumont (1990)) for cooperative games.

Definition 2 A vector (yi,S)i∈S,S⊆N is a population monotonic allocation scheme for the

cooperative game (N, v) if it satisfies the following conditions:

(i)
∑
i∈S yi,S = v(S) for all S ⊆ N .

(ii) yi,S ≤ yi,T for all i ∈ S and S ⊆ T ⊆ N .

The concepts of population monotonic allocation schemes (in short PMAS) and link

monotonic allocation schemes (in short LMAS) appear to be related. This relation is

made explicit in the following theorem which states that a reward game has a LMAS if

the associated link game has a non-negative PMAS.

Theorem 4.1 Let (N, r) be a reward game. If the associated link game (L, r) has a

non-negative PMAS then (N, r) has a LMAS.

Proof: Let y = (y{i,j},L){i,j}∈L, L⊆L̄ be a non-negative PMAS for (L, r). For all i ∈ N

and all L ⊆ L define4

xi,L =
∑

j∈N :{i,j}∈L

1

2
y{i,j},L.

We show that (xi,L)i∈N,L⊆L is a LMAS for (N, r) by checking the three conditions in

definition 1.
4We define the empty sum to be zero.
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(i) This property follows immediately by noting that

{j ∈ N : {i, j} ∈ L} = ∅ if i 6∈ N(L).

(ii) Let L ⊆ L. Then

∑
i∈N

xi,L =
∑

i∈N(L)

xi,L =
∑

i∈N(L)

∑
j∈N :{i,j}∈L

1

2
y{i,j},L =

∑
{i,j}∈L

y{i,j},L = r(L),

where the first equality follows by (i) and the last equality by the fact that y is a

PMAS for (L̄, r).

(iii) Let L ⊆ L∗ ⊆ L and i ∈ N . Then

xi,L =
∑

j∈N :{i,j}∈L

1

2
y{i,j},L ≤

∑
j∈N :{i,j}∈L

1

2
y{i,j},L∗ ≤

∑
j∈N :{i,j}∈L∗

1

2
y{i,j},L∗ = xi,L∗,

where the first inequality follows since y is a PMAS for (L̄, r) and the last inequality

follows by the non-negativity of y.

This completes the proof. 2

In the following example we show that the non-negativity assumption is not super-

fluous.

Example 4.1 Consider the reward game ({1, 2}, r) with r(∅) = 0 and r({{1, 2}}) = −1.

Then y{1,2},{{1,2}} = −1 is a PMAS for the (1-person) link game ({{1, 2}}, r). Suppose x

is a LMAS for ({1, 2}, r). Then it should hold that
x1,{{1,2}} ≥ x1,∅ = 0

x2,{{1,2}} ≥ x2,∅ = 0

x1,{{1,2}}+ x2,{{1,2}} = −1

.

Consequently, 0 ≤ x1,{{1,2}}+x2,{{1,2}} = −1, a contradiction. We conclude that ({1, 2}, r)

does not have a LMAS.

Remark 4.1 Note that the non-negativity of the PMAS in theorem 4.1 can be replaced

by the condition that r is non-negative.
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In Sprumont (1990) it is shown that every convex game has a PMAS. Using theorem

4.1 and remark 4.1 above the following corollary follows directly.

Corollary 4.1 Let (N, r) be a reward game. If the associated link game (L, r) is non-

negative and convex, then (N, r) has a LMAS.

Theorem 4.1 states that a reward game has a LMAS if the corresponding link game

has a non-negative PMAS. The following example illustrates that the LMAS-concept is

not just the equivalent for PMAS in link games associated with reward games. In this

example we present a reward game with a LMAS, although the associated link game

does not have a PMAS.

Example 4.2 Consider the ’glove game’ with player 1 having a left glove and player 2

and 3 both having a right glove. The value of a left glove or a right glove alone is zero.

The value of a pair of gloves, a left and a right glove, is one.

Computing the rewards that can be obtained for the various cooperation structures

results in the reward game (N, r) with5

r(L) =

 1 , if 12 ∈ L or 13 ∈ L

0 , otherwise
.

It is easily verified that the corresponding link game (L̄, r) does not have a PMAS since

such a PMAS should satisfy x12,{12} = x13,{13} = 1 implying x12,{12,13} + x13,{12,13} ≥ 2

which cannot hold since r({12, 13}) = 1. Note that this link game is not even balanced.

Now consider the following allocation scheme for the reward game (N, r).

yi,L =

 1 , if i = 1 and r(L) = 1

0 , otherwise
.

It is easily checked that (yi,L)i∈N,L⊆L̄ is a link monotonic allocation scheme.

The example above illustrates that the class of reward games with a link monotonic

allocation scheme does not correspond to the class of reward games with a PMAS for

the corresponding link game. Sprumont (1990) showed that a cooperative game with a

PMAS has to be totally balanced. The example above shows that a reward game can

have a LMAS while the corresponding link game is not even balanced.

After the results above one might expect the class of reward games with a LMAS to be

a large class. However, we show in the following example that the class of reward games

with a LMAS does not contain all reward games with a totally balanced associated link

game.

5For notational convenience we will sometimes refer to a link {i, j} as ij.
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Example 4.3 Consider the reward game (N, r) with N = {1, 2, 3, 4} and

r(L) =


2 , if L = L̄

1 , if L 6= L̄ and ∃i ∈ N such that L ⊃ KN\{i}

0 , otherwise

.

For the associated link game, y with y13 = y24 = 1 and y12 = y14 = y23 = y34 = 0 is

a core-element. For all subgames one can also find a core-element, e.g. for the subgame

on {12, 13, 14, 23, 24} we have that y with y with y12 = 1 and y13 = y14 = y23 = y24 = 0

is a core-element. Hence, (L̄, r) is totally balanced. We will show that (N, r) does not

have a LMAS.

Suppose x is a LMAS for (N, r). From xi,∅ = 0 for all i ∈ N it follows by monotonicity

of the allocation scheme that xi,L ≥ 0 for all i ∈ N and all L ⊆ L̄. From x1,{12,13,23}+

x2,{12,13,23}+x3,{12,13,23} = 1, and
∑
i∈{1,2,3,4}xi,{12,13,14,23,24} = 1 it follows by monotonicity

that x4,{12,13,14,23,24} = 0 . By using monotonicity of the allocation scheme we conclude

that x4,{12,14,24} = 0.

Interchanging the role of players 1 and 4 we get x1,{12,14,24} = 0, while interchanging

the role of players 2 and 4 would result in x2,{12,14,24} = 0. So, x1,{12,14,24}+ x2,{12,14,24}+

x4,{12,14,24} = 0 which contradicts. x1,{12,14,24}+x2,{12,14,24}+x4,{12,14,24} = 1. We conclude

that (N, r) does not have a LMAS.

In the following we will describe the class of reward games with a LMAS. First, we

will introduce some definitions. Player i is called a veto-player in the reward game (N, r)

if cooperation of player i is required to obtain profits, i.e. r(L) = 0, for all L ⊆ KN\{i}.

A reward game is a reward game with veto-control if it is a reward game with at least

one veto-player. The reward game (N, r) is called a simple reward game if r(L) ∈ {0, 1}

for all L ⊆ L̄. Finally, recall that a reward game is monotonic if r(L1) ≤ r(L2) for all

L1 ⊆ L2.

Sprumont (1990) showed that a TU-game has a PMAS if and only if it is a positive

linear combination of monotonic simple games with veto-control. The following theorem

provides a similar result with respect to reward games with a LMAS.

Theorem 4.2 A reward game (N, r) has a LMAS if and only if it is a positive linear

combination of monotonic simple reward games with veto-control.

Proof: First assume (N, r) is a positive linear combination of monotonic simple reward

games with veto-control. If x1 is a LMAS for (N, r1) and x2 a LMAS for (N, r2) then

obviously αx1 + βx2 is a LMAS for (N,αr1 + βr2) if α, β ≥ 0, where (αr1 + βr2)(L) =
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αr1(L)+βr2(L) for all L ⊆ L̄. A monotonic simple reward game with veto-control has a

LMAS, which is easily seen by attributing the reward of any structure completely to one

specific veto-player. Since (N, r) is a positive linear combination of monotonic simple

reward games with veto-control it follows that (N, r) has a LMAS.

Now, assume (N, r) has a LMAS x = (xi,L)i∈N,L⊆L̄. Then we can write (N, r) as a

sum of monotonic reward games with veto-control (N, ri)i∈N , where ri(L) = xi,L for all

i ∈ N and all L ⊆ L̄.

It remains to show that every monotonic reward game with veto-control can be written

as a positive linear combination of monotonic simple reward games with veto-control.

Let (N, ri) be a monotonic reward game with veto-player i. Define

K := |{z ∈ IR++ | ∃L ∈ L̄ : ri(L) = z}|

and let t0 := ri. For k = 1, . . . , K define

αk := min{tk−1(L) | tk−1(L) > 0, L ⊆ L̄}

and

tk := tk−1 − αkr
i
k,

where rik(L) =

 1 , if tk−1(L) > 0

0 , otherwise
. By construction we have

ri =
K∑
k=1

αkr
i
k, with αk > 0 for all k ∈ {1, . . . , K}.

Since all (N, rik) are monotonic simple reward games with veto-player i it follows that

every monotonic reward game with veto-control can be written as a positive linear com-

bination of monotonic simple reward games with veto-control. 2

5 Convexity

In this section we will introduce two notions of convexity in the setting of reward games,

player convexity and link convexity. We will show that there is a relation between player

convexity and the allocation scheme based on the Myerson value being link monotonic.

Similarly, we will show that there is a relation between link convexity and the allocation

scheme based on the position value (cf. Borm et al. (1992)) being link monotonic.

In introducing a notion of convexity in the setting of reward games, we could simply

focus on convexity of the corresponding link game. However, in reward games we focus
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on the players and convexity of the associated link games focuses on the links. Therefore,

we will not consider convexity of the associated link game, but we will introduce two

different notions of convexity for the class of reward games.

First, recall that a cooperative game (N, v) is convex if for all S, T ⊆ N with S ⊆ T

and all i ∈ S

v(S)− v(S\{i}) ≤ v(T )− v(T\{i}).

Convexity states that the marginal contribution of a player does not decrease if this

player joins a larger coalition.

Translating the interpretation of convexity in cooperative games to reward games,

it seems natural to look at the total contribution of all links a player is involved in.

However, this can be interpreted in at least two different ways.

Definition 3 A reward game (N, r) is player convex if for all L1, L2 ⊆ L̄ with L1 ⊆ L2

and all i ∈ N

r(L1)− r(L1\L1
i ) ≤ r(L2)− r(L2\L2

i ).

Definition 4 A reward game (N, r) is link convex if for all L1, L2 ⊆ L̄ with L1 ⊆ L2

and all i ∈ N ∑
l∈L1

i

[
r(L1)− r(L1\{l})

]
≤
∑
l∈L2

i

[
r(L2)− r(L2\{l})

]
.

A reward game is player convex if the marginal contribution of the set of all the links

a player is involved in does not decrease when the set of links is enlarged. A reward game

is link convex if the sum of the marginal contributions of the links a player is involved

in does not decrease when the set of links is enlarged.

These two notions of convexity will be used in analyzing two allocation rules defined

on the class of reward games. We will use convexity in describing the set of reward games

where a specific (extended) allocation rule is a link monotonic allocation scheme.

The first allocation rule is the Myerson value which was already described in section

3. The second allocation rule is the position value. Let (N, r) be a reward game with

unanimity coordinates (αA)A⊆L̄. Then the position value π(N, r, L) is defined by

πi(N, r, L) =
∑
A⊆L

αA|Ai|

2|A|
=
∑
A⊆L

∑
l∈Ai

αA

2|A|
, for all i ∈ N.

This position value is a natural extension of the position value for cooperative games,

introduced by Borm, Owen, and Tijs (1992). Recall that Φl(L, r|L) =
∑
A⊆L, l∈A

αA
|A| ,

where Φ denotes the Shapley value. Hence,

πi(N, v, L) =
∑
l∈Li

1

2
Φl(L, r|L), for all i ∈ N.
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We will characterize the two allocation rules above using potentials, similar to the

characterization of the Shapley value by Hart and Mas-Colell (1989). The potential used

in the characterization of the Myerson value focuses on the total marginal contribution

of a player. The potential used in the characterization of the position value focuses on

the marginal contributions of the links.

Consider a function P that assigns to every reward communication situation (N, r, L)

a real number. The marginal contribution of a player can now be defined in two natural

ways. First as the total marginal contribution of all his links, i.e.

D1
iP (N, r, L) := P (N, r, L)−P (N, r, L\Li), for all (N, r, L) ∈ RCS and all i ∈ N. (1)

Secondly, we can define the marginal contribution of a player as the sum of the marginal

contributions of the links this player is involved in, i.e.

D2
iP (N, r, L) =

∑
l∈Li

[P (N, r, L)− P (N, r, L\{l})] for all (N, r, L) ∈ RCS and all i ∈ N.

(2)

A function P is called a player potential function if P (N, r, ∅) = 0 and

∑
i∈N

D1
i P (N, r, L) = r(L), (3)

i.e the sum of the marginal contributions w.r.t D1 equals the value of the cooperation

structure.

A function P is called a link potential function if P (N, r, ∅) = 0 and

∑
i∈N

D2
i P (N, r, L) = r(L), (4)

i.e the sum of the marginal contributions w.r.t D2 equals the value of the cooperation

structure.

The following theorem shows that there exists a unique player potential function and

for all reward games it holds that the marginal contributions coincide with the Myerson

value.

Theorem 5.1 There exists a unique player potential function P . For all reward com-

munication situations (N, r, L) ∈RSC it holds that D1
iP (N, r, L) = µi(N, r, L) for all

i ∈ N .

Proof: First we show that there exists a player potential function and that the marginal

contributions of this player potential function coincide with the Myerson value.
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Let (N, r) be a reward game. Since a reward function is the characteristic function

of the associated link game, this function can be written as a unique linear combination

of unanimity games, i.e. r =
∑
A⊆L̄ αAuA. We define (P (N, r, L))L⊆L̄:

P (N, r, L) =
∑
A⊆L

αA

N(A)
, for all L ⊆ L̄.

Obviously, P (N, r, ∅) = 0. Furthermore, for all L ⊆ L̄

D1
iP (N, r, L) = P (N, r, L) − P (N, r, L\Li)

=

∑
A⊆L

αA

N(A)
−

∑
A⊆L\Li

αA

N(A)


=

∑
A⊆L:Ai 6=∅

αA

N(A)

= µi(N, r, L) (5)

Since the Myerson value is efficient it follows that the sum of the marginal contribu-

tions equals the value of the cooperation structure.

Since the arguments above hold for all reward games (N, r) it holds that

(P (N, r, L))
(N,r,L)∈RSC is a player potential function.

It remains to show that the player potential function is unique. If Q is a player

potential function it follows by equations (1) and (3) that for all (N, r, L) with L 6= ∅

that

Q(N, r, L) =
1

|N |

[
r(L) +

∑
i∈N

Q(N, r, L\Li)

]
. (6)

For all reward games (N, r) it holds that Q(N, r, ∅) = 0, so Q(N, r, L) can be deter-

mined recursively using this equation.6 This proves the uniqueness of the player potential

function.

This completes the proof. 2

Secondly, we consider D2. Recall that P is a link potential function if∑
i∈N D

2
i P (N, r, L) = r(L) for all (N, r, L) and P (N, r, ∅) = 0 for all (N, r). The follow-

ing theorem shows that there exists a unique link potential function and the marginal

contributions coincide with the position value.

6Note that for i ∈ N with Li = ∅ it holds that L\Li = L. So, equation (6) is not a recursive formula.
However, since L 6= ∅ there exists i ∈ N with Li 6= ∅, so equation (6) can be rewritten to show that
Q(N, v, L) is uniquely determined by {Q(N, r, A) | A ⊂ L}.
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Theorem 5.2 There exists a unique link potential function P . For all reward com-

munication situations (N, r, L) ∈RSC it holds that D2
iP (N, r, L) = πi(N, r, L) for all

i ∈ N .

Proof: First we show that there exists a link potential function and that the marginal

contributions of the link potential function coincide with the position value.

Let (N, r) be a reward game. Recall that a reward function is the characteristic

function of the associated link game, which can be written as a unique linear combination

of unanimity games, i.e. r =
∑
A⊆L̄ αAuA. We define (P (N, r, L))L⊆L̄:

P (N, r, L) =
∑
A⊆L

αA

2|A|
, for all L ⊆ L̄.

Obviously, P (N, r, ∅) = 0. Furthermore, for all L ⊆ L̄

D2
iP (N, r, L) =

∑
l∈Li

[P (N, r, L)− P (N, r, L\{l})]

=
∑
l∈Li

∑
A⊆L

αA
2|A|

−
∑

A⊆L\{l}

αA
2|A|


=

∑
l∈Li

∑
A⊆L:l∈A

αA

2|A|

= πi(N, r, L) (7)

Finally, note that the position value is efficient which implies that the sum of the marginal

contributions equals the value of the cooperation structure. Since the arguments above

hold for all reward games (N, r) it holds that (P (N, r, L))
(N,r,L)∈RSC is a link potential

function.

It remains to show that the link potential function is unique. If Q is a link potential

function it follows by equations (2) and (4) that for all reward communication situations

(N, r, L) with L 6= ∅

r(L) =
∑
i∈N

∑
l∈Li

[Q(N, r, L)−Q(N, r, L\{l})]

=
∑
l∈L

2[Q(N, r, L)−Q(N, r, L\{l})].

Hence,

Q(N, r, L) =
1

2|L|

r(L) + 2
∑
l∈L

Q(N, r, L\{l})

 .
Since for all reward games Q(N, r, ∅) = 0 this determines Q(N, r, L) recursively. This

proves the uniqueness of the link potential function.
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This completes the proof. 2

In the remainder of this section we study allocation schemes resulting from the My-

erson value and the position value. We concentrate on the conditions on the underly-

ing reward game such that these allocation schemes are link monotonic. For a reward

game (N, r) we refer to (µi(N, r, L))i∈N, L⊆L̄ as the Myerson allocation scheme and to

(πi(N, r, L))i∈N, L⊆L̄ as the position allocation scheme. Furthermore, if P is the player

potential function then we refer to (N,P|(N,r)), where P|(N,r) is the restriction of P to

{(N, r, L)|L ⊆ L̄}, as the player potential reward game associated with (N, r). Similarly,

if P is the link potential function then we refer to (N,P|(N,r)) as the link potential reward

game associated with (N, r).

Maŕın-Solano and Rafels (1996) show that the allocation scheme based on the Shapley

value for a cooperative game is a population monotonic allocation scheme if and only if

the associated potential game is convex. We will find a similar result regarding reward

games, the Myerson value, and the position value.

The following theorem states that the Myerson allocation scheme is a link monotonic

allocation scheme if and only if the associated player potential reward game is player

convex.

Theorem 5.3 Let (N, r) be a reward game. The Myerson allocation scheme is a LMAS

if and only if the associated player potential reward game (N,P|(N,r)) is player convex.

Proof: For notational convenience we will write P instead of P|(N,r) and P (L) instead

of P|(N,r)(N, r, L).

Since the Myerson allocation scheme obviously satisfies conditions (i) and (ii) of def-

inition 1 it suffices to show that the Myerson allocation scheme satisfies condition (iii)

if and only if the player potential reward game associated with (N, r) is player convex.

Denote the player potential reward game associated with (N, r) by (N,P ).

(N,P ) is player convex if and only if for all i ∈ N and all L1 ⊆ L2 ⊆ L̄

P (L1)− P (L1\L1
i ) ≤ P (L2)− P (L2\L2

i ).

By (5) we find that this is equivalent to

µi(N, r, L
1) ≤ µi(N, r, L

2).

for all i ∈ N and all L1 ⊆ L2 ⊆ L̄ . This completes the proof. 2
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The following theorem contains a similar result for the position value and a link convex

associated link potential reward game.

Theorem 5.4 Let (N, r) be a reward game. The position allocation scheme is a LMAS

if and only if the associated link potential reward game (N,P|(N,r)) is link convex.

Proof: For notational convenience we will write P in stead of P|(N,r) and P (L) instead

of P|(N,r)(N, r, L).

Since the position allocation scheme obviously satisfies conditions (i) and (ii) of defi-

nition 1 it suffices to show that the position allocation scheme satisfies condition (iii) if

and only if the link potential reward game associated with (N, r) is link convex. Denote

the link potential game associated with (N, r) by (N,P ).

(N,P ) is link convex if and only if for all i ∈ N and all L1 ⊆ L2 ⊆ L̄:∑
l∈L1

i

[
P (L1)− P (L1\{l})

]
≤
∑
l∈L2

i

[
P (L2)− P (L2\{l})

]
.

By (7) we find that this holds if and only if

πi(N, r, L
1) ≤ πi(N, r, L

2),

for all i ∈ N and all L1 ⊆ L2 ⊆ L̄. This completes the proof. 2

6 Symmetric connections model

In this section we analyze a specific example, the symmetric connections model de-

scribed and analyzed by Jackson and Wolinsky (1996) and Watts (1997). We start with

a description of this model. Subsequently, we analyze under what conditions a link

monotonic allocation scheme exists and relate these results to the conclusions of Jackson

and Wolinsky (1996). Finally, we show that in this model the Myerson allocation scheme

and the position allocation scheme will in general not be link monotonic.

The connections model represents social communication between individuals. Players

communicate with people they are connected with, however, the value of the communi-

cation between two players depends on the shortest path in the graph between these two

players. If we denote by tij(L) the length of the shortest path between i and j in the

graph (N,L), where tij(L) =∞ if i and j are not connected, then the utility of player i

in graph (N,L) is

ui(L) =
∑

j∈N\{i}

δtij(L) − c|Li|,
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where δ (0 < δ < 1) represents the idea that the value of communication between two

players decreases when the distance between the two players increases and c denotes the

costs for a player to maintain a link. The value of communication structure (N,L) is

r(L) =
∑
i∈N

ui(L).

The following theorem shows that in the symmetric connections model with at least

three players (ui(L))i∈N,L⊆L̄ is a link monotonic allocation scheme if and only if c ≤

δ− δ2. Additionally, we show that (N, r) possesses no link monotonic allocation scheme

if c > δ − δ2.

Theorem 6.1 The symmetric connections model with |N | ≥ 3 has a link monotonic

allocation scheme if and only if c ≤ δ − δ2. Moreover, if c ≤ δ − δ2 then (ui(L))i∈N,L⊆L̄

is a link monotonic allocation scheme.

Proof: First we will show that if c > δ − δ2 there exists no link monotonic allocation

scheme. Subsequently, we show that if c ≤ δ−δ2 then (ui(L))i∈N,L⊆L̄ is a link monotonic

allocation scheme.

Assume c > δ−δ2. The value of the complete graph is given by r(L̄) =
∑
{i,j}∈L̄[2δ−2c]

since all pairs of players are connected directly. Deleting one link, between players

1, 2 ∈ N reduces the costs by 2c and the profits by 2(δ−δ2) since the length of the shortest

path between players 1 and 2 increases from t12 = 1 to t12 = 2. Hence, r(L̄\{{1, 2}}) =∑
{i,j}∈N[2δ − 2c] + 2c − 2(δ − δ2) > r(L̄) since c > δ − δ2. So, cooperation structure

(N, L̄\{{1, 2}}) has a larger value than the cooperation structure (N, L̄) which contains

one link more. This implies that (N, r) cannot have a link monotonic allocation scheme.

Now, assume c ≤ δ− δ2. It follows directly that (ui(L))i∈N,L⊆L̄ satisfies conditions (i)

and (ii) of definition 1 on page 6. It remains to show that it satisfies condition (iii). It

suffices to show that ui(L) ≤ ui(L∗) for all L,L∗ ⊆ L̄ with |L| = |L∗| − 1. Let i ∈ N ,

L ⊂ L̄, and {j, k} ∈ L̄\L. Denote L∗ = L∪{{j, k}}. Since adding a link can only reduce

the length of the shortest path between two players it holds that

trs(L) ≥ trs(L
∗) (8)

for all r, s ∈ N , which implies that for all r, s ∈ N

δtrs(L) ≤ δtrs(L
∗). (9)

We will distinguish two cases, (i) i ∈ {j, k} and (ii) i 6∈ {j, k}.
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(i) i ∈ {j, k}. Without loss of generality assume i = j. Then

ui(L
∗) =

∑
r 6=i

δtir(L
∗) − c|L∗i |

=
∑
r 6=i,k

δtir(L
∗) − c|Li|+ δtik(L∗) − c

≥
∑
r 6=i,k

δtir(L) − c|Li|+ δtik(L)

=
∑
r 6=i

δtir(L) − c|Li|

= ui(L),

where the second equality follows by rearranging the terms and |L∗i | = |Li| + 1. The

inequality follows by equation (8) and δtik(L∗) − δtik(L) = δ − δtik(L) ≥ δ − δ2 ≥ c.

(ii) i 6∈ {j, k}. Then

ui(L
∗) =

∑
r 6=i

δtir(L
∗) − c|L∗i | ≥

∑
r 6=i

δtir(L) − c|Li| = ui(L),

where the inequality follows by equation (8) and |L∗i | = |Li|. 2

Jackson and Wolinsky (1996) find that if c < δ − δ2 then the complete graph is the

unique pairwise stable network, i.e. there is no player that can strictly improve his

payoff by breaking a link he is involved in and there is no pair of players that can both

improve their payoffs by forming an additional link between them, where at least one

improvement should be strict. They do not consider the case c = δ− δ2. In this case the

corresponding LMAS improves the payoffs of the players that form a link, however, this

improvement need not be strict.

It is easily seen that if |N | = 2 there exists a LMAS if and only if δ ≥ c. In that

case both the Myerson allocation scheme and the position allocation scheme coincide

with (ui(L))i∈N,L⊆L̄, which is a LMAS. However, we will show that if |N | ≥ 3 then

the position allocation scheme and the Myerson allocation scheme are both not a link

monotonic allocation scheme in this model.

Theorem 6.2 In the symmetric connections model with |N | ≥ 3 both the extended

Myerson value and the position allocation scheme are not a LMAS.

Proof: The Myerson allocation scheme is not a LMAS since µ2(N, r, {{1, 2}, {2, 3}}) =

2δ − 2c + 2
3
δ2 while µ2(N, r, {{1, 2}, {2, 3}, {1, 3}}) = 2δ − 2c. Similarly, the position

allocation scheme is not a LMAS since π2(N, r, {{1, 2}, {2, 3}}) = 2δ − 2c + δ2 while

π2(N, r, {{1, 2}, {2, 3}, {1, 3}}) = 2δ − 2c. 2
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