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Sophisticated Players
and Sophisticated Agents

A. Rustichini ¤
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Warandelaan 2, P.O. Box 90153

5000 LE Tilburg
The Netherlands
email: aldo@kub.nl

August 1998

Abstract

A sophisticated player is an individual who takes the action of the
opponents, in a strategic situation, as determined by decision of rational
opponents, and acts accordingly. A sophisticated agent is rational in the
choice of his action, but ignores the fact that he is part of a strategic
situation.

We discuss a notion of equilibrium with sophisticated agents, we pro-
vide conditions for its existence, and argue that it di®ers systematically
from the Nash equilibrium.

Keywords: Procedural Rationality, Sophisticated Agents.

JEL Classi¯cation: D81, D83.

1 Introduction

Many of the situations that real-life players face are complex. A situation may
be complex, for example, because the number of players involved is very large.
Or it may be di±cult because the game they are facing is relatively new to
them, and they have not yet had the time to understand all the implications of
each choice they can take. Finally this may happen because the game involves

¤I thank Eric van Damme, Ramon Marimon, Jean-Francois Mertens, Ariel Rubinstein,
Harald Uhlig for very useful discussions on the topic of this paper, and an anonymous referee
for very useful comments.
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elements that they know little, or not at all. In this paper we have in mind in
particular the ¯rst source of complexity.
A player who is facing such a complex strategic situation is facing a double

order of di±culty. First, he has to consider how the action of the others is
a®ecting his payo® for each action he takes. After he has done that, he has
the problem of any decision-maker taken in isolation, of deciding what the best
action is.
Let us focus on the ¯rst di±culty. If the number of players is large, then

the attempt to construct a complete model of the situation may be prohibitive.
The player should have a good idea of the set of actions available to all the
others, of their preferences over outcomes, and of the strategy they adopt. If
he does not have this information, then he should formulate an even more
complex notion, a probability distribution over the di®erent possibilities. Only
after they have done this, he can proceed to the next step of deciding his best
choice.
Introspection and anecdotal evidence suggest that real players behave dif-

ferently. To this rather °imsy evidence recently a large body of research from
experimental economics has added a more cogent support. The experimental
literature on learning in games has grown very large in the last ten years, and
has discussed an almost as large number of issues (for a review of this evidence,
see [7]).
One particular aspect of this research interests us directly here. How do

people adjust their learning procedures to the complexity of the problem they
are facing? This question is explicitly addressed in some of the work in this
literature (see for example [16], [17], [18], [24]). Many interpretations of the
results, of theoretical explanations, have been presented and suggested.
Overall, the evidence collected in these works suggests the following working

hypothesis. People in complex strategic situations try to simplify their decision
task. They do this by ¯rst ignoring the fact that the consequences of their
actions are in°uenced by other players. Rather, they focus on ¯nding the best
possible decision as if the environment that they are facing was produced by
an exogenous process, rather than by intelligent agents.
The problem that players face in the present paper is complex because the

game has a large number of players. There is little direct experimental evidence
on this speci¯c aspect (which is discussed in [19]), probably for the obvious
reasons that large experiments are harder to organize. We will work on the
assumption that the same results extend to this speci¯c reason of complexity.
We may say that someone is a sophisticated player if he keeps fully into

account the strategic nature of the situation. A sophisticated player does in fact
build the complex, complete model of the entire game. He considers explicitly
the actions of the others as produced by agents like him, who go through the
same thought process as he does. On the other hand, we may say that someone
is a sophisticated agent if he satis¯es the more modest requirement of adopting
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reasonable selection criteria of his procedures.
This distinction in economics is more than a century old. In walrasian equi-

librium, consumers and ¯rms are sophisticated agents (they maximize utilities
and pro¯ts), but are not sophisticated players (because they take prices as
given, when they might change them with their actions).
In fact, when the number of agents is ¯nite, the walrasian equilibrium is

not the Nash equilibrium of the economy. Economists know from the work of
Aumann (see [3]) that the walrasian equilibrium may be, in a special case, the
correct solution concept even in an economy where individuals are sophisticated
players. It is enough that players are negligible. In this case, even if they think
of it, their strategic behavior has no consequence and price-taking behavior is
perfectly rational (or, in our terminology, sophisticated).
Economists however also accept and widely use the concept of walrasian

equilibrium in models with a ¯nite number of agents. A possible explanation
for such a willingness to use a concept, which is not appropriate, might be that
economists think the concept is appropriate for a di®erent reason. Namely,
the e®ect of strategic behavior is so small, compared to the complexity of
the analysis needed to compute it, that it is reasonable for the agents in the
economy use their limited resources for more productive ends.
In this paper we suggest that in complex situations people behave as naÄ³ve

players and sophisticated agents, precisely as they do in the walrasian equi-
librium. We then discuss the implications of this hypothes. Note that both
aspects of the assumption that we make on the way people behave are im-
portant. Being a naÄ³ve player is an important weakening of the rationality
requirement, but on the other hand being a sophisticated player is a strong
restriction.
A di±culty in this project is the fact that a good, widely accepted concept

of sophisticated player is still missing. We shall try to argue in the conclusion
that to de¯ne a good concept of sophisticated player (and of the restriction
that this imposes on his behavior) is still an open question, which is currently
actively pursued. But it is time to be more speci¯c.

A Simple Model

These concepts are discussed extensively in the recent paper by Osborne and
Rubinstein ([23]). They may be well illustrated using a simple example of that
paper that we recall here.
You enter a game played in a large society of players like you, and play

for in¯nitely many periods. In each period, you are randomly matched with
another player chosen out of the society.
You get the following payo® for your choice of A or B and the choice a or

b of your fellow player for that period:

a b
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A 2 4

B 3 1 (1.1)

You are a representative agent, so the other player is facing the mirror image
of your same problem. For future reference, let us note immediately that the
mixed strategy Nash equilibrium of this game has proportions (:75; :25) on the
two actions.

A very myopic procedure

Now suppose you adopt the following procedure to choose between A orB. You
try A in the ¯rst period, then you try B in the second, and keep a record of the
payo® after each choice. After these ¯rst two rounds of experimentation, you
choose forever the action that gave the highest payo® in the ¯rst two rounds
of experimentation.
Suppose now that the population you are facing is split between a pro-

portion ®1 of people who play a forever, and a proportion 1 ¡ ®1 that plays
b forever. What is the probability that you will choose A as your preferred
action after the ¯rst two rounds? Note that in these two periods you may be
matched with a sequence of players of type (a; b), (b; a) or (b; b), and in these
cases you will eventually choose A). Or, you will be matched with a sequence
(a; a), in which case you will eventually choose B. The second event happens
with probability (®1)2, so the ¯rst happens with probability 1¡ (®1)2.
Now de¯ne a steady state value of ®1, and denote it by ®1¤, as the value of

®1 that satis¯es the following property. ®1¤, which is the proportion of players
using a, is also equal to the probability that you select A when facing such
a population. From our previous remarks one can see that in our example
1.1 this value of ®1 is the solution of the equation ®1 = 1 ¡ (®1)2, which is
approximately :62, a value di®erent from :75, which is the proportion in the
mixed strategy Nash equilibrium.
This result of course depends on the assumption that you try each action

once and then you make up your mind forever. Is this procedure reasonable?
Consider the case in which you have chosen A in the ¯rst try, and received
the value 4, and then have played B in the second and received a value 3.
Following the procedure, you should then choose, forever, the action A. But
at the steady state value ®1 = :62, which is less than 2=3, the action A has
an average value strictly less than 3. It seems hard to believe that if you are
a sophisticated agent you will be unendingly faithful to your previous choice.
Even if you continue to ignore the strategic aspects of the game. You might
want to try again the action B that produced a value of 3 in the only time he
gave it a chance, larger than what you are getting now on average. If you do
not, it seems fair to say that you are a naÄ³ve player, and a naÄ³ve agent.
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The k-sampling procedure

Clearly, limiting the experimental phase to two periods is a very simple way
of dealing with the problem. A more sophisticated agent may want to try
both options several times before he makes up his mind. The critical question
is: \How many times?" A natural way of answering the question seems the
following, also introduced in Osborne and Rubinstein ([23]).
Let us de¯ne a new procedure, call it k-procedure, which is very similar

to the one described previously, with one di®erence: you try A and then B
alternatively for k periods. Earlier we have seen an example of a 1-procedure.
The steady state value of ®1¤ can be de¯ned in a similar way, and will in
general depend on k. Osborne and Rubinstein show that as k tends to in¯nity,
the corresponding value of ®1 tends to :75 which is the value of the Nash
equilibrium.

Tentative conclusions

To summarize our discussion so far, we may try to draw the following two
conclusions.

i. A society of naÄ³ve players who are also naÄ³ve agents converges to a dis-
tribution of actions that is di®erent from the distribution obtained at a
Nash equilibrium. This is what happens in the case of the 1 procedure.

ii. As players become more and more sophisticated decision-makers, then
the steady state distribution becomes more and more similar to the Nash
equilibrium distribution. This is what happens with the k-procedure.

We want to argue here that while the ¯rst conclusion is true, the second is
false. In addition we would argue that neither the 1 procedure nor the in¯nitely
long k procedure are reasonable. We have seen previously why the 1 procedure
is \ naÄ³ve ". The k-procedure, for k large, is certainly more sophisticated than
the 1-procedure. But it tells you to continue the experimentation no matter
what evidence you have accumulated so far. For instance, even if one of the
actions has persistently shown to be inferior to the others, you should keep
trying it.
The procedure we are going to describe does keep into account the per-

formance of an action along as the agent is experimenting. In a later section
we even let agents use the optimal bayesian procedure. In both cases, we
are going to show that there is a well-de¯ned equilibrium concept, which is the
steady state of the process, and that the predictions of this equilibrium concept
systematically deviate from the Nash equilibrium predictions.
Our argument involves, unfortunately, a relatively technical issue. We think

this is a price worth payingy for two reasons. First, the issue has some general
relevance. Second, we may trying to avoid it and let the mathematical di±culty
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choose the model for us, by picking the one we can solve. But this would only
constrain the theory to an unacceptably naÄ³ve level. Here is, in simple terms,
what the technical issue is, and why we think it is of general importance.
A procedure that decides in ¯nite, ¯xed time, a choice and settles down

to it forever after is not likely to be very interesting. Typically, a procedure
with a minimal degree of sophistication will require a period of experimentation
which is not ¯xed, and depends on the history that the player has encountered.
Suppose that we require that a choice is made, eventually. (If we decide not to
make this restriction, the technical problem only gets worse). We now want to
determine the steady state of a society where agents use this procedure. The
steady state depends on the probability that any of the actions is chosen and a
simple way to insure existence of a steady state is to insure that his probability
is continuous on the process the player is facing. Here too, we may think of
more general ways to insure existence but again the technical problem only
gets worse.
The problem is that for procedures which are not too naÄ³ve the event where

a speci¯c action is chosen is a tail event: to decide if a point in the space
belongs to it you have to look arbitrarily far in the future. Proving continuity
of the probability of a tail event is relatively hard, and the lemma (5.3) in the
appendix gives a way of doing it. The problem is general because it appears
whenever we try to determine steady states of games where a population of
players is experimenting with di®erent strategies.

2 NaÄ³ve players, sophisticated agents

The game

Consider a game, which is a generalization of the situation described in the
simple example. In this game, we have a large society, where players play for
in¯nitely many periods against an opponent who has been randomly chosen
out of the society. Each player has a set I ´ f1; : : : ; j; : : : ; ng of actions he can
take; the payo® when he takes the action i and the opponent the action j is
gi(j).
We have already seen examples of procedures that a player may follow to

decide the action to take in each period, the k-procedures. We now want to
consider other possibilities. Here is a ¯rst example, that we are going to use
to illustrate the main ideas. We are going to see a second example later.

Maximum average procedure

In a ¯rst experimental phase, each player tries each of the actions once, in
a ¯xed sequence, and keeps a record of the payo®s he has received in this
experimental phase. After that, he begins a second phase. Now before choosing
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an action he computes the average payo® that each action has given so far. We
de¯ne "average payo® to an action" to be the sum of the payo®s in the periods
in which that action was chosen, divided by the number of these periods. Then
he chooses for that period the action that gave so far the highest payo®, and
randomizes uniformly to break ties. He continues this second phase forever.
We call it the maximum average procedure.
This procedure may be considered similar to the in¯nite extension of the

k-steps procedure: rather than sampling only ¯nitely many times for sure, you
potentially sample the di®erent actions an in¯nite number of times. But the
procedure has the additional °exibility of making the decision of sampling or
not conditional on the previous results. Recall the possibility we have discussed
earlier, that you have chosen A in the ¯rst try, and received the value 4, and
then has played B in the second and received a value 3. If the procedure you
are following tells you to stop experimenting and choose forever the action A,
you get the steady state value ®1 = :62, where the action A has an average
value strictly less than 3. The maximum average procedure would tell you to
try B again.
We are now going to see that it gives a completely di®erent outcome.

Steady state values

The next element we need is a concept of equilibrium. We generalize the idea
of the steady state value of ®1 presented in the simple example. Think what
happens if the process the players are facing is really a process that chooses the
action independently in each period, with a probability ® ´ (®j)j2J over the
set J . The choice of actions by a player who is following the maximum average
procedure will follow a rather complicated process. Let us assume, however,
that eventually the action chosen settles down to a ¯xed action. The probability
that an action j is eventually chosen clearly depends on ®. Formally, if we
denote by ct the choice of the agent at time t, the event where the choice
eventually settles down to the action j is flimt ct = jg, and

P®(flim
t
ct = jg)

is the probability of this event.
If we want a steady state to exist, our procedures need to satisfy two basic

requirements. First, we need the player to choose an action eventually. Second,
we need that the probability of an action being chosen to be continuous in the
probability of the action of the opponent. More general concepts of equilib-
rium based on weaker conditions are certainly possible: but this seems a ¯rst
acceptable step.
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Choice procedures

A choice procedure is a sequence of functions that in each period decides the
probability distribution on the next action, depending on the previous history
of choices of the opponent. Formally, a choice procedure is

c ´ (c1; : : : ; ct; : : :); ct : J
t¡1 ! ¢(J) for every t; (2.2)

with c1 a constant. We emphasize that the choice function maps from the
history of actions of the opponent into the action, for that period, of the player.
The maximum average procedure is clearly included in this de¯nition, as are
the 1 and the k procedures.
Note that the function ct is a complicated object, because it has built-in the

record of the choices made previously by the player. Consider for instance the
function ct in the maximum average procedure applied to the simple example
1.1. Let c1 = A, and c2(h) = B for sure after any history. Then c4(a; a; b)
gives equal probability to A and B (because the two actions have given on
that history the same average, namely 2, given the choices of the player in the
¯rst three periods), while c4(a; a; a) is B for sure.
We take the space of sequences of choices of the other player, J1, as the

probability space, endowed with the product ¾-¯eld. Every ® 2 ¢(J) induces
a probability distribution P® on this space. This is our probability space. We
denote:

Cj ´ f! : ct = j eventually g (2.3)

We take as part of the de¯nition of a choice procedure that it chooses an action
eventually with probability one. That is we require for every procedure that

X

j2J
P®(f lim

t!1
ct = jg) = 1; for every ® 2 ¢(J): (2.4)

We also say that a choice procedure is continuous if the probability of the
choice of an action changes continuously with the probability ® 2 ¢(J), that
is, formally, the function

® ! P®(f lim
t!1

ct = jg) (2.5)

is continuous. As we have tried to argue earlier, these procedures are the
natural candidates for the existence of equilibrium. A technical contribution
of this paper is to determine conditions that give continuity of the procedures,
and hence existence of equilibrium.
The issue is discussed in detail in lemma (5.3) in the appendix. There we

give a precise formulation of the condition for continuity of choice procedures.
In the following paragraphs, we discuss more informally the main ideas.
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Continuity of choice procedures

Recall that, for a probability ® 2 ¢(J), we have a probability P ® on the
stochastic process of the actions of the opponent that the player is facing in
each period. Now consider the more sophisticated procedure described earlier.
In which in every period chooses the action that has given the highest aver-
age payo®. We claim that this procedure eventually chooses an action with
probability one (so it is a choice procedure according to our de¯nition), and
that the probability of the event where the player chooses a speci¯c action is
continuous in ®. The claim is not easy to prove because this event is a tail
event: it involves the behavior of the sequence of choices of the opponent far
in the future.
It will turn out that it is critically important to de¯ne appropriately the dis-

tance between two sequence of choice of the opponent. The pointwise distance
is a possible option. A precise de¯nition of this concept is recalled later (see
(5.22)): what is important to know is that this distance gives relative more im-
portance to the initial choices. This concept is too weak for our purposes: two
sequences may be close in this distance and still have very di®erent averages,
because the behavior at in¯nity may be very di®erent.
Other, stronger, distances are possible, but they may be too strong. To

clarify this point an example may be useful. Consider, for J = fa; bg, the
following two di®erent probabilities assigned to a: ® = 0:5 and ¯ = 0:499. The
two numbers ® and ¯ are fairly close, and the probability of every event which
is described by a ¯nite number of coordinates is close. But the measure on
the in¯nite process induced by ® is concentrated on the sequence with average
equal to 0:5, while the one induced by ¯ is concentrated on those with average
equal to 0:499. The two measures on the in¯nite process are supported on two
disjoint sets. Even if we make ¯ arbitrarily close to ® we are not going to
change this fact. An intermediate concept of distance is needed.
The key insight, due to Ornstein (see [20]), is that the two sequences with

averages respectively 0:5 and 0:499 are close, if we measure their distance
appropriately. More precisely, we may say that two sequences are close if
the number of coordinates that we have to change to transform one sequence
into the other is small. For instance, let us call a sequence an ®-sequence if
the average number of a's in the sequence is ®. We only need to change 0:1
per cent of the coordinates to transform an ®-sequence into a ¯-sequence, and
as ¯ gets closer to ® the percentage of changes tends to zero.
This concept of distance is formally introduced in the appendix (see (5.23).

The basic property (that we prove in (5.38) of this distance is that it is suf-
¯ciently strong to impose that two sequences which are close have averages
which are close.
The continuity of the probability is related to the continuity of the function

c1(!) ´ limt!1 ct(!). Note that since c1 is discretely valued, its continuity of
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would imply that it is a constant function; so this concept is too strong. The
lemma may be read to say that c1 is continous but for a set of measure zero.

Proposition 2.1 i. the probability of eventually settling down to one of
the actions is one; so almost surely the player does not oscillate forever
between some of the actions;

ii. for every j, the probability P®(flimt ct = jg) is a continuous function of
®.

The function is continuous even at the point where we might ¯nd surprising
that it is, namely at the points in which the expected payo® from two actions is
equal. At such a point a small change in the probability ® makes the expected
payo® of one of the actions strictly larger than the value of the other. But the
event we are considering looks at the limit behavior of the choice of actions.
So a small advantage for one of the two actions might matter quite a lot, in
term of the probability of eventually choosing that action. The proposition
(2.1) shows, among other things, that it does not matter much. Of course this
proposition also implies, by a standard application of Brouwer's ¯xed point
theorem, that there exists a ®¤ such that

P®
¤
(flim

t
ct = jg) = ®¤j (2.6)

for every j. This ®¤ is a steady state of the process, and we call it an equilib-
rium.

The equilibrium with sophisticated agents

We can now describe a steady state ®1¤ of the process where each player is
following the maximum average procedure in the game 1.1. To ¯nd such ®1¤,
consider possible di®erent values of ®1. When the value of ®1 is 1 almost all the
players are choosing the action A: so a new player will end with probability
1 to the action B. At the other extreme, when ®1 is 0, a similar reasoning
shows that the new player will converge with probability 1 to the action A. It
is also easy to see that this function is decreasing. Since this function is also
continuous by our proposition 2.1 there is some value, call it ®1¤, for which the
probability of converging to a is exactly ®1¤.
Now we argue that this value cannot be the probability that players use the

action A in a mixed strategy Nash equilibrium, which is :75. In fact when the
opponent uses the mixed strategy Nash equilibrium the expected payo® of the
two actions is the same; so the probability of converging to A is almost equal
to the probability of converging to B, and di®erent from :75, which therefore
cannot be the ¯xed point of the equation 2.6. In other words, for the probability
of converging to A to be equal to :75, higher than the probability of converging
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to B, it must be that the action A gives a higher expected payo® than the
action B: and this cannot happen at the mixed strategy Nash equilibrium.
An explicit solution for the value of ®1¤ seems very hard, even for the simple

game above. Monte Carlo computations show it to be roughly :665.1 This value
lies between the value of the mixed strategy equilibrium (which is :75) and the
value in the one step procedure (which is :62). In addition, this value depends
on the details of the procedure chosen. Take for instance this procedure: each
agent tries each of the actions twice, rather than once, and then behaves exactly
as before. The steady state value of ®1¤ for these procedures is di®erent.
We conclude putting on record our results so far:

Theorem 2.2 There is an equilibrium when agents use the maximum average
procedure. In the game 1.1, the proportion of agents playing the two strategies
is di®erent from that in the mixed strategy Nash equilibrium.

3 NaÄ³ve Players, Bayesian Agents

One may argue that the procedure described is not obviously a sophisticated
procedure. A simple way to answer this objection, however, is to consider the
procedure which is sophisticated par excellence: the optimal policy in a two
armed bandit problem.

The bandits problem

To de¯ne the Bayesian procedure, we may assume that each player thinks of
the two actions he can take (either A or B) as producing a payo® independently
from each other. This is of course a counterfactual belief: the two arms are not
independent, since the distribution on the choice of the opponent of a versus b
is the same in both cases. In terms of the distinction we have introduced, the
player is not a sophisticated player, since he ignores this fact. He is however
a sophisticated agent, since he follows the optimal policy for the two armed
bandit problem.
The payo® he will receive in each period when he chooses the action A

is determined by the draw of an independent random variable with unknown
distribution. Again, this is only true from his point of view: but we are not
going to iterate this proviso). This distribution can be parameterized simply by
the probability of getting the payo® associated with the pair of actions (A; a)
of himself and of the opponent. The payo® matrix is:

a b

A g1(1) g1(2)

1The Matlab program that does this is available upon request. I thank Harald Uhlig for
showing me how to do it.
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B g2(1) g2(2) (3.7)

where we assume
g1(2) > g2(1) > g1(1) > g2(2) (3.8)

as it is in the simple example. Each player discounts by a factor equal to 1=2.

Equilibria

The set of equilibria depends of course on the initial belief. When the initial
prior for all players has a continuous density, everywhere positive, then there
is a natural candidate for the long-run equilibrium of this game. Each player
has a belief concentrated on the mixed strategy Nash equilibrium of the stage
game, say ®1¤N , and players do in fact play the two actions in the proportion
®¤1N . The Nash equilibrium is not the only possible outcome, however, as we
are going to see immediately.

Simple beliefs

To keep the structure simple, we consider the case in which the prior of each
player has a very simple form. He thinks that the true probability of facing
the choice a of the opponent, when he plays A (and therefore the probability
of a payo® g1(1)) is either ¯A or °A, two numbers in [0; 1]. He has a similar
belief in the case of the action B. So his prior at t on the distribution on
the action of the opponent and hence on payo®s for the arm i has the form
pit±¯i + (1 ¡ pit)±°i, for i = A;B, where ±¯i denotes the Dirac measure at ¯

i,
and pit is the probability he gives to the true parameter being ¯

i. The true
probability on the set fa; bg is denoted by ®, depends on the distribution of
players, and is the same on both arms A and B.
At the end of each period, players update in a Bayesian fashion the belief

they have, as follows. If we denote the logarithm of the odds ratio

rit ´ log(
pit

1¡ pit
); i = A;B

then the posterior odds ratio after a choice of i, is of course:

rit+1 = log(
¯i

°i
) + rit; with probability ® (3.9)

(when a is observed) and

rit+1 = log(
1¡ ¯i
1¡ °i ) + r

i
t; with probability 1¡ ® (3.10)
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(when b is observed). We denote the expected payo® as

E¯ig
i ´ ¯igi(1) + (1¡ ¯i)gi(2); i = A;B; (3.11)

and similarly for E°ig
i. To make the problem interesting we assume that

one of the arms is better than the other arm for some of the possible beliefs.
Speci¯cally we assume that the ¯ belief gives a higher expected value for both
arms:

E¯Ag
1 > E°Ag

1;E¯Bg
2 > E°Bg

2: (3.12)

Also we assume that at the belief (pA; pB) = (1; 0) the A arm has an expected
value higher than B, and that the reverse holds at (pA; pB) = (0; 1):

E¯Ag
1 > E°Bg

2; E¯Bg
2 > E°Ag

1: (3.13)

Optimal Policy

The optimal policy in this problem may be characterized by a function ¾ of the
two values (rA; rB), taking value in the set fA;Bg. This simply follows from
the fact that the optimal policy is stationary. Also a complete description of
the relevant state (the belief over the distribution of outcomes) is provided by
the pair (pA; pB) and therefore, equivalently, by the pair (rA; rB).
Acually, thanks to the Gittins-Jones dynamic allocation indices result (see

[12], [30], and [4]), more is known. There exist two functions ¿ i; i = A;B from
R+ to R, such that

¾(rA; rB) = argmax i2fA;Bg¿
i(ri): (3.14)

The functions ¿ i are the dynamic allocation indices for the two arms: the
Gittins Jones theorem says that the optimal policy consists in choosing in each
period the arm that has the index with maximum value. Finally, by theorem
3.1 of Berry and Fristedt ([4], page 1095: the theorem is stated for Bernoulli
processes, but the proof can be extended to our case), the functions ¿A and ¿B

are increasing.
This follows because the dynamic allocation index is increasing in the dis-

tribution over the arm, when the distribution is given the ¯rst order stochastic
dominance partial order, and the distribution is increasing in pi and therefore
in ri because of the inequality 3.13.
This remark together with (3.14) implies

if ¾(rA; rB) = A and r̂A > rA; then ¾(r̂A; rB) = A; (3.15)

and
if ¾(rA; rB) = B and r̂B > rB ; then ¾(rA; r̂B) = B: (3.16)

Also note that from (3.8) and (3.12) we can infer that

¯A < °A; ¯B > °B: (3.17)
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A simple example

For concreteness, a simple numerical example may help to clarify. Let

g1(1) = g2(2) = 0; g1(2) = g2(1) = 1; (3.18)

and
¯A = 0; °A = 1=3; ¯B = 1; °B = 1=3: (3.19)

Then 2 the functions ¿ i of (3.14) are:

¿A(r) =
2 + 4er

3 + 4er
; ¿B(r) =

1 + 5er

3 + 5er
;

and the optimal policy is

choose B if and only if rB ¸ ¼(rA); (3.20)

where ¼(r) is the solution of e¼(r) = (8=5)er + 3=5, so ¼ is increasing, tends to
log(3=5) as r ! ¡1, and to r + log(8=5) as r ! +1.

The limit choice

From the above characterization of the optimal policy we know how the process
of choices of the agent will evolve over time. If the optimal choice in the ¯rst
period is, say, A he will keep choosing A, and only update the probability pA.
In the meantime, the value of pBt is constant and equal to p

B
0 until, if ever, the

value pAt0 falls below a critical level, which depends only on p
B
0 . At that point

the process will start again, with pAt0 playing the role that p
B
0 was playing in the

previous phase. Recall that because of (3.17), the updating described by (3.9)
and (3.10) implies that rA increases after an observation of b and rB after an
observation of a. Let now t1; t2; : : : ; ti; : : : be the sequence of switching times,
that is:

ct 6= ct¡1 if and only if t = ti for some i:
It is clear that

for every i; if cti 6= j; then pjti < pjti+2; and rjti < rjti+2; (3.21)

that is the probability assigned to the "good" belief ¯ can only decrease at
the switch between policies. To see this, suppose that at ti the player switches
to B, that is ¿ (rBti ) > ¿ (rAti ). As long as he uses A, rAt remains equal to
¿ (rAti ),and so when he switches back to A it must be that ¿ (rAti ) > ¿ (rBti+1),

hence ¿ (rBti ) > ¿ (r
B
ti+1
). An implication of this is that for every ® the choice of

the player becomes constant in ¯nite time. We put this result on record as:

2For details, see the example 4.3, page 1100 of Berry and Fristedt [4], and also the example
6.1.1, page 143 of Berry and Fristedt [5].
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Proposition 3.1 There is an equilibrium when agents have simple beliefs.

The proof is in section 5. The key idea is again the behavior of the probability
that a player will eventually choose A as a function f(®). It is easy to see
that in the extreme values f (0) = 1 and f (1) = 0. So we have only to show
continuity of the function in the intermediate values. This again follows because
the choice procedure is continuous.

4 Conclusions

We have presented and developed, for general games, a distinction between
sophisticated players and sophisticated agents. In economic theory this dis-
tinction is at the basis of the concept of walrasian equilibrium for competitive
economies, and hence at the basis of most of our working conceptual structure.
We have argued that in a world where agents are naÄ³ve players but sophisticated
agents there is also a consistent notion of equilibrium. This equilibrium can be
shown to exist. The equilibrium is di®erent from the Nash equilibrium of the
corresponding game, even if the procedures that agents use are "reasonable".
It is clear that a fundamental question which is preliminary to this line of

research is \Which procedures are reasonable?" or in our terminology, \Who is
a sophisticated agent?" For competitive economies, utility maximization and
pro¯t maximization by price-taking individuals seems a widely accepted con-
cept of sophistication. In the case of general games, the question is still open.
But the question seems so fundamental that it should probably be addressed
before or at least at the same time, as an attempt is made to conjecture a new
solution concept.
A comparison with the theory of games among sophisticated players may

be useful. This theory is in turn based on a complete theory of utility and
decision-making of fully rational agents. For example, the ¯rst three section
of the fundamental book of Von Neumann and Morgenstern ([29]) deal with
utility theory, and then proceed, on that basis, to the development of the game
theory.
Should the theory of players with limited rationality follow the same way?

In particular should we require a theory of individual rationality for sophisti-
cated agents that precedes the theory of rationality in games? Perhaps not:
but it certainly seems necessary at least to check if the procedures that the
agents in our model are supposed to follow are plausible.
Some elements in this direction already exist. Recently many attempts

have appeared that try to provide a similar foundation for the decision theory
of agents with limited rationality. Some of these attempts explicitly formulate,
and discuss the idea that we have used here of \procedures". We may try here
to quote a few, like [1], [2], [6], [8], [9], [10], [11], [14], [15], [26], [27], [28]: but
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the literature is very large, and growing. Some of these contributions explicitly
examine criteria for a sound de¯nition of \reasonable procedure".
Finally, we are not arguing here that we should maintain the assumption

of fully rational agents in all cases. Instead, we are claiming that, ¯rst, it
is important to keep a precise distinction between sophisticated players and
agents, and second that we still have to give a precise content to the assumption
of sophisticated agents.

16



5 Appendix

In the appendix we present the proof of the proposition (2.1). The proof
involves techical notions that we recall brie°y. The entire appendix is self-
contained, if the reader is prepared to believe some basic results.

The d distance

As we mentioned, the distance de¯ned in (5.23) below is a basic concept in the
Ornstein theory (see [20] and [22]). We introduce two distances on J1. The
¯rst:

D(!; !0) ´
X

fi:!i 6=!0ig
±i (5.22)

with ± � 1=2. This last restriction is not important, we only assume it to make
the comparison with the second distance easier. The second:

d(!; !0) ´ sup
n¸1

1

n
]fi : 1 � i � n;!i 6= !0ig: (5.23)

The topology induced by d is strictly stronger than the one induced by D. In
fact, the inequality (5.24) below holds. To see this, consider the problem:

max
(!;!0)

D(!; !0)

subject to:
d(!; !0) � a

which has for solution a pair (!; !0) which are di®erent at a period equal to
the integer part of 1=a, for which the D distance is equal to

1X

i=1

±
1
a
t =

±
1
a

1¡ ± 1a

which is less than a. Hence:

D(!;!0) � d(!; !0) for every !; !0: (5.24)

The D-convergence is the pointwise convergence, the d-convergence is strictly
stronger. A function which is D-continuous is d-continous, and a set which is
D-open is d-open, but not viceversa.
A good feeling for the di®erence between the two distances may be given

by the following observation, that will also be useful in the following. De¯ne
for every j, t and ! the frequency of j as

f jt (!) ´ ]fi : 1 � i � t; !i = jg (5.25)
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If ! and !0 are close in the D-distance, the two frequencies are not necessarily
close. However, it is easy to see that:

j ]fi : 1 � i � t; !i = jg ¡ ]fi : 1 � i � t; !0i = jg j

� j
tX

i=1

1fjg(!i)¡
tX

i=1

1fjg(!
0
i) j

�
tX

i=1

j 1fjg(!i)¡ 1fjg(!0i) j

= ]fi : 1 � i � t; !i 6= !0ig (5.26)

and therefore:
j f jt (!)¡ f jt (!0 j� d(!; !0): (5.27)

For these two metrics on J1 we can de¯ne two di®erent criteria of weak
convergence of measures on J1. We say that a sequence of measures f¸kgk=1;:::
on J1 converges D-weakly to ¸ if and only if

R
J1 f(!)¸k(d!) converges toR

J1 f (!)¸(d!) for all the D-continuous functions, and similarly for the d-weak
convergence. A sequence of measures which d-weakly converges also D-weakly
converges.

Finitely Determined Processes

A Bernoulli process on J1 is the stochastic process induced by a sequence of
i.i.d draws. So for every ® 2 ¢(J) there is an associated Bernoulli process,
with measure P ®.
For any measure ¸ over J1 we denote by h(¸) the entropy of ¸. For a

precise de¯nition of entropy see for example Petersen ([25]), chapter 5. The
only fact we need here is that the entropy of a Bernoulli process induced by
® 2 ¢(J) is

¡
X

j2J
®j log®j (5.28)

(see Petersen, ([25]), example 3.4, page 245). The key concept, introduced by
Ornstein, is the following:

De¯nition 5.1 A measure ¸ on J1 is ¯nitely determined if for any sequence
f¸kgk=1;::: the two conditions

i. ¸k D-weakly converges to ¸ and

ii. h(¸k) ! h(¸)

imply that ¸k d-weakly converges to ¸.

For Bernoulli processes, a basic fact is (see [21]):
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Theorem 5.2 Bernoulli processes are ¯nitely determined.

For every ¯nite subset I of the non-negative integers, and a ¯nite vector
(!0i; i 2 I) we de¯ne the cylinder

C(!0i; i 2 I) ´ f! : !i = !0i; i 2 Ig

From the de¯nition of D-weak convergence,

¸k D ¡ weakly converges to ¸ i® ¸k(C)! ¸(C) for any cylinder C: (5.29)

We conclude from (5.28) and (5.29) that if a sequence ®k converges to ® then
the two conditions of the theorem (5.2) are satis¯ed, and therefore:

P®k d¡ weakly converges to P®: (5.30)

We now apply this concept to our problem.

Continuous choice procedures

Lemma 5.3 Assume that for every j 2 J

Cj = Cj0 [ Cj1 ; (5.31)

where

i. the set Cj0 has P
®-measure zero for every ®;

ii. Cj1 is d-open,

then the function ® ! P®(flimt!1 ct = jg) is continuous for every j.

Proof. Note ¯rst that if fj; j 2 J is a vector of functions which are lower-
semicontinuous and X

j2J
fj = 1; (5.32)

then each fj is continuous. In fact, for each k 2 J, the function
P
j 6=k fj is

lower-semicontinous, so 1¡P
j 6=k fj is upper-semicontinuous, but this is fk. So

in order to prove our claim it is enough to prove (since the condition (5.32) is
satis¯ed by assumption (2.4)), and that each function is lower-semicontinous.
But we know from (5.30) that P®k d-weakly converges to P®, and therefore,
by a basic property of weak convergence,

liminf kP
®k(Cj) ¸ P®(Cj) for every j: (5.33)

19



Proof of proposition 2.1

Now we are ready for the ¯nal details of the proof of proposition (2.1). Each
player has a set J ´ f1; : : : ; j; : : : ; ng of actions that he can take in each period.
A state is any possible sequence of actions that the opponent he faces in each
period takes. So the set  of states is the set of sequences of elements in J:

 ´ J1;

with a generic element !, and !t the state at time t. A given ® 2 ¢(J) induces
the probability P® on the product space. We denote by Xt(!) the value of a
random variable when the time is t and the state is !. The payo® from the
action j at time t when the state is ! is

gjt (!);

the choice of action at t is ct(!) 2 J ; the sum of payo®s from the action j is

Gjt(!) ´
X

fs2f1;:::;tg;cs=jg
gjs(!);

the number of times the action j has been chosen is

njt(!) ´ ]fs 2 f1; : : : ; tg; cs = jg

and the average payo® from j is the ratio:

ajt(!) ´ Gjt(!)

njt (!)
:

In each period the action that maximizes the average payo® is:

ct(!) ´ argmax j2Ja
j
t(!) (5.34)

For every subset I µ J, the value of the best average among actions in I is

aIt (!) ´ max
j2I

ajt(!); (5.35)

so that aJt (!) is the best overall average. As usual, we use the supercript ¡j
to denote the set of all elements but j.
Let t1; t2; : : : ; ti; : : : be the sequence of switch times, that is:

ct 6= ct¡1 if and only if t = ti for some i:

Then
the function i! ati is decreasing : (5.36)
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This is clear: consider for any i the time interval between ti¡1 and ti. At ti
the action with the best average changes because its average falls below the
maximum of the averages of the other actions. In turn, the average of these
actions was constant in the interval between ti¡1 and ti, and equal to the value
at ti¡1. So the best average at ti is less than the best average at ti¡1. Let

Cj ´ f! : ct(!) = j for all but ¯nitely many t0sg

and C ´ [j2JCj.
We begin with the the proof of the ¯rst claim: C has probability 1. First

consider the case where ® is such that the expected payo® from each action is
di®erent. The supposition that the choice of action does not converge leads to
a contradiction. At least two actions have to be chosen in¯nitely many times,
but the by the strong law of large numbers the average payo® converges to the
expected payo®, and these are di®erent for the two actions. So the one with
the least payo® will not be chosen eventually.
Now consider the case in which the expected payo® from two or more actions

is equal. Suppose that the choice of action is not eventually constant. By the
previous argument, we may assume that two or more actions with the same
expected payo® are chosen in¯nitely many times. Again the sequence of the
averages is converging to the expected payo® on each of these actions. But
from (5.36) we know that this sequence is decreasing, for each of these actions,
to the expected payo®. This can only happen with probability zero, since the
averages of a sequence of i.i.d. takes almost surely values on both sides of the
expected value.
Now the second part: take a sequence ®k 2 ¢(J) converging to ®. We

claim that for every j,
lim
k
P®k(Cj) = P®(Cj): (5.37)

For each j, the set Cj is the union of the set Cj1 of !'s for which the action
j is chosen, and the limit average is strictly larger than the maximum of the
averages of the other actions, and the complement in Cj , denoted by Cj0. Note
that these sets are the same, independently of the probability P®. We claim
that

i. the set Cj1 is d-open set, and

ii. the set Cj0 which has P
®-probability zero for any ® 2 ¢(J).

In Cj0 the limit of the average is equal to the average of some of the other
actions, and so with probability zero it assumes values always larger than its
limit. For the ¯rst claim, take any point ! 2 Cj1 , and note that:

j t[ajt (!0)¡ ajt(!)] j = j
X

fi:!0i 6=!i
gji (!

0)¡ gji (!)) j
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� ]fi : !0i 6= !igM
� td(!0; !)M

(5.38)

where M is twice the maximum of the payo®, and therefore

sup
f!0:d(!0;!)�½;t¸1g

j ajt(!0)¡ ajt(!) j� ½M ;

so for a su±ciently small ½ the set of elements at distance ½ from ! is contained
in Cj1 . Now the conclusion follows from lemma (5.3).

Proof of proposition 3.1

Denote by X i; i = A;B the random variables taking the value log(¯
i

°i
) with

probability ® and log(1¡¯
i

1¡°i ) with probability 1 ¡ ® respectively: this is the

value of the change in rit in each period. Also letM ¸ j X i j for both i. E®X i

is the expected value of X i for a given value of ®. Recall that (see (3.17))

¯A < °A; ¯B > °B;

so as a function of ®, E®XA (E®XB) is decreasing (increasing, respectively),
with a positive (negative) value at 0 and negative (positive) value at 1, and is
zero at two critical values of ®, that we denote by ®i; i = A;B:

E®iX
i = 0; i = A;B; (5.39)

and ® ´ minf®A; ®Bg, ® ´ maxf®A; ®Bg. To ¯x ideas, we assume that

E°Ag
1 > E°Bg

2; (5.40)

so that at (pA; pB) = (0; 0), the action A is chosen. The case with the opposite
inequality is symmetric. Since from (3.13) B is chosen at (pA; pB) = (0; 1),
there is a value ¹pB at which the optimal policy switches from A to B. This
implies that the optimal policy has the form: choose B if and only if rB ¸
¼(rA), where

¼ is increasing, and lim
r!¡1

¼(r) = log(
¹pB

1¡ ¹pB
): (5.41)

(The behavior of ¼ as r ! 1 depends on whether A or B is chosen at
(pA; pB) = (1; 1). For completeness we note that in the ¯rst case ¼ tends
to in¯nity as r approaches a ¯nite value of rA, and in the second it tends to a
¯nite value. It is easy to see that these cases are all possible.)
We now analyze the behavior of the function f : [0; 1] ! [0; 1] that describes

the probability that the action A is eventually chosen.
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For ® 2 [0; ®B ], f (®) = 1. In fact both arms cannot be tried in¯nitely
many times (suppose they do: then the two values of rit both converge to ¡1,
where A is chosen by (5.41), a contradiction), and the chosen arm cannot be
B, because of (5.41) and for these values of ®, 0 ¸ E®XB.
We then prove that when ® 2 (®B; 1], so that E®XB > 0, the function f is

continuous. We use the lemma (5.3). Let

L ´ f! : lim
t!1

f jt (!) for j = A;Bg;

and
Cj1 ´ Cj \ L;Cj0 ´ Cj n L:

From the ergodic theorem, for every ® P®(L) = 1, so P®(Cj0) = 0. So we have
to prove that the set of ! in CB1 is open. So take an ! such that B is eventually
chosen. Since for any other !0,

j rBt (!)¡ rBt (!0) j = j
tX

s=1

(XB
s (!)¡XB

s (!
0)) j

� M]fi : 1 � i � t; !i 6= !0ig (5.42)

then

j r
B
t (!)

t
¡ rBt (!

0)

t
j � d(!; !0): (5.43)

Also since ! 2 L, for some a

lim
t

rBt (!)

t
= a (5.44)

But if !0 is also in L and d-close to ! the corresponding limit of the frequency
must be close (recall (5.27)). Then for for any ², for some t large enough

j r
B
t (!

0)

t
¡ a j� ²+Md(!; !0) (5.45)

and therefore:
rBt (!

0) ¸ (a¡ ²¡Md(!; !0))t (5.46)

and therefore if rBt (!) is larger than the value then so is r
B
t (!

0), hence B is
chosen at !0, hence the set of ! where B is chosen is open.
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