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Summary

The analysis of non-Gaussian time series using state space models is considered from both
classical and Bayesian perspectives. The treatment in both cases is based on simulation us-
ing importance sampling and antithetic variables; Monte Carlo Markov chain methods are not
employed. Non-Gaussian disturbances for the state equation as well as for the observation equa-
tion are considered. Methods for estimating conditional and posterior means of functions of the
state vector given the observations, and the mean square errors of their estimates, are devel-
oped. These methods are extended to cover the estimation of conditional and posterior densities
and distribution functions. Choice of importance sampling densities and antithetic variables is
discussed. The techniques work well in practice and are computationally e�cient. Their use is
illustrated by applying to a univariate discrete time series, a series with outliers and a volatility
series.

Keywords: Antithetic variables; Conditional and posterior statistics; Expo-

nential family distributions; Heavy-tailed distributions; Importance sampling;

Kalman filtering and smoothing; Monte Carlo simulation; Non-Gaussian time se-
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1 Introduction

This paper discusses the analysis of non-Gaussian time series using state space models from
both classical and Bayesian points of view. A major advantage of the state space approach is
that we can model the behaviour of di�erent components of the series separately and then put
the sub-models together to form an overall model for the series. State space models are very
general and can handle a remarkably wide range of applications ranging from ARIMA models
and unobserved components time series models to smoothing models with roughness penalties.

An example of the application of state space methods to a problem in applied time series
analysis was the assessment for the Department of Transport of the e�ects of seat belt legisla-
tion on road tra�c accidents in the United Kingdom described by Harvey and Durbin (1986).
Although the observations were count data and hence non-Gaussian, the analysis was based on
linear Gaussian methods since these were the only appropriate state space methods available at
the time. The realisation that no exact treatment of count data existed at the time led to the
work in this paper.

State space models contain two classes of variables, the unobserved state variables which
describe the development over time of the underlying system, and the observations. We consider
departures from normality both for the state variables and for the conditional distributions of
the observations given the state. For the state, our primary interest is in heavy-tailed densities
which enable us to model structural shifts. For the conditional densities of the observations,
we consider general classes of distributions which include both exponential family distributions
and heavy-tailed densities. The exponential family densities allow us to model count data
such as Poisson, binomial and multinomial observations as well as to model skewed data by,
for example, Gamma densities. The heavy-tailed densities allow us to model outliers. For a
classical analysis we calculate maximum likelihood estimates of model parameters and then
estimate conditional means of functions of the state given the observations, together with the
mean square errors of the estimates. We also show how to estimate conditional distribution
functions and conditional densities. For Bayesian analysis we estimate posterior means and
variances, posterior distribution functions and densities and show how to draw random samples
from the estimated posterior distributions of functions of the state. The methods are simple,
practical and computationally e�cient. For the most part we present a general theory for
multivariate observations.

The techniques used are based on the Kalman �lter and smoother and on Monte Carlo
simulation using Gaussian importance sampling and antithetic variables. Using these techniques
we develop methods that are new, elegant and e�cient for problems in time series analysis, and
we provide estimates that are as accurate as is desired. Our simulation techniques are based on
independent samples and not on Markov chains, thus enabling us to avoid convergence problems
and also to obtain simple and accurate estimates of sampling variances due to simulation.

Some early work on state space modelling with non-Gaussian data is reviewed in Chapter 8
of Anderson and Moore's (1979) text book. A further review of early work is given by Kitagawa
(1987) and in the accompanying published discussion, particularly in the extensive comments
of Martin and Raftery (1987). Gaussian mixtures were used by Harrison and Stevens (1971,
1976) under the name multi-process models for problems involving non-Gaussian data. Most of
this work deals only with �ltering. However, a comprehensive treatment of both �ltering and
smoothing was given by Kitagawa (1989, 1990) based on approximating non-Gaussian densities
by Gaussian mixtures. At each update he collapses the conditional density into a smaller number
of components to prevent the number of components in the mixtures becoming unmanageable,
so the method is essentially approximative.

State space models for exponential family observations with Gaussian state were introduced
by West, Harrison and Migon (1985). They used a Bayesian approach using conjugate priors
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and at each update the posterior density was approximated in order to retain the conjugate
structure. Their model was considered further by Fahrmeir (1992) who estimated the state
variables by approximating their conditional modes given the observations. Fr�uhwirth-Schnatter
(1994) developed an approximate Bayesian technique by approximating the prior of the state
density at each step of the �ltering process by a Gaussian density and then performing the
update using the new observation by means of a numerical integration of dimensionality equal
to the dimensionality of the observation vector.

The disadvantage of all these methods is that they involve approximation errors of unknown
magnitude whereas with our techniques, errors are due only to simulation and their extent can
be measured and made as small as desired. Smith (1979, 1981) and Harvey and Fernandes (1989)
gave an exact solution for a special case; they based their methods on conjugate distributions and
they developed them for speci�c count data models for which the state equation is a univariate
random walk. However, this approach does not lend itself to generalisation.

Using full Bayesian inference models, simulation techniques based on Monte Carlo Markov
chain (MCMC) for non-Gaussian state space models have been developed by Carlin, Polson
and Sto�er (1992), Carter and Kohn (1994, 1996, 1997), Shephard (1994), Shephard and Pitt
(1997) and Cargnoni, M�uller and West (1997). General accounts of Bayesian methodology
and computation are given by Gelman et.al. (1995), Bernardo and Smith (1994) and Gelfand
and Smith (1999). New developments in this paper are based on earlier work of Durbin and
Koopman (1992, 1997). In the �rst paper we considered conditional mode estimation based on
Kalman �ltering and smoothing methods for exponential family models; in the second paper
we considered the special case where the observations given the state are non-Gaussian while
the state is Gaussian and the objective was to calculate maximum likelihood estimates of model
parameters by simulation. The simulation methods were highly e�cient computationally in the
sense that accurate results were obtained using small simulation sample sizes in the low hun-
dreds. Shephard and Pitt (1997) also considered maximum likelihood estimation of parameters
of non-Gaussian state space models by simulation. Geyer and Thompson (1992) have developed
simulation methods of estimation for speci�c autologistic models and other exponential family
models without dynamic structures.

The structure of the paper is as follows. In section 2 we present the state space models
that we shall consider. Section 3 develops some basic formulae that underly the simulation
techniques that we shall describe in detail later. In section 4 we obtain a linear Gaussian model
that approximates the non-Gaussian model in the neighbourhood of the conditional mode of
the stacked state vector given the observations; this is used to provide the Gaussian densities
that we use for importance sampling. Section 5 develops the computational techniques that are
required for practical applications. These are based on importance sampling using two types
of antithetic variables, one for location and one for scale. We obtain computationally e�cient
estimates of the means and variances of arbitrary functions of the stacked state vector given the
observations; these enable us to estimate conditional distribution and density functions and to
draw random samples from conditional distributions. We also obtain simple estimates of the
variances of errors due to simulation. The results are extended in a straightforward manner to
analogous problems in Bayesian inference.

Section 6 applies the techniques to three real data sets. The �rst refers to deaths in road
accidents, the second is a series of UK gas consumption and the third is an exchange rate
volatility series. The results demonstrate the feasibility of the techniques for di�erent models
and show the di�erences between results based on the classical methods and results using a
Bayesian approach. Section 7 discusses our approach. We conclude that our methods for time
series analysis of non-Gaussian observations based on state space models are elegant, practical
and computationally e�cient for both classical and Bayesian inference.
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2 Models

2.1 The linear Gaussian model

In this section we present the state space models that will be considered in the paper. We begin
with the linear Gaussian model. Although our main concern is with non-Gaussian models, the
linear Gaussian model provides the basis from which all our methods will be developed. The
model can be formulated in a variety of ways; we shall take the form

yt = Zt�t + "t; "t � N(0;Ht); (1)

�t = Tt�t�1 +Rt�t; �t � N(0; Qt); (2)

for t = 1; : : : ; n. Here, yt is a (p � 1) vector of observations, �t is an unobserved (m � 1) state
vector, Rt is a selection matrix composed of r columns of the identity matrix Im, which need
not be adjacent, and the variance matrices Ht and Qt are nonsingular. The disturbance vectors
"t and �t are serially independent and independent of each other. Matrices Ht, Qt, Zt and Tt
are assumed known apart from possible dependence on a parameter vector  which in classical
inference is assumed �xed and unknown, and in Bayesian inference is assumed to be random.
Equations (1) and (2) are called respectively the observation equation and the state equation of
the state space model. It is worth noting that (1) can be regarded as a multiple regression model
whose coe�cient vector �t is determined by the �rst order vector autoregression (2). The state
space model (1) and (2) is essentially equivalent to model (16) and (17) of the seminal Kalman
(1960) paper.

2.2 Non-Gaussian models

We shall use the generic notation p(�), p(�; �) and p(�j�) for marginal, joint and conditional
densities. The general non-Gaussian model that we shall consider has a similar state space
structure to (1) and (2) in the sense that observations are determined by a relation of the form

p (ytj�1; : : : ; �t; y1; : : : ; yt�1) = p (ytjZt�t) ; (3)

while the state vectors are determined independently of previous observations by the relation

�t = Tt�t�1 +Rt�t; �t � p (�t) ; (4)

for t = 1; : : : ; n, where the �t's are serially independent. Here, either p (ytjZt�t) or p (�t) or both
can be non-Gaussian. We denote Zt�t by �t and refer to it as the signal. While we begin by
considering a general form for p (ytj�t), we shall pay particular attention to two special cases:
(i) observations which come from exponential family distributions with densities of the form

p (ytj�t) = exp
�
y0t�t � bt(�t) + ct(yt)

�
; (5)

where bt (�t) is twice di�erentiable and ct (yt) is a function of yt only; (ii) observations generated
by the relation

yt = �t + "t; "t � p ("t) ; (6)

where the "t's are non-Gaussian and serially independent.
In the next section we will develop estimation formulae which provide the basis for our

simulation methodology. We will do this for both classical and Bayesian inference. In the
terminology of Bayesian analysis, all the models in this section are hierarchical models, in which
the elements of �1; : : : ; �n are the parameters and the elements of  are the hyperparameters;
see, for example, Bernardo and Smith (1994, p.371).
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3 Basic simulation formulae

3.1 Introduction

In this section we develop the basic formulae underlying our simulation methods; details for
practical calculation will be given in section 5. Denote the stacked vectors (�01; : : : ; �

0
n)

0 and
(y01; : : : ; y

0
n)
0 by � and y. Most of the problems considered in this paper are essentially the

estimation of the conditional mean
�x = E[x(�)jy] (7)

of an arbitrary function x(�) of � given the observation vector y. This formulation includes
estimates of quantities of interest such as the mean E(�tjy) of the state vector �t given y and
its conditional variance matrix Var(�tjy); it also includes estimates of the conditional density
and distribution function of x(�) given y in the classical case and the posterior density and
distribution function of x(�) in the Bayesian case. We shall estimate �x by simulation methods
that are similar to those used in Shephard and Pitt (1997) and Durbin and Koopman (1997)
for estimating the likelihood in non-Gaussian state space models. The methods are based on
standard ideas in simulation methodology, namely importance sampling and antithetic variables,
as described, for example, in Ripley (1987); in particular, we make no use of Markov chain
Monte Carlo (MCMC) methods. As a result, our simulation samples are independent so we can
easily calculate variances of errors due to simulation, and we avoid the convergence problems
associated with MCMC techniques. Nevertheless, our methods are computationally very e�cient
as we shall demonstrate. The techniques we shall describe will be based on Gaussian importance
densities. We shall use the generic notation g (�), g (�; �) and g (�j�) for Gaussian marginal, joint
and conditional densities.

3.2 Formulae for classical inference

Let us �rst consider the classical inference case where the parameter vector  is assumed to
be �xed and unknown and is estimated by its maximum likelihood estimate  ̂ obtained by
numerically maximising the Monte Carlo likelihood function as discussed in section 5.4. For
given  , let g(�jy) be a Gaussian importance density which is chosen to resemble p(�jy) as
closely as is reasonably possible; we have from (7),

�x =

Z
x(�)p(�jy)d� =

Z
x(�)

p(�jy)
g(�jy) g(�jy)d� = Eg

�
x(�)

p(�jy)
g(�jy)

�
; (8)

where Eg denotes expectation with respect to the importance density g(�jy). For the models
of section 2, p(�jy) and g(�jy) are complicated algebraically, whereas the corresponding joint
densities p(�; y) and g(�; y) are straightforward. We therefore put p(�jy) = p(�; y)=p(y) and
g(�jy) = g(�; y)=g(y) in (8), giving

�x =
g(y)

p(y)
Eg

�
x(�)

p(�; y)

g(�; y)

�
: (9)

Putting x(�) = 1 in (7) and (9) we have

1 =
g(y)

p(y)
Eg

�
p(�; y)

g(�; y)

�
: (10)

Taking the ratios of these gives

�x =
Eg [x(�)w(�; y)]

Eg [w(�; y)]
; where w(�; y) =

p(�; y)

g(�; y)
: (11)
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This formula provides the basis for the bulk of the work in this paper. For example, it can be
used to estimate conditional variances of quantities of interest as well as conditional densities
and distribution functions. We could in principle obtain a Monte Carlo estimate x̂ of �x in the
following way. Choose a series of independent draws �(1); : : : ; �(N) from the distribution with
density g(�jy) and take

x̂ =

PN
i=1 xiwiPN
i=1wi

; where xi = x(�(i)) and wi = w(�(i); y). (12)

Since the draws are independent, and under assumptions which are satis�ed in practical cases,
x̂ converges to �x probabilistically as N ! 1. However, this simple estimate is numerically
ine�cient and we shall re�ne it considerably in section 5.

An important special case is where the observations are non-Gaussian but the state vector
is generated by the linear Gaussian model (2). We then have p (�) = g (�) so

p (�; y)

g (�; y)
=
p (�) p (yj�)
g (�) g (yj�) =

p (yj�)
g (yj�) =

p (yj�)
g (yj�) :

Thus (11) becomes the simpler formulae

�x =
Eg [x(�)w

�(�; y)]

Eg [w�(�; y)]
where w�(�; y) =

p(yj�)
g(yj�) ; (13)

its estimate x̂ is given by an obvious analogue of (12).

3.3 Formulae for Bayesian inference

Now let us consider the problem from a Bayesian point of view. The parameter vector  is
regarded as random with prior density p( ) which to begin with we take as a proper prior. As
before, suppose we wish to calculate �x = E[x(�)jy]. This now takes the form

�x =

Z
x(�)p( ;�jy)d d�:

We have
p( ;�jy) = p( jy)p(�j ; y)

where by Bayes' theorem
p( jy) = Kp( )p(yj )

in which K is a normalising constant. Thus

�x = K

Z
x(�)p( )p(yj )p(�j ; y)d d�: (14)

Consider the approximation of the posterior density p( jy) by its large sample normal approxi-
mation

g( jy) = N( ̂; V̂ );

where  ̂ is the solution of the equation

@ log p( jy)
@ 

=
@ log p( )

@ 
+
@ log p(yj )

@ 
= 0; (15)

and

V̂ �1 = �@
2 log p( )

@ @ 0
� @2 log p(yj )

@ @ 0

�����
 = ̂

: (16)
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The value  ̂ is computed iteratively by an obvious extension of the techniques of Durbin and
Koopman (1997) using a linearisation at a trial value ~ of  ; while the second derivatives can
be calculated numerically. For discussion of large sample approximations to p( jy) see Gelman
et.al. (1995, Chapter 4) and Bernardo and Smith (1994, section 5.3).

We shall use g( jy) as an importance density for p( jy). Let g(�j ; y) be an appropriate
Gaussian importance density for p(�j ; y) analogous to g(�jy) in (8). We can then rewrite (14)
as

�x = K

Z
x(�)

p( )p(yj )
g( jy)

p(�j ; y)
g(�j ; y) g( jy)g(�j ; y)d d�

= K

Z
x(�)

p( )g(yj )
g( jy)

p(�; yj )
g(�; yj )g( ;�jy)d d�

= K Eg

�
x(�)

p( )g(yj )
g( jy)

p(�; yj )
g(�; yj )

�
; (17)

where Eg now denotes expectation with respect to the importance joint density g( ;�jy) =
g( jy)g(�j ; y). It is very fortunate that the quantity p(yj ), which is hard to compute, con-
veniently drops out of this expression. Taking the ratio of this expression for �x to the same
expression with x(�) equal to one, the term K disappears, giving analogously to (11),

�x =
Eg [x(�)z( ;�; y)]

Eg [z( ;�; y)]
; where z( ;�; y) =

p( )g(yj )
g( jy)

p(�; yj )
g(�; yj ) : (18)

This formula provides the basis for our results in the Bayesian case. It can be used to obtain
estimates of posterior means, variances, densities and distribution functions. In principle we
could compute a Monte Carlo point estimate x̂ of �x as follows. Let  (i) be a random draw from
g( jy) and let �(i) be a random draw from g(�j (i) ; y) for i = 1; : : : ; N ; we assume here that we
only draw one �(i) for each  (i) though, of course, more could be drawn if desired. Then take

x̂ =

PN
i=1 xiziPN
i=1 zi

; where xi = x(�(i)) and zi = z( (i); �(i); y). (19)

We see that the only di�erence between (19) and (12) is the replacement of wi by zi which allows
for the e�ect of drawing values of  from g( jy). This simple form of the simulation will be
improved later. The term g(yj (i)) in zi is easily calculated by the Kalman �lter.

For cases where a proper prior is not available we may wish to use a non-informative prior
in which we assume that the prior density is proportional to a speci�ed function p( ) in a
domain of  of interest even though the integral

R
p( )d does not exist. For a discussion of

non-informative priors see, for example, in Chapters 2 and 3 of Gelman et.al. (1995). Where
it exists, the posterior density is p( jy) = Kp( )p(yj ) as in the proper prior case so all the
previous formulae apply without change. This is why we use the same symbol p( ) for both
cases even though in the non-informative case p( ) is not a density. An important special case
is the di�use prior for which p( ) = 1 for all  .

3.4 Bayesian analysis for the linear Gaussian model

Although this paper is directed at non-Gaussian models, let us digress brie
y to consider the
application of the above Bayesian treatment to the linear Gaussian model (1) and (2), since this
model is important in practical applications and our methodology is new. Let

�x( ) = E[x(�)j ; y] =
Z
x(�)p(�j ; y)d�;

7



and assume that for given  , �x( ) is obtainable by a routine Kalman �ltering and smoothing
operation; for example, x( ) could be an estimate of the trend at time t or it could be a forecast
of yt at time t > n. Then

�x =

Z
�x( )p( jy)d = K

Z
�x( )p( )p(yj )d = K

Z
�x( )zg( ; y)g( jy)d 

= K Eg[�x( )z
g( ; y)]; where zg( ; y) =

p( )g(yj )
g( jy)

and Eg is expectation with respect to the importance density g( jy); note that we write g(yj )
in place of p(yj ) since p(yj ) is Gaussian. Analogously to (18) we therefore have

�x =
Eg[�x(�)z

g( ; y)]

Eg[zg( ; y)]
; (20)

while for practical calculation there is an obvious analogue of (19). In (20), zg( ; y) depends
on the likelihood g(yj ) which can be computed by a routine Kalman �ltering operation for the
linear Gaussian model.

4 Approximating linear Gaussian models

4.1 Introduction

In this section we obtain the Gaussian importance densities that we need for simulation by con-
structing linear Gaussian models which approximate the non-Gaussian model in the neighbour-
hood of the conditional mode of � given y. Let g(�jy) and g(�; y) be the conditional and joint
densities generated by model (1) and (2) and let p(�jy) and p(�; y) be the corresponding densi-
ties generated by model (3) and (4). We will determine the approximating model by choosing Ht

and Qt so that densities g(�jy) and p(�jy) have the same mode �̂. The possibility that p(�; y)
might be multimodal will be considered in section 4.6. Taking the Gaussian model �rst, �̂ is the
solution of the vector equation @ log g (�jy) =@� = 0. Now log g (�jy) = log g (�; y) � log g (y).
Thus, the mode is also the solution of the vector equation @ log g (�; y) =@� = 0. This version of
the equation is easier to manage since g (�; y) has a simple form whereas g (�jy) does not. Since
Rt consists of columns of Im, �t = R0

t (�t � Tt�t�1). We therefore have

log g (�; y) = constant � 1

2

nX
t=1

(�t � Tt�t�1)
0RtQ

�1
t R0

t (�t � Tt�t�1)�

1

2

nX
t=1

(yt � Zt�t)
0H�1

t (yt � Zt�t) :

Di�erentiating with respect to �t and equating to zero gives the equations

�RtQ�1
t R0

t (�t � Tt�t�1) + dtT
0
t+1Rt+1Q

�1
t+1R

0
t+1 (�t+1 � Tt+1�t) +

Z 0
tH

�1
t (yt � Zt�t) = 0;

(21)

for t = 1; : : : ; n, where dt = 1 for t < n and dn = 0. The solution to these equations is the
conditional mode b�. Since g(�jy) is Gaussian the mode is equal to the mean so �̂ can be routinely
calculated by the Kalman �lter and smoother (KFS); for details of the KFS see Harvey (1989,
Chapter 3). It follows that linear equations of the form (21) can be solved by the KFS which is
known to be very e�cient computationally.

Assuming that the non-Gaussian model (3) and (4) is su�ciently well behaved, the mode �̂
of p(�jy) is the solution of the vector equation

@ log p(�jy)
@�

= 0

8



and hence of the equation
@ log p (�; y)

@�
= 0:

Let qt (�t) = � log p (�t) and let ht (ytj�t) = � log p (ytj�t). Then,

log p (�; y) = constant � [qt (�t) + ht (ytj�t)] ; (22)

with �t = R0
t (�t � Tt�t�1) so b� is a solution of the equations

@ log p (�; y)

@�t
= �Rt @qt (�t)

@�t
+ dtT

0
t+1Rt+1

@qt+1 (�t+1)

@�t+1

� Z 0
t

@ht (ytj�t)
@�t

= 0; (23)

for t = 1; : : : ; n, where, as before, dt = 1 for t = 1; : : : ; n � 1 and dn = 0. We solve these
equations by iteration, where at each step we linearise, put the result in the form (21) and solve
by the KFS. Convergence is fast and normally only around ten iterations or less are needed. A
di�erent method of solving these equations was given by Fahrmeir and Kaufmann (1991) but it
is more cumbersome than our method.

4.2 Linearisation for non-Gaussian observation densities: Method 1

We shall consider two methods of linearising the observation component of (23). The �rst
method enables exponential family observations, such as Poisson distributed observations, to be
handled; the second method is given in section 4.4 and deals with observations having the form
(6) when p ("t) is a function of "2t ; this is suitable for distributions with heavy tails such as the
t-distribution.

Suppose that e� = [e�01; : : : ; e�0n]0 is a trial value of �, let e�t = Zte�t and de�ne

_ht =
@ht (ytj�t)

@�t

����� �t = e�t ; �ht =
@2ht (ytj�t)
@�t@�

0
t

����� �t = e�t : (24)

Expanding about e�t gives approximately

@ht (ytj�t)
@�t

= _ht + �ht
�
�t � e�t� : (25)

Substituting in the �nal term of (23) gives the linearised form

�Z 0
t

�
_ht + �ht�t � �hte�t� : (26)

To put this in the same format as the �nal term of (21) put

eHt = �h�1
t ; eyt = e�t � �h�1

t
_ht: (27)

Then the �nal term becomes Zt eH�1
t (eyt � �t) as required.

Consider, for example, the important special case in which the state equation retains the
original linear Gaussian form (2). Equations (23) then have the linearised form

�RtQ�1
t R0

t (�t � Tt�t�1) + dtT
0
t+1Rt+1Q

�1
t+1R

0
t+1 (�t+1 � Tt+1�t) +

Z 0
t
eH�1
t (eyt � Zt�t) = 0;

(28)

analogous to (21), which can be solved for � by the KFS to give a new trial value and the process
is repeated until convergence. The values of � and � after convergence to the mode are denoted
by �̂ and �̂, respectively.
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It is evident from (27) that Method 1 only works when �ht is positive de�nite. When �ht is
negative-de�nite or semi-de�nite, Method 2 should normally be used. Finally, it is important to
note that the �rst and second derivatives of the log Gaussian density of yt given �t, as implied
by (27), are the same as the �rst and second derivatives of �ht (ytj�t) at the mode � = �̂, for
t = 1; : : : ; n. This means that not only does the approximating linear Gaussian model have the
same conditional mode as model (3) and (4), it has the same curvature at the mode also.

4.3 Exponential family observations

The most important application of these results is to time series of observations from exponential
family distributions, such as Poisson, binomial and multinomial observations. The model with
observational density (5) together with linear Gaussian state equation (2) was introduced by
West, Harrison and Migon (1985). They called it the dynamic generalised linear model and they
�tted it by an approximate Bayesian technique based on conjugate priors.

For density (5),

ht (ytj�t) = � log p (ytj�t) = �
�
y0t�t � bt(�t) + ct(yt)

�
: (29)

De�ne

_bt =
@bt (�t)

@�t

����� �t = e�t ;

�bt =
@2bt (�t)

@�t@�
0
t

����� �t = e�t :

Then _ht = _bt � yt and �ht = �bt so using (27) we take eHt = �b�1
t and eyt = e�t � �b�1

t (_bt � yt). These
values can be substituted in (28) to obtain a solution for the case where the state equation
is linear and Gaussian. Since, as is well known, �bt =Var(ytj�t), it is positive de�nite in non-
degenerate cases, so for the exponential family, Method 1 can always be used.

4.4 Linearisation for non-Gaussian observation densities: Method 2

We now consider the case where the observations are generated by model (6). We shall assume
that yt is univariate and that p ("t) is a function of "2t ; this case is important for heavy-tailed
densities such as the t distribution, and for Gaussian mixtures with zero means.

Let log p ("t) = �1
2
h�t
�
"2t
�
. Then the contribution of the observation component to the

equation @ log p(�; y)=@� is

�1

2

@h�t
�
"2t
�

@"2t

@"2t
@�t

= Z 0
t

@h�t
�
"2t
�

@"2t
(yt � �t) : (30)

Let

_h�t =
@h�t

�
"2t
�

@"2t

����� "t = yt � e�t : (31)

Then take Z 0
t
_h�t (yt � �t) as the linearised form of (30). By taking eH�1

t = _h�t we have the
observation component in the correct form (21) so we can use the KFS at each step of the
solution of the equation @ log p(�; y)=@� = 0. We emphasise that now only the �rst derivative
of the log of the implied Gaussian density of "t is equal to that of p ("t), compared to method 1
which equalised the �rst and second derivatives.
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It is of course necessary for this method to work that _h�t is positive with probability one;
however, this condition is satis�ed for the applications we consider below. Strictly speaking it
is not essential that p ("t) is a function of "2t . In other cases we could de�ne

_h�t = �
1

"t

@ log p ("t)

@"t

����� "t = yt � e�t ; (32)

and proceed in the same way. Again, the method only works when _h�t is positive with probability
one.

4.5 Linearisation when the state errors are non-Gaussian

We now consider the linearisation of the state component in equations (23) when the state
errors �t are non-Gaussian. Suppose that e� = [e�01; : : : ; e�0n]0 is a trial value of � = [�01; : : : ; �

0
n]
0

where e�t = R0
t (e�t � Tt e�t�1). In this paper we shall con�ne ourselves to the situation where the

elements �it of �t are mutually independent and where the density p (�it) of �it is a function
of �2it. These assumptions are not very restrictive since they enable us to deal relatively easily
with two cases of particular interest in practice, namely heavy-tailed errors and models with
structural shifts using method 2 of subsection 4.4.

Let q�it
�
�2it
�
= �2 log p (�it) and denote the i-th column of Rt by Rit. Then the state contri-

bution to the conditional mode equations (23) is

�1

2

rX
i=1

24Rit @q�it ��2it�
@�it

� dtT
0
t+1Ri;t+1

@q�i;t+1

�
�2i;t+1

�
@�i;t+1

35 ; t = 1; : : : ; n: (33)

The linearised form of (33) is

�
rX
i=1

h
Rit _q

�
it�it � dtT

0
t+1Ri;t+1 _q

�
i;t+1�i;t+1

i
; (34)

where

_q�it =
@q�it

�
�2it
�

@�2it

����� �t = e�t : (35)

Putting eQ�1
t = diag [ _q�1t; : : : ; _q

�
rt], �t = R0

t (�t � Tt�t�1), and similarly for eQt+1 and �t+1, we
see that (34) has the same form as the state component of (21). Consequently, in the iterative
estimation of b� the KFS can be used to update the trial value e�.
4.6 Discussion

So far in this section we have emphasised the use of the mode �̂ of p(�jy) to obtain a linear
approximating model which we use to calculate the Gaussian densities for simulation using the
techniques of the next section. If, however, the sole object of the investigation was to estimate �
and if economy in computation was desired, then �̂ could be used for the purpose; indeed, this
was the estimator used by Durbin and Koopman (1992) and an approximation to it was used
by Fahrmeir (1992). Our experience has been that there is very little di�erence in the examples
we have examined between the mode and the mean E(�jy). A disadvantage of this use of the
mode, however, is that there is no accompanying estimate of its error variance matrix.

We have assumed above that there is a single mode and the question arises whether multi-
modality will create complications. If multimodality is suspected it can be investigated by using
di�erent starting points and checking whether iterations from them converge to the same mode.
In none of the cases we have examined has multimodality of p (�jy) caused any di�culties. For
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this reason we do not believe that this will give rise to problems in routine time series analysis.
If, however, multimodality were to occur in a particular case, we would suggest �tting a linear
Gaussian model to the data at the outset and using this to de�ne the �rst importance density
g1(�jy) and conditional joint density g1(�; y). Simulation based on these using the methods of
the next section is employed to obtain a �rst estimate ~�(1) of E(�jy) and from this a �rst esti-

mate ~�
(1)
t of �t is calculated for t = 1; : : : ; n. Now linearise log p(ytj�t) at ~�(1)t as in section 4.2 or

4.4 and log p(�t) at ~�(1) as in section 4.5. These linearisations give a new approximating linear
Gaussian model which de�nes a new g(�jy), g2(�jy), and a new g(�; y), g2(�; y). Simulation us-
ing these gives a new estimate ~�(2) of E(�jy). This iterative process is continued until adequate
convergence is achieved. However, we emphasise that it is not necessary for the value of � at
which the model is linearised to be a precisely accurate estimate of either the mode or the mean
of p(�jy). The only way that the choice of the value of � used as the basis for the simulation
a�ects the �nal estimate x̂ is in the variances due to simulation which, as we shall show below,
are accurately estimated as a routine part of the simulation procedure. Where necessary, the
simulation sample size can be increased to reduce these error variances to any required extent.
It will be noted that we are basing the iterations on the mean, not the mode. Since the mean,
when it exists, is unique, no question of `multimeanality' can arise.

5 Computational methods

5.1 Introduction

In this section we discuss suitable computational methods for estimating �x given by (11) when
classical inference is used and �x given by (18) when Bayesian inference is used. We begin with
(11). The starting point for classical analysis is that we take  =  ̂ where  ̂ is the maximum
likelihood estimate of  determined as described in section 5.4. During the simulations it is
important to work with variables in their simplest forms. Thus for the observation equation
(3) we work with the signal �t = Zt�t and for the state equation (4) we work with the state
disturbance �t. Substituting for � in terms of � in (11) gives

�x =
Eg[x(�)w(�; y)]

Eg[w(�; y)]
where w(�; y) =

p(�; y)

g(�; y)
(36)

and � is obtained from � using the relations �t = Tt�t�1 + Rt�t for t = 1; : : : ; n. We take the
symbols x(�) and w(�; y) as denoting here the functions of � that we obtain by substituting
for � in terms of � in x(�) and w(�; y) in (11). Also we take Eg as denoting expectation with
respect to the importance density g(�jy).

5.2 Simulation smoother and antithetic variables

The simulations are based on random draws of � from the importance density g(�jy) using the
simulation smoother of de Jong and Shephard (1995); this computes e�ciently a draw for �
as a linear function of rn independent standard normal deviates where r is the dimension of
vector �t and n is the number of observations. E�ciency is increased by the use of antithetic
variables. We shall employ two types of antithetic variables. The �rst is the standard one given
by �� = 2�̂� � where �̂ = Eg(�) can be obtained via the disturbance smoother; for details of the
disturbance smoother see Koopman (1993). Since �� � �̂ = �(� � �̂) and � is normal, the two
vectors � and �� are equi-probable. Thus we obtain two simulation samples from each draw of
the simulation smoother; moreover, values of conditional mean calculated from the two samples
are negatively correlated, giving further e�ciency gains.

The second antithetic variable was developed by Durbin and Koopman (1997). Let u be
the vector of rn N (0; 1) variables that is used in the simulation smoother to generate � and let
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c = u0u; then c � �2r n. For a given value of c let q = Pr(�2r n < c) = F (c) and let �c = F�1(1�q).
Then as c varies, c and �c have the same distribution. Now take, �� = �̂+

p
�c=c(�� �̂). Then �� has

the same distribution as �. This follows because c and (�� �̂)=pc are independently distributed.
Finally, take �� = �̂ +

p
�c=c(�� � �̂). Thus we obtain a balanced set of four equi-probable values

of � for each run of the simulation smoother.
The number of antithetics can be increased without di�culty. For example, take c and q

as above. Then q is uniform on (0; 1) and we write q � U(0; 1). Let q1 = q + 0:5 modulo 1;
then q1 � U(0; 1) and we have a balanced set of four U(0; 1) variables, q, q1, 1 � q and 1 � q1.
Take �c = F�1(1 � q) as before and similarly c1 = F�1(q1) and �c1 = F�1(1 � q1). Then each
of c1 and �c1 can be combined with � and �� as was �c previously and we emerge with a balanced
set of eight equi-probable values of � for each simulation. In principle this process could be
extended inde�nitely by taking q1 = q and qj+1 = qj + 2�k modulo 1, for j = 1; : : : ; 2k�1 and
k = 2; 3; : : :; however, four values of q are probably enough in practice. By using the standard
normal distribution function applied to elements of u, the same idea could be used to obtain
a new balanced value �1 from � so by taking ��1 = 2�̂ � �1 we would have four values of � to
combine with the four values of c. In the following we will assume that we have generated N

draws of � using the simulation smoother and the antithetic variables; in practice, we will work
with the two basic antithetics so N will be a multiple of 4.

In theory, importance sampling could give an inaccurate result on a particular occasion if in
the basic formulae (36) very high values of w(�; y) are associated with very small values of the
importance density g(�jy) in such a way that together they make a signi�cant contribution to
�x, and if also, on this particular occasion, these values happen to be over- or under-represented;
for further discussion of this point see Gelman et.al. (1995, p.307). In practice we have not
experienced di�culties from this source in any of the examples we have considered. Nevertheless
we recognise that di�culties could occur if the tail densities of p(�jy) were substantially thicker
than those of g(�jy). We have developed a way of simulating values of � with thicker tails than
those of the Gaussian but the methods are not used in this paper and there is not the space
here to discuss details; we refer to the technical report of Durbin and Koopman (1999).

5.3 Estimating means, variances, densities and distribution functions

We �rst consider estimation of conditional means and error variances of our estimates. Let
w(�) = p(�; y)=g(�; y), taking the dependence on y as implicit since y is constant from now on.
Then (36) gives

�x = Eg [x(�)w(�)] = Eg [w(�)] : (37)

which is estimated by

x̂ =
NX
i=1

xiwi =
NX
i=1

wi where xi = x(�(i)); wi = w(�(i)) =
p(�(i); y)

g(�(i); y)
; (38)

and �(i) is the i-th draw from the importance density g(�jy) for i = 1; : : : ; N . For the case where
x(�) is a vector we could at this point present formulae for estimating the matrix Var[x(�)jy]
and also the variance matrix due to simulation of x̂ � �x. However, from a practical point of
view the covariance terms are of little interest so it seems sensible to focus on variance terms by
taking x(�) as a scalar; extension to include covariance terms is straightforward. We estimate
Var[x(�)jy] by

bVar[x(�)jy] =  
NX
i=1

x2iwi =
NX
i=1

wi

!
� x̂2: (39)
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The estimation error from the simulation is

x̂� �x =
NX
i=1

wi(xi � �x) =
NX
i=1

wi:

Denote the sum of the four values of wi(xi � �x) that come from the j-th run of the simulation
smoother by vj and the sum of the corresponding values of wi(xi� x̂) by v̂j. For N large enough,
since the draws from the simulation smoother are independent, the variance due to simulation
is, to a good approximation,

Vars(x̂) =
N

4
Var(vj) =

 
NX
i=1

wi

!2

; (40)

which we estimate by

bVars(x̂) = N=4X
j=1

v̂2j =

 
NX
i=1

wi

!2

: (41)

The fact that we can estimate simulation variances so easily is one of the advantages of our
methods over Markov chain Monte Carlo methods.

When x(�) is a scalar the above technique can be used to estimate the conditional distribution
function and the conditional density function of x. Let G[xjy] = Pr[x(�) � xjy] and let Ix(�)
be an indicator which is unity if x(�) � x and is zero if x(�) > x. Then G(xjy) = E(Ix(�)jy).
Since Ix(�) is a function of � we can treat it in the same way as x(�). Let Sx be the sum of the
values of wi for which xi � x, for i = 1; : : : ; N . Then estimate G(xjy) by

Ĝ(xjy) = Sx =
NX
i=1

wi: (42)

This can be used to estimate quantiles. Similarly, if � is the interval
�
x� 1

2
d; x+ 1

2
d
�
where d

is suitably small and positive, let S� be the sum of the values of wi for which x(�) 2 �. Then
the estimator of the conditional density p(xjy) of x given y is

p̂(xjy) = d�1S� =
NX
i=1

wi: (43)

This estimator can be used to construct a histogram.
We now show how to generate a sample of M independent values from the estimated con-

ditional distribution of x(�) using importance resampling; for further details of the method see
Gelfand and Smith (1999) and Gelman et.al. (1995). Take x[k] = xj with probabilitywj=

PN
i=1 wi

for j = 1; : : : ; N . Then

Pr(x[k] � x) =

P
xj�x

wjPN
i=1wi

= Ĝ(xjy):

Thus x[k] is a random draw from the distribution function given by (42). Doing this M times
with replacement gives a sample of M � N independent draws. The sampling can also be done
without replacement but the values are not then independent.

A weakness of the classical approach is that it does not automatically allow for the e�ect
on estimates of variance of estimation errors in  ̂. For the present problem the e�ect is usually
O(n�1) relative to the variance under estimate so the investigator could decide just to ignore it.
If an allowance for the e�ect is desired, we suggest that an easy way to achieve it is to perform
a Bayesian analysis as described in section 5.5 with a di�use prior for  . Estimates of posterior
variances in this analysis automatically contain an allowance for the e�ect and can be used in a
classical analysis to provide estimates of conditional variance that are unbiased to O(n�1).
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5.4 Maximum likelihood estimation of parameter vector

Estimation of the parameter vector  by maximum likelihood using importance sampling was
considered by Shephard and Pitt (1997) and in more detail by Durbin and Koopman (1997) for
the case where �t is generated by the linear Gaussian model (2). We now extend the treatment
to models with non-Gaussian state errors under the assumptions made in section 2 about the
density of �. Denote the likelihood for models (6) and (3) by L( ) and the likelihood for the linear
Gaussian approximating model by Lg( ). In terms of the notation of section 2, L( ) = p(y)
and Lg( ) = g(y), so it follows from (10) that

L( ) = Lg( )Eg[w(�)]

where Eg and w(�) are de�ned in section 5.1. We estimate this by

L̂( ) = Lg( ) �w; (44)

where �w = 1
N

PN
i=1 wi. We note that L̂( ) is obtained as an adjustment to Lg( ); thus the

closer the underlying model is to a linear Gaussian model the smaller the value of N is needed
to attain preassigned accuracy. In practice we work with log L̂( ) which has a bias of O(N�1);
if desired, a correction can be made as in Durbin and Koopman (1997, equation 16), but for
most cases in practice the bias will be small enough to be neglected.

To estimate  , log L̂( ) is maximised by any convenient and e�ective numerical technique.
In order to ensure stability in the iterative process, it is important to use the same random
numbers from the simulation smoother for each value of  . Initial parameter values for  are
obtained by maximising the approximate loglikelihood

logL( ) ' logLg( ) + logw (�̂) ; (45)

this does not require simulation. Alternatively, the more accurate non-simulated approximation
given in (21) of Durbin and Koopman (1997) may be used.

Denote the resulting maximum likelihood estimate of  by  ̂, and denote the `true' es-
timate that would be obtained by maximising logL ( ), if this could be done exactly, by ~ .
We estimate the mean square error (MSE) matrix of errors due to simulation, MSEg( ̂) =

Eg
n
( ̂ � ~ )( ̂ � ~ )0

o
as in Durbin and Koopman (1997) by

dMSEg
�
~ 
�
= V̂

(
1

N

NX
i=1

(q(i) � �q)(q(i) � �q)0
)
V̂ ; (46)

where q(i) = @wi=@ , �q =
1
N

PN
i=1 q

(i) and

V̂ =

(
�@

2 logL( ̂)

@ @ 0

)�1

(47)

is the large-sample estimate of the variance matrix of  ̂. The derivatives q(i) and �V̂ �1 are
calculated numerically from neighbouring values of  in the neighbourhood of  ̂. Square roots
of diagonal elements of (46) can be compared with square roots of diagonal elements of (47) to
give relative standard errors due to simulation. These methods are very e�cient computationally.
For the examples considered in Durbin and Koopman (1997) it was shown that simulation sample
sizes of N equal to around 800 based on 200 draws from the simulation smoother were su�cient
for accurate estimation of  .
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5.5 Bayesian inference

To perform a Bayesian analysis we begin by implementing formula (18) by simulation. When the
prior density of  is di�use the approximate density of  given y is g( jy) = N( ̂; V̂ ) where  ̂
and V̂ are obtained as described in the previous section. When the prior is not di�use there is a
straightforward modi�cation based on (15) and (16). Usually, V̂ is O(n�1) while Var[x(�)j ; y]
is O(1) so it is reasonable to expect that the coe�cients of variation of elements of  given
y will be signi�cantly smaller than those of x(�) given  and y. Let us therefore assume to
begin with that antithetics are not needed in simulation from density g( jy) whereas they are
de�nitely needed in simulation from density g(�j ; y). Substitute for � in terms of � in (18)
giving, analogously to (36),

�x =
Eg[x(�)z( ; �; y)]

Eg[z( ; �; y)]
where z( ; �; y) =

p( )g(yj )
g( jy)

p(�; yj )
g(�; yj ) (48)

and where Eg denotes expectation with respect to density g( ; �jy). Let  (i) be a random draw
from g( jy), which is obtainable in a routine way from a sample of independent N(0; 1) variables,
and let �(i) be a random draw from density g(�j (i); y) for i = 1; : : : ; N: To do this we need
an approximation to the mode �̂(i) of density g(�j (i); y) but this is rapidly obtained in a few
iterations starting from the mode of g(�j ̂; y). Let

zi =
p( (i))g(yj (i))

g( (i)jy)
p(�(i); yj (i))

g(�(i); yj (i))
=
p( (i))g(yj (i))

g( (i)jy) wi; (49)

and estimate �x in (18) by

x̂ =

PN
i=1 xiziPN
i=1 zi

: (50)

Estimates of the posterior distribution function and density of x(�) can be obtained in the
same way as for the conditional distribution function and density in section 5.2. Similarly, the
posterior variance and simulation variance are obtained from formulae that are analogous to
(39) and (41) except that wi are replaced by zi. Formula (50) for x̂ has been written on the
assumption that no antithetics are used for the draws from density g( jy); however, the formula
is easily extended to the case where antithetics are used.

We now consider the estimation of the posterior density of a single element of  , which we
can take to be  1, the �rst element of  . Denote the vector of the remaining elements of  by
 2, giving  = ( 1;  

0
2)
0. Let g( 2j 1; y) be the conditional density of  2 given  1, which is

easily obtained by applying standard regression theory to g( jy). We shall use g( 2j 1; y) as
an importance density in place of g( jy). Then

p( 1jy) =
Z
p( jy)d 2 =

Z
p( jy)

g( 2j 1; y)
g( 2j 1; y)d 2 (51)

By the methods of sections 3.2, 3.3, 5.4 and 5.5 we have

p( jy) = Kp( )p(yj ) = Kp( )g(yj )
Z
p(�; yj )
g(�; yj )g(�j ; y)d�: (52)

Putting (51) and (52) together gives

p( 1jy) = KEg

�
p( )g(yj )
g( 2j 1; y)

p(�; yj )
g(�; yj )

�
; (53)
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where Eg denotes expectation with respect to the joint importance density g( 2; �j 1; y). Let

 
(i)
2 be a draw from density g( 2j 1; y), take  

(i) = ( 1;  
(i)0
2 )0, let �(i) be a draw from g(�j (i); y)

and let

z�i =
p( (i))g(yj (i))

g( 
(i)
2 j 1; y)

p(�(i); yj (i))

g(�(i); yj (i))
; i = 1; : : : ; N: (54)

Noting that the form of z�i di�ers from the form of zi in (49) only in the substitution of

g( 
(i)
2 j 1; y) for g( (i)jy) and that K�1 =Eg[z( ; �; y)] as is easily shown, the required esti-

mate of p( 1; y) has the simple and elegant form

p̂( 1jy) =
PN
i=1 z

�
iPN

i=1 zi
: (55)

In the implementation of (55) it is important that the draw of  
(i)
2 from g( 2j 1; y) is obtained

directly from the draw of  (i) from g( jy) in (49). Details can easily be worked out from elemen-
tary regression theory but there is not the space to include them here. A simpler alternative is
to calculate the posterior density of  1 while  2 held �xed at its maximum likelihood estimate.

6 Real data illustrations

In this section we discuss the use of the methodology by applying it to three real data sets.
The calculations are carried out using the object oriented matrix programming language Ox 2.0

of Doornik (1998) together with the library of state space functions SsfPack 2.2 by Koopman,
Shephard and Doornik (1998). The data and programs are freely available on the internet at
http://center.kub.nl/stamp/ssfpack. We will refer to speci�c Ox programs and SsfPack

functions in the discussion below where appropriate. Documentation of the functions used here
and a discussion of computational matters can be found on the internet workpage of SsfPack.
Because of limitations of space we cannot present in this paper a complete analysis of each of
the three examples; instead, we focus on items of particular interest in each of the three cases
in such a way that we cover collectively the main features of the output that can be obtained
using our approach.

6.1 Van drivers killed in UK: a Poisson application

The data are monthly numbers of light goods vehicle (van) drivers killed in road accidents from
1969 to 1984 in Great Britain. These data led directly to the work presented in this paper. They
were part of the data set that Durbin and Harvey (1985) analysed on behalf of the Department of
Transport to provide an independent assessment of the e�ects of the British seat belt law on road
casualties. Durbin and Harvey analysed all the data except these van data by an approximating
linear Gaussian state space model. However they used an ad-hoc method to analyse the van
data because they thought that the number of deaths were too small to justify the use of the
linear Gaussian model. The Ox program dkrss van.ox is used for calculating all the reported
results below.

We model the data by the Poisson density with mean exp (�t),

p (ytj�t) = exp
�
�0tyt � exp (�t)� log yt!

	
; t = 1; : : : ; n: (56)

with signal �t generated by
�t = �t + 
t + �xt;

where the trend �t is the random walk

�t = �t�1 + �t; (57)
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� is the intervention parameter which measures the e�ects of the seat belt law, xt is an indicator
variable for the post legislation period and the monthly seasonal 
t is generated by

11X
j=0


t�j = !t; (58)

The disturbances �t and !t are mutually independent Gaussian white noise terms with variances
�2� = exp( �) and �

2
! = exp( !), respectively. The parameter estimates are reported by Durbin

and Koopman (1997) as b�� = exp( ̂�) = exp(�3:708) = 0:0245 and b�! = 0. The fact thatb�! = 0 implies that the seasonal is constant over time.
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Figure 1: Van data and estimated level including intervention

It follows that bt (�t) = exp (�t) in (29), so _bt = �bt = exp(~�t) and from section 4.3, ~Ht =
exp(�~�t) and ~yt = ~�t + ~Htyt � 1 where ~�t is some trial value for �t (t = 1; : : : ; n). The iterative
process of determining the approximating model as described in section 4.2 converges quickly;
usually, between three and �ve iterations are needed. The conditional mean of �t + �xt for  �
�xed at  ̂� is computed from a classical perspective and exponentiated values of this mean are
plotted together with the raw data in Figure 1. The posterior mean from a Bayesian perspective
with  � di�use was also calculated and its exponentiated values are also plotted in Figure 1.
The di�erence between the graphs is almost imperceptible. Conditional and posterior standard
deviations of �t + �xt are plotted in Figure 2. The posterior standard deviations are about
12% larger than the conditional standard deviations; this is due to the fact that in the Bayesian
analysis  � is random. The ratios of simulation standard deviations to standard deviations
proper never exceeded the 9% level before the break and never exceed the 7% level after the
break. The ratios for a Bayesian analysis increases slightly obtaining 10% and 8%, respectively.

In a real analysis, the main objective is the estimation of the e�ect of the seat-belt law on
the number of deaths. Here, this is measured by � which in the Bayesian analysis has a posterior
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Figure 2: Standard errors for level including intervention

mean of �:280; this corresponds to a reduction in the number of deaths of 24:4%. The posterior
standard deviation is :126 and the standard error due to simulation is :0040. The corresponding
values for the classical analysis are �:278, :0114 and :0036, which are not very di�erent. It is clear
that the value of � is signi�cant as is obvious visually from Figure 1. The posterior distribution
of � is presented in Figure 3 in the form of a histogram. This is based on the estimate of the
posterior distribution function calculated as indicated in section 5.5. There is a strange dip near
the maximum which remains for di�erent simulation sample sizes so we infer that it must be
determined by the observations and not the simulation. All the above calculations were based
on a sample of 250 draws from the simulation smoother with four antithetics per draw. The
reported results show that this relatively small number of samples is adequate for this particular
example.

What we learn from this exercise so far as the underlying real investigation is concerned is
that up to the point where the law was introduced there was a slow regular decline in the number
of deaths coupled with a constant multiplicative seasonal pattern, while at that point there was
an abrupt drop in the trend of around 25%; afterwards, the trend appeared to 
atten out, with
the seasonal pattern remaining the same. From a methodological point of view we learn that our
simulation and estimation procedures work straightforwardly and e�ciently. We �nd that the
results of the conditional analysis from a classical perspective and the posterior analysis from a
Bayesian perspective are very similar apart from the densities from the posterior densities of the
parameters. So far as computing time is concerned, we cannot present a comprehensive study in
this paper because of the pressure of space, but to illustrate with one example, the calculation
of trend and variance of trend for t = 1; : : : ; n took 78 seconds on a Pentium II computer for the
classical analysis and 216 seconds for the Bayesian analysis. While the Bayesian time is greater,
the time required is not large by normal standards.
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Figure 3: Posterior distribution of intervention e�ect

6.2 Gas consumption in UK: a heavy-tailed application

In this example we analyse the logged quarterly demand for gas in the UK from 1960 to1986.
We use a structural time series model of the basic form

yt = �t + 
t + "t; (59)

where �t is the trend, 
t is the seasonal and "t is the observation disturbance. Further details
of the model are discussed by Harvey (1989, p.172). The purpose of the real investigation
underlying the analysis is to study the seasonal pattern in the data with a view to seasonally
adjusting the series. It is known that for most of the series the seasonal component changes
smoothly over time, but it is also known that there was a disruption in the gas supply in the third
and fourth quarters of 1970 which has led to a distortion in the seasonal pattern when a standard
analysis based on a Gaussian density for "t is employed. The question under investigation is
whether the use of a heavy-tailed density for "t would improve the estimation of the seasonal in
1970.

To model "t we use the t-distribution with log density

log p ("t) = constant + log a (�) +
1

2
log kt � � + 1

2
log
�
1 + kt"

2
t

�
; (60)

where

a (�) =
�
�
�
2
+ 1

2

�
�
�
�
2

� ; k�1
t = (� � 2) �2" ; � > 2; t = 1; : : : ; n:

The mean of "t is zero and the variance is �2" for any � degrees of freedom which need not be
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an integer. The approximating model is easily obtained by method 2 of section 4.4 with

h�t

�
"2t

�
= : : :+ (� + 1) log

�
1 + kt"

2
t

�
; _h� �1

t = Ht =
1

� + 1
e"2t + � � 2

� + 1
�2" ;

The iterative scheme is started withHt = �2" , for t = 1; : : : ; n. The number of iterations required
for a reasonable level of convergence using the t-distribution is usually higher than for densities
from the exponential family; for this example we required around ten iterations. In the classical
analysis, the parameters of the model, including the degrees of freedom �, were estimated by
Monte Carlo maximum likelihood as reported in Durbin and Koopman (1997).
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Figure 4: Gaussian and t-model analyses of Gas data

The most interesting feature of this analysis is to compare the estimated seasonal and irregu-
lar components based on the Gaussian model and the model with a t-distribution for "t. Figure
4 gives the graphs of the estimated seasonal and irregular for both the Gaussian model and the
t-model. The most striking feature of those graphs is the greater e�ectiveness with which the
t-model picks and corrects for the outlier relative to the Gaussian model. We observe that in
the graph of the seasonal the di�erence between the classical and Bayesian analyses are imper-
ceptible. Di�erences are visible in the graphs of the residuals, but they are not large since the
residuals themselves are small. The t-model estimates are based on 250 simulation samples from
the simulation smoother with four antithetic devices for each sample. The number of simulation
samples is su�cient because the ratio of the variance due to simulation to the variance never
exceeded 2% for all estimated components in the state vector except at the beginning and end of
the series where it never exceeded 4%. The Ox program dkrss gas.ox was used for calculating
these results.

We learn from the analysis that the change over time of the seasonal pattern in the data is
in fact smooth. We also learn that if model (59) is to be used to estimate the seasonal for this
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or similar cases with outliers in the observations, then a Gaussian model for "t is inappropriate
and a heavy-tailed model should be used.

6.3 Pound/Dollar daily exchange rates: a volatility application

The data are the Pound/Dollar daily exchange rates from 1/10/81 to 28/6/85 which have been
used by Harvey, Ruiz and Shephard (1994). Denoting the exchange rate by xt, the daily returns
are the series of interest given by yt = 4 log xt, for t = 1; : : : ; n. A stochastic volatility (SV)
model of the form

yt = � exp

�
1

2
�t

�
ut; ut � N(0; 1); t = 1; : : : ; n; (61)

�t = ��t�1 + �t; �t � N(0; �2�); 0 < � < 1;

was used for analysing these data by Harvey, Ruiz and Shephard (1994); for a review of related
work and developments of the SV model see Shephard (1996) and Ghysels, Harvey and Renault
(1996). Exact treatments of the SV model are developed and they are usually based on MCMC
or importance sampling methods; see Jacquier, Polson and Rossi (1994), Danielsson (1994) and
Shephard and Pitt (1997). The purpose of the investigations for which this type of analysis is
carried out is to study the structure of the volatility of price ratios in the market, which is of
considerable interest to �nancial analysts. The level of �t determines the amount of volatility
and the value of � measures the autocorrelation present in the logged squared data.

To illustrate our methodology we take the same approach to SV models as Shephard and
Pitt (1997) by considering the Gaussian log-density of the SV model,

log p (ytj�t) = �1

2
log 2��2 � 1

2
�t � y2t

2�2
exp(��t): (62)

The linear approximating model can be obtained by method 1 of section 4.2 with

~Ht = 2�2
exp(~�t)

y2t
; ~yt = ~�t � 1

2
~Ht + 1;

for which ~Ht is always positive. The iterative process can be started with ~Ht = 2 and ~yt =
log(y2t =�

2), for t = 1; : : : ; n, since it follows from (61) that y2t =�
2 � exp(�t). When yt is zero or

very close to zero, it should be replaced by a small constant value to avoid numerical problems;
this device is only needed to obtain the approximating model so we do not depart from our
exact treatment. The number of iterations required is usually less than ten.

The interest here is usually focussed on the estimates of the parameters or their posterior
distributions. For the classical analysis we obtain by the maximum likelihood methods of section
5.4 the following estimates:

�̂ = :6338;  ̂1 = log �̂ = �0:4561; SE( ̂1) = 0:1033;

�̂� = :1726;  ̂2 = log �̂� = �1:7569; SE( ̂2) = 0:2170;

�̂ = :9731;  ̂3 = log �̂

1��̂
= 3:5876; SE( ̂3) = 0:5007:

We present the results in this form since we estimate the log transformed parameters, so the
standard errors that we calculate apply to them and not to the original parameters of interest.
For the Bayesian analysis we present in Figure 5 the posterior densities of each transformed
parameter given the other two parameters held �xed at their maximum likelihood values. These
results con�rm that stochastic volatility models can be handled by our methods from both
classical and Bayesian perspectives. The computations are carried out by the Ox program
dkrss sv.ox.
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Figure 5: Posterior densities of transformed parameters

7 Discussion

We regard this paper as much more a paper in time series analysis than on simulation. A
methodology is developed that can be used by applied researchers for dealing with real non-
Gaussian time series data without them having to be time series specialists or enthusiasts for
simulation methodology. The ideas underlying the simulation methodology are relatively easy
to explain to non-specialists. Also, user-friendly software is freely available on the Internet
(http://center.kub.nl/stamp/ssfpack.htm) in a relatively straightforward format including
documentation.

Methods are developed for classical and Bayesian inference side by side using a common
simulation methodology. This widens the choices available for applications. The illustrations
provided in the paper show the di�erences that are found when both approaches are applied
to real data. Generally speaking, the di�erences are small except for the variances of estimates
for which the di�erences are obviously due to the fact that in classical inference the parameters
are regarded as �xed whereas in Bayesian inference the parameters are regarded as random
variables.

Almost all previous work on non-Gaussian time series analysis by simulation has been done
using Monte Carlo Markov chain (MCMC) methodology. In contrast, our approach is based
entirely on importance sampling and antithetic variables which have been available for many
years but which we have shown to be very e�cient for our problem. Because our approach is
based on independent samples it has the following advantages relative to MCMC: �rst, we avoid
completely the convergence problems associated with MCMC; second, we can easily compute
error variances due to simulation as a routine part of the analysis; thus the investigator can
attain any predetermined level of simulation accuracy by increasing the simulation sample size,
where necessary, by a speci�c amount.
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