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Abstract:

This paper studies the interaction of fiscal stabilization policies in the Eco-
nomic and Monetary Union (EMU). The “Excessive Deficits” Procedure
of the Maastricht Treaty and its elaborations in the recent “Stability and
Growth Pact” introduce a set of fiscal stringency requirements. Situations
might arise where the need for fiscal flexibility and the fiscal stringency re-
quirements will create a conflict and suboptimal macroeconomic policies are
implemented. This paper analyses macroeconomic adjustment under non-
cooperative and cooperative fiscal policy design in the EMU. In addition it
is analyzed how fiscal stringency requirements like the Stability and Growth
Pact affect fiscal policy design under EMU.
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1 Introduction

In the Economic and Monetary Union (EMU), the participating countries
loose monetary and exchange rate policies as macroeconomic policy instru-
ments. The EMU implies a considerable change in the design of macroeco-
nomic policies, both at the national and the supranational level. Monetary
policy design will be transferred to the European Central Bank (ECB) that
will implement the common monetary policy and circulate the common cur-
rency, the Euro. The monetary policies of the ECB will be mainly directed
at price stability in the EU and maintaining a stable external value of the
Euro. In the short and medium term, the burden of fiscal stabilization will
primarily rest on the national fiscal authorities given also the small size of
the federal EU budget. This situation is likely to increase the need for fiscal
policy activism when countries face a recession.

A first important issue regarding fiscal policy design in the EMU concerns
the need for fiscal policy coordination. EMU affects both the interaction of
fiscal policies and their transmission in the EU economies. Given the high
degree of economic interdependence in the EU, important externalities from
national fiscal policies exist. Coordination of national fiscal policies enables
to internalize these externalities and by that to improve macroeconomic per-
formance compared to non-cooperative fiscal policy design in the EU.

A second important issue concerns the imposed fiscal stringency requirements
by the “Excessive Deficits Procedure” of the Maastricht Treaty and its de-
tailed elaboration convened in the “Stability and Growth Pact” (Stability
Pact in short) that was signed at the June 1997 Amsterdam summit of the
Council of EU ministers. It imposes a set of restrictions on fiscal flexibility
under EMU. The Stability Pact has a double role: (i) a preventive role of
early warning against excessive budget deficits (budget surveillance), and (ii)
a penalizing role for sustained budget shortages. The medium term goal is
approximate budget equilibrium or budget surplus. It was motivated by the
fear that undisciplined fiscal behaviour is likely to put at risk the low infla-
tion commitment of the ECB since it will be difficult to rule out a monetary
bail-out by the ECB under all circumstances. Undisciplined fiscal behaviour
may also result in fiscal bail-outs through fiscal transfers in the EU. Finally,
excessive deficits could induce upward pressure on interest rates and an ap-
preciation of the Euro. In both cases, pressure on the ECB could arise to
ease its monetary policy. In all cases, the burdens associated with individual



fiscal indiscipline will partly be transmitted to the other EU countries.
Situations may arise where the need for greater fiscal flexibility and the
greater fiscal stringency will create a conflict and suboptimal macroeconomic
policies will be pursued. This paper analyses the interaction of fiscal poli-
cies in the EMU and how fiscal stringency criteria like the Stability Pact
affect this interaction and macroeconomic adjustment. To do so, we analyse
outcomes in two different game-theoretic settings: (i) non-cooperative fiscal
policy design and (ii) cooperative fiscal policy design. We also analyse how
policies and adjustment are affected in both regimes by externally imposed
fiscal stringency measures.

To model the design of fiscal stabilization policies under EMU, we introduce
a dynamic two-country model of the EMU that features short term nominal
rigidities thus creating scope for active stabilization policies. Our analysis
builds on earlier analyses by Turnovsky, Basar and d’Orey [9] and Neck and
Dockner [8] who analyze the interaction of the monetary authorities in a
similar dynamic two country model. In both papers, the monetary policies
of both countries affect short-term output in both the domestic and foreign
economies. The interdependencies of both economies, hence, creates a dy-
namic conflict between both monetary authorities. Output, inflation and
exchange rate adjustment and their implications for social welfare are calcu-
lated for a number of different modes of strategic interaction: (i) open-loop
and feedback Nash equilibria, (ii) fiscal coordination and (iii) open-loop and
feedback Stackelberg equilibria. We extend these two-country models into a
setting of a monetary union and consider the effects of fiscal policy in such
a setting of a monetary union and analyze the effects of fiscal stringency
conditions on the outcomes.

The paper is organised as follows: section 2 develops the analytical frame-
work, section 3 analyzes non-cooperative and cooperative fiscal policies under
EMU, section 4 presents numerical simulations of the model to illustrate its
main characteristics, and the final section concludes.

2 A Dynamic Stabilization Game in the EMU

Consider a situation where EMU has been fully implemented, implying that
national currencies have been replaced by a common currency, national cen-
tral banks by the ECB and that the exchange rate has disappeared as an



adjustment instrument. Capital markets are fully integrated and we abstain
from any country-risk premia implying that any interest differential is arbi-
traged away instantaneously. On the other hand we assume that there is no
labour mobility between both EMU parts and that goods and labour mar-
ket adjust sluggishly. Hence, the model displays Keynesian features in the
short-run.

The economic structure of the two-country EMU is given by the following
equations,

Table 1 A Stylized Two-Country EMU Model

~
0]

* 3.

~

y(t) = os(t) —r(t) + py*(t) + nf(t) (1)

yr(t) = —os(t) —r*(t) + py(t) + nf*(t) (2)

s(t) = p*(t) —p(t) (3)

r(t) i (t) — p(t) (4)

ri(t) = iP(t) = p(t) (5)

m(t) —p(t) = ry(t) — Ci"(t) (6)
m*(t) — p*(t) = rky*(t) — Ci®(t) (7)
(t) (8)

(t) (9)

3.
©

in which, y, denotes real output, p, the output price level, ¥, the common
nominal interest rate and, r, the real interest rate. s measures competi-
tiveness of country 1 vis-a-vis country 2 as it is defined as the output price
differential. f, equals the real fiscal deficit that the fiscal authority sets. m
denotes the amount of nominal money balances that the public demands.
Except for the nominal interest rate and the rate of inflation, p, variables are
in logarithms and expressed as deviations from their long-run non-inflationary
equilibrium (growth path). The model, therefore, characterizes the business
cycles in this two-country EMU. Variables of country 2 are indicated with
an asterisk. For simplicity, we assume that both countries are symmetric
in their structural model parameters and we ignore the interaction of this
two-country EMU with the rest of the world.

4



(1) is the aggregate demand function having intra-EU competitiveness, the
real interest rate, foreign output and the fiscal deficit as arguments. (3) de-
fines the competitiveness of the EMU countries relative to each other. The
definition of the real interest rate is given in (4). The demand for real bal-
ances of the common currency is given in (6) as a function of output and
the common nominal interest rate. We assume for simplicity that its interest
targeting policy enables the ECB to have perfect control over the nominal
common interest rate, i¥. (8), finally, gives the short run relation between
inflation and output, along the Phillips curve. Because of the nominal rigidi-
ties, implied by the Phillips curve, output and prices can diverge from their
equilibrium values in the short run. In the long run, on the other hand, both
economies adjust to a long run equilibrium where output and prices are at
their equilibrium values (which have normalized to zero in this analysis).
Both economies are connected by a number of channels through which price
and output fluctuations in one part transmit themselves to the other part of
the EMU. Output fluctuations in both economies transmit themselves partly
to the other EMU country through the import channel. Therefore, the rel-
ative openness of both economies, as measured by p, implies an important
interdependence of both economies. Price fluctuations in the domestic or
foreign economy affect intra-EU competitiveness, s(t), and therefore output
in both economies. Combining (1)-(9), enables to write output in both coun-
tries as a function of competitiveness, the policy instrument of the ECB,
iZ(t), and the fiscal deficit set by the two fiscal authorities, f(t) and f*(¢t),

y(t) = bs(t) —ciE(t)+af(t)+£af*(t) (10)
y'(t) = —bs(t) — ci®(t) + Faf (1) +af* () (1)
with a := k—ﬂ%, b= k_j»p’ c:= k—z—p and k := 1 — v£. Substituting (10) and

(11) into (8) and (9) yields two first-order linear differential equations in the
output price levels. Subtracting them from each other gives the dynamics of
intra-EU competitiveness,

$(t) = ¢1f*(t) — 1f(t) + d2s(?) (12)
with ¢ := If—fp and ¢y 1= —lf—igp.



Having modeled the economies of both EMU countries and derived the ad-
justment dynamics of output and prices over time, we still need to determine
the fiscal policies and their dynamic adjustment over time as a consequence
of the different modes of interaction of these macroeconomic policymakers.
In order to do so, we need to specify the objective functions of the players.
The objectives are optimized subject to the dynamics of s in (12). We assume
that the players have quadratic objective functions. The dynamic strategic
interaction of the policymakers in that case reduces to a linear-quadratic
(LQ) differential game.

In particular, both fiscal authorities seek to minimize the following intertem-
poral loss functions that are assumed to be quadratic in the rate of inflation,
output and fiscal deficits,

Fo= 2 / () + Br() + 1A Mt (13)
g = [ s e e e aa)

Future losses are discounted at a rate 6. The costs of price and output fluc-
tuations are standard in most analyses of macroeconomic policy design. The
assumption that the fiscal authorities also value budget balance reflects the
notion that high deficits, while beneficial to stimulate output, are not cost-
less: they to some extent crowd out private investment and lead to debt
accumulation. Deficits in the loss function also features the possibility that
excessive deficits in the EMU will be subject to sanctions, as proposed in the
Stability Pact. Therefore, countries prefer low fiscal deficits to high fiscal
deficits. In case where x — oo, (cyclical) budget balance becomes the sole
objective of the fiscal authority and fiscal activism is reduced accordingly.
On the other hand, xy — 0, implies that fiscal stringency is minimal and that
the fiscal authorities have maximal fiscal flexibility under EMU.

We consider the dynamic stabilisation game in the context of a situation of
an initial disequilibrium in intra-EU competitiveness, implying that s(0) # 0
and that the EU countries experience an asynchronous business cycle. We
analyze how fiscal policies adjust over time as a result of the dynamic in-
teraction between the macroeconomic policymakers in the EMU and how
this macroeconomic performance is affected. In this dynamic interaction we
focus on the different adjustment patterns that arise under non-cooperative



and cooperative fiscal policy design in the EMU and how these patterns are
affected by different degrees of fiscal stringency.

3 Non-cooperative versus Cooperative Fiscal
Policies in the EMU

3.1 The non-cooperative case

We first analyse the design of fiscal policy in the EMU if the fiscal authorities
implement non-cooperative fiscal policy strategies. In a Nash equilibrium
setting the players implement their optimal strategies simultaneously. The
optimization problems of the fiscal players in that case can be written as,

x(t)
minJ, — / ([ Yl OTF | w(t) |yat

st @(t) = Ax(t) + Biui(t) + Bous(t),
z(0) = zg, 1=1,2 (15)

o(t) = e 3" [ Z.‘?’E(fg) ] Cug(t) = e [ flét) ] up(t) = e [ fQét) ] |

The system parameters are

A::l¢2 9],B1::l_g11,andB2::l%11

and F; is a positive semi-definite matrix that can be factorized as,

Qi P L
F = PZ-T Ry N;
L{ N! Ry

in which Q;, P;, L;, N; and R;;, (i = 1,2), represent submatrices that are given
in Appendix I.



Using the symbolic computational program Mathematica, it is shown in Ap-
pendix I that (depending on the sign of the \;’s, see (22)) either the game
has no solution or the closed-loop system dynamics satisfy the relationship

i) = l o _% ) 1 2(8). (16)

where ¢ = 1V 2. In other words if the game has a solution then, in principle,
two different adjustment schemes of the closed-loop system towards its long-
term equilibrium can occur. Assuming that the parameter k is positive and

- Ok+256)1%0 _ 2
denoting £ by r, (pf;()(iggggz e by z; and %’“u (k—ﬂf?) by x5, the next

table illustrates the possibilities

Table 2

# equilibria | parametervalues
1 r<l

0 T < x<To,1r>1
1
1
2

X < min(zy,x9), r > 1
X > max(xq,x2), 7> 1
To< x<x,7>1

Given our model we expect, usually, that £ > p will hold. That is » < 1 and
therefore the closed-loop adjustment scheme will be uniquely determined. In
the following figure 1 we illustrated the situations that can occur in case k < p

—_

0 1 1 # €q. 1 1 1 2 1 1 # €q.

0 T U] X 0 T2 T X

figure 1

In particular note that if p is much larger than k the situation occurs that
the game permits 2 different types of adjustment schemes for the closed-loop
system if x is chosen ”appropriately”. Which adjustment scheme actually



will occur under these circumstances depends on additional requirements
which are imposed on the outcome of the game. A natural choice seems to
select that outcome of the game that increases the adjustment scheme for the
closed-loop system towards its long-term equilibrium most. For, under such
an adjustment scheme also unanticipated shocks to the system are dealt
with best. Furthermore, this equilibrium seems to be a natural candidate
that may be Pareto efficient (that is both players infer lower cost by playing
this equilibrium). However, given the fact that we expect this to be a rare
situation we do not elaborate this subject here.

Finally note that the state variable s in the closed-loop system (16) does
not depend directly on the value of +¥. This variable ¥ has only an indirect
influence on the closed-loop dynamics of the model, that is via the parameters
in the cost functionals.

3.2 The cooperative case

The various interdependencies and spillovers between the two countries are
not internalized if countries decide upon fiscal policies in a non-cooperative
manner. Therefore, it is important to compare fiscal policies and macroeco-
nomic outcomes under non-cooperative equilibria with outcomes under coop-
eration. The importance of surveillance and coordination of macroeconomic
policies in the EU is stressed in the Maastricht Treaty which requires mem-
ber states to regard their macroeconomic policies as a “matter of common
concern” and to coordinate these within the Council of Ministers. In these
ECOFIN meetings coordination and surveillance of macroeconomic policies
has now been institutionalized.

Under cooperation fiscal policies are directed at minimizing a joined loss
function, J¢, rather than at minimizing the individual national loss func-
tions,

JC=J" fwg™ (17)

where w is the Pareto constant that measures the relative weight attached
to the losses of both players. One could assume that it is the outcome of
an earlier bargaining problem that the two players have solved to determine
the relative weights of the individual objectives in the cooperative design of
fiscal policies. In that case the Nash-bargaining solution could be considered
as the most natural solution to such a bargaining solution of the cooperative



decision making process.
We can rewrite the cooperative decision making problem in the standard
format introduced earlier when analysing the Nash open-loop case as,

o (1)
minJ¢ = 2 /0 (T uf () T ()W ) |
s.t. Qf(t) = Aaz(t)+Blu1(t)+Bgu2(t),
z(0) = my, 1=1,2 (18)

where the positive definite matrix W is partioned as,

_|1Q S
W'_lST R]

in which @), R and S represent 2x2 sub matrices that are given in Appendix
IT. Proceeding as before we use the Hamiltonian approach to calculate the
optimal strategy (see Appendix II). After some lengthy calculations we find
the following closed-loop system:

i =| 5 iy |, (19)

where ) is the positive square root that follows directly from (25) in Appendix
IT and v is a (in general non-zero) parameter that depends on the system
parameters. Note that, different from the non-cooperative case, the variable
i¥ now has a direct impact on the closed-loop dynamics of the system.

Taking a closer look at A as a function of the relative weight parameter w,

we see that it can be written as:

Y

et + (14 w)? — 13(1 + w?)
B vw + v5(1 4+ w)?

where v; are positive constants (see Appendix V, table 6). Differentiation of
this expression w.r.t. w yields:

1 (1 —w?) (s — vavy + V3 + 2u313)
2v/ A (raw + v5(1 +w)?)?

N(w) =

10
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So, we conclude that, ceteris paribus, A is maximized for w = 1 in case
vV = Vs — iy + v3vs + 2usp3 18 positive, and that A\ is minimal for
w = 11in case ¥ < 0. In Appendix III we show that v < 0 if and only
if (2ar(¢s — 3n) — b1)(a*u(r? — 1) — x) — 2a*bppr(r + 1) > 0.

In figure 2, below, we illustrated the behaviour of A\ as a function of the
coordination parameter w.

V2*V3> \/Zl/zfl/a‘)
Vs Vs

case Vv < 0 case v > (0
figure 2

.From this figure we see that s converges as fast as possible to zero in the
cooperative game if both cost-functionals have an equal weight in case v > 0.
So, under these parameter conditions both players have an incentive to co-
operate, since cooperation increases the adjustment speed of the closed-loop
system dynamics towards its long-term equilibrium. On the other hand in
case v < 0, s converges as fast as possible to zero in case either w = 0 or
w = 00. S0, one might expect that cooperation under these parameter con-
ditions will be much more difficult to achieve.

3.3 The effect of fiscal stringency conditions

The impact of fiscal stringency is measured by the model parameter .

In section 3.1 we analyzed already the consequences of fiscal stringency on
the number of non-cooperative equilibria. We saw that if the model param-
eter r is smaller than one, fiscal stringency has no impact on the number of
equilibria. There is always a unique equilibrium. However, in case r > 1 fis-
cal stringency does have an impact. If fiscal stringency conditions are either

11



rather weak or very strong, again a unique equilibrium will occur, whereas if
fiscal stringency is in between two bounds either two or no equilibrium can
occur.
In section 3.2 we showed that in case the sign of the parameter v is negative,
one may expect that cooperation will be difficult to achieve. In fact this
happens if and only if (2ar(¢2 — 1) — b1 )(a®pu(r? — 1) — x) — 2abg pr (r +
1) > 0 or, stated differently in terms of the fiscal stringency measure x,
a®pu(r+1)(2ar(r—1)+bds (r—3))
X = b1 —2ar(f2— 10)
In other words there is always a threshold after which, if fiscal stringency is
increased even more, the realisation of a cooperative equilibrium will be very
unlikely. Note that in case r < %, irrespective of the other parameter values,
always v < 0 holds. So, if 3p < 1 — vy, the realisation of a cooperative
equilibrium between both countries will probably not occur.
Next, we analyze the impact of fiscal stringency conditions on the closed-loop
dynamics of the system under both scenarios. In table 3 we show the impact
of x on the closed-loop dynamics of the model under the assumption that
r < 1. Details of the calculations are given in Appendix IV.

Table 3
X Non-Cooperative | Cooperative
0 A=30 A=10
: increasing increasing/(decreasing)
large | A = —ay, A= —Qye

Here ay. := ¢9 — %9.

The table should be interpreted as follows. If x increases, the correspond-
ing A for the non-cooperative case increases (monotonically) from %9 to
—aye. For the cooperative case two different situations can occur depend-
ing, again, on the sign of a certain parameter o. The value of this parameter
is 0 := —bd1 (1 + w)? + 2aa,.(rw? — 2w +7). If ¢ > 0, A will increase (mono-
tonically) in the cooperative case too. In case o < 0, A will first increase
towards its maximum value (larger than —a,.) and then decrease to —ayc.
We illustrated the situation in figure 3.

12
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JFrom table 3 and figure 3 we see that the adjustment speed of s towards its
long-term equilibrium grows in case fiscal deficits are taken more seriously,
at least in the non-cooperative case. In the cooperative case it may happen
that this phenomenon also occurs and that this convergence speed will even
be larger than that in the non-cooperative case. In that case there exists,
however, a threshold after which this convergence speed does not increase
anymore (though it remains above that of the non-cooperative case). In case
fiscal deficits are taken strongly into account, implying that x is large, the
impact on the convergence speed of s towards zero is almost the same in both
scenario’s. Note that this is also the case if in both scenario’s fiscal deficits
are (almost) neglected.

3.4 Consequences of a European federal transfer sys-
tem

It is well-known (see e.g. Weber [12], Bayoumi and Eichengreen [1], Bayoumi
and Prassad [2] and Christodoulakis et al. [3]) that asymmetric macroeco-
nomic shocks are fairly important in most countries of the European Union.
Furthermore, Decressin et al. show in [4] that labour mobility is consider-
ably smaller in the EU than in the US. Therefore, a system of fiscal transfers
(EFTS) that aims at stabilising aymmetric shocks in the EMU has been
advocated by van der Ploeg [10] and has been elaborated further by e.g.
Italianer et al. [6] and von Hagen [11].

In this section we will include such an automatic stabilization rule into our
model and analyse its consequences.

13



To that end we define net government expenditures as follows
= f—=z
g* = f* - %
where z := €(y—y*) is the net transfer from one country to the other country.
The output equations (1), (2) then become
y(t) = 6s(t) —yr(t) + py(t) +ng(t)
y'(t) = —os(t) —yr(t) + py(t) +ng"(t)

After some elementary calculations we have that this model can be rewritten
into the previous framework, with the following redefinition of parameters !:

nX
4= X2
b= XXf—Z
o1 = XZZZ
b2 = );+§Z’

X :=1—v+neand Z := p+ ne.

Using these parameter redefinitions all results obtained in the previous sec-
tions can be applied now. In particular, if we recalculate the eigenvalue A for
the cooperative case we obtain the following result:

Table 4
X | old model | model with EFTS
0 110 17
26¢ 1 26¢ 1
0 1-—~&+4p + 50 1—~y&+p+2ne + 56

Lwe like to thank Maurice Peek for elaborating all details here
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. From this table we see that the ultimate adjustment speed of the closed-loop
dynamics towards its long-term equilibrium decreases in the EF'TS model.
Due to the automatic transfer, output of both countries (that is deviations
w.r.t. their long-term discounted equilibrium) is more close to eachother.
So, less fiscal deficits are needed to minimize additional output deviations.
Convergence of the output price differential, s(), is not modeled as an ex-
plicit objective of the players. As a consequence this variable converges less
fast to zero. This is, obviously, a less desirable property since it implies
that unanticipated shocks will have a more serious short-term impact on the
model. An interesting subject, which we will not elaborate here, is whether
the welfare cost will change in this EFTS model compared to the previous
model.

4 Numerical Simulations with the Model

A numerical example is very useful to illustrate the main aspects of the analy-
sis in the preceeding section. For the model parameters we take the following
values

Table 5

Model Parameters
6=03 (=1 0 =0.15
vy=04 (=025 w=1
p=04 a=2 i =
n=1 p=5 s(0)
k=1 X =2,5

l o

0.05

Figure 4 graphs the adjustment dynamics that result in the non-cooperative
(solid line) and cooperative case (dotted line).

Compared with uncoordinated fiscal policies, fiscal policy coordination leads
to less expansionary fiscal policies in country 1 (panel (a)) and to more ex-
pansionary fiscal policies in country 2 (panel (b)). This implies a more flat
output profile in both countries under fiscal coordination (panel (b) and (d)).

15



Under fiscal policy coordination, adjustment of intra-EU competitiveness
(panel (e)) is faster under non-cooperative than under cooperative fiscal poli-
cies.

A stricter interpretation of the Maastricht restrictions on fiscal deficits re-
duces fiscal activism in the recession, leading to a longer and therefore more
costly adjustment process. To analyse the effects of a higher degree of fiscal
stringency on fiscal policies and macroeconomic adjustment in the EMU, we
compare outcomes in two cases: (i) x = 0 (solid line) and (ii) x = 5 (dotted
line). Figures 6 and 7 compare both cases in the non-cooperative and coop-
erative case, respectively.

[Insert Figures 6 and 7]

A higher degree of fiscal stringency reduces fiscal policy activism (panel (a)
and (c)) in both countries both under non-cooperative and cooperative fiscal
policy design implying larger short-run output fluctuations (panel (b) and
(c)). The adjustment speed of the system dynamics increases when the de-
gree of fiscal stringency is increased. In our example, the effects from fiscal
stringency are stronger in the case of policy coordination, entailing larger
welfare losses. This seems to hint at a more general problem: the introduc-
tion of restrictions on fiscal policy design is likely to be more inefficient and
therefore costly in the case where unrestricted fiscal policy is designed in a
more efficient manner as it is under coordination.

In the case of fiscal policy coordination, the weighting parameter w - that
can also be interpreted as the relative bargaining strength of country 2 in
the cooperative decision making process - plays an important role as it deter-
mines how much weight is attributed to the preferences of both countries in
policy design. In Figure 8 the effect of reducing w from 1 (solid lines) to 0.5
(dashed lines) is displayed. Note that we have assumed again that xy = 2.5.

[Insert Figure §]
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With fiscal policies being more oriented to the objectives of country 1 we
see less policy activism in country 1 (panel (a)). This in particular has a
negative effect on output volatility in country 2 (panel (d)). The adjustment
speed of the state variable s(t) is slightly higher when w is reduced to 0.5.

5 Conclusions

This paper has analyzed the design of fiscal policies under EMU. Under EMU,
countries loose monetary and exchange rate policies as macroeconomic stabil-
isation tools. Therefore, the entire burden of stabilisation is shifted to fiscal
policy adjustment. Non-cooperative and cooperative optimal fiscal policies
were considered in a two country model with sluggish output and price ad-
justment in the short run. It was shown how fiscal stabilization policies were
directed at stabilisation of the business cycle fluctuations. In addition, the
effects of a set of externally imposed constraints on fiscal flexibility, such as
those involved in the Stability Pact, have been studied. The fiscal stringency
criteria reduce the degree of fiscal policy activism and by that the degree of
effective stabilisation of output and prices in the EMU. In that perspective,
these constraints are causing suboptimal macroeconomic policies.
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6 Appendix

I. The noncooperative case

i From our model the next values for the matrices follow:

_1 _ 2
A:[¢2026 _%0];31:[ (?1];32:[%1]§Q1:M[_bbc SC]Q

Cc

ab

P1=M[_ c}; Ly =7rP;; Ry = pa® + x; Ny =rpa®; Ry = r’pa®

b b —ab 1
and szﬁb[bc CSL PQZrM[ GCL L2:;P2; Ris = r’pa®; Ny = rpa®; Rop = pa® +

Assuming that the matrix

G l Ry N 1 _ l,an—FX rua’
' NI Ry rpa®  pa® +x
is invertible we recall from Engwerda et al [5] the following result. Consider
the case that we restrict ourselves to consider only control functions which
yield finite cost and which, moreover, permit a feedback synthesis. Then, if
both (A, By) and (A, Bs) are stabilizable and Q); is positive definite w.r.t. the
controllability subspace < A, B; >, the infinite-planning horizon two-player
linear quadratic differential game has for every initial state an open-loop Nash
equilibrium strategy if and only if there exist K; and K5 that are solutions of
the algebraic Riccati equations (see below) (ARE) satisfying the additional
Pl'+ BI K; )
LT + BI'K,
are all situated in the left half complex plane. In that case, the strategy

wi(t)\ 1 PP+ BI'K
( us(t) ) =-G ( LY + B'K, (t, 0)o,

constraint that the eigenvalues of A, (= A — (BlBg)G*1 (

where ®(t,0) satisfies the transition equation ®(t,0) = A,®(t,0); ®(0,0) =
1, is an open-loop Nash equilibrium strategy. Furthermore the corresponding
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cost are zl Mz, where M; is the unique positive semi-definite solution of

the Lyapunov equation

I
o ( Pl +BTK
AGM+M;Ag+(I -G ! ( I+ B K. >)F;- (G P!+ BTK, yro | =0
2 LY + BI'K,

The with this problem associated set of algebraic Riccati equations, (ARE),

are:

() = ) (R m)e (4 s (%)
+ ( 2 ) (—A+ (B1B)G ( JL%; >) +
( e ) ((BiBy)G ! ( By By )) ( s > "
((rw)e(i)-(8)) 2
To calculate (both theoretically and numerically) the optimal policies in the

open-loop Nash equilibrium we use the Hamiltonian approach.
In Engwerda et al [5] the next algorithm is provided to calculate all equilibria

for this infinite planning horizon game.

Algorithm 1:

e Step 1: Calculate the Hamiltonian matrix M :=
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e Step 2: Calculate the spectrum of matrix M. If the number of positive
eigenvalues (counted with algebraic multiplicities) is less than n, goto
Step 5.

e Step 3: Calculate all 2-dimensional M invariant subspaces K for which
Re(A) > 0 for all A € o(M]|x). Calculate 3 2x2 matrices X, Y and
X
Z such that Im | Y | = K. Consider only those I for which X is
Z
invertible. If this set is empty, goto Step 5.

e Step 4: Let K be an arbitrary element of the set determined in Step 3.

o 1 . 1 ui(t) -l PI'+ BT K,
Denote Ky :=Y X tand Ky := ZX . ( u§(t)> = -G ( [T+ BIK, (t, |

loop Nash equilibrium strategy. T he spectrum of the corresponding closed—

T pT
loop matriz A—(By By)G ™t ( ?T i g%plf? ) equals o(—M |k). I f the set determin
2 2 £2

e Step 5: End of algorithm.

Denoting (1 — 7)ua® + x by oa, (1 + r)ua® + x by oz and ¢» — 10 by ay.
elementary calculations yield

2ab 2 2 -
1
0 19 0 0 0 0
2,2
HbQX _ pbex + pabor ((1—r?)a?pu+x) 0 _ rupabdix 0
M = ai «a (uc a1z alas
- _ pbex pe?x _ pacgr((1—r?)a?p+x) _1p rpachi x 0
o Qg aiag 2 aes
pb>x pbex _ rpabpix 0 a,. + pabgy (1—r?)a?u+x) 0
aq a9 o uc ala
pbex pe?x _ rpachix 0 pac (1-r?)a?ptx) _1p
[e%) [eD) Qa2 a9 27

The eié;envalues of this matrix are: {—%9, —%9, %H,p = —%9+¢2 - %((1 +
T)X + (]' - 7"2)CL2,LL), Al; AQ}? where

_ 40&3

p-d @)

2 (05} (651

1 —(1+7r)uab —(1+r)uab
Mg = Lz ¢1i\/( (1+ r)pabn
in which ag := —{(au.03 + 2uabpra ) (ayue + a%,uabgzﬁl(l — 7)) + 207 ub*x }.
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Note that the square root term always exists as a real number, since this
term can be rewritten as the sum of two positive numbers:

%({(—3 - r)abgy — (1 — r)pa® + )} + Sux?e?)

It is easily verified that the first two entries of the eigenvector corresponding
to the eigenvalue p are zero. Moreover, the first entry of the eigenvector
corresponding to the eigenvalue %9 is always zero as is the second entry of
the eigenvector corresponding to \;, ¢ = 1,2. From this immediately follows
that the model has at most 2 different equilibria. Moreover, by calculating
the exact structure of the eigenvalues corresponding to the eigenvalues %9 and
i, and using the above computational algorithm the closed-loop structure
can be determined, as summarized in (16).

Some elementary rewriting shows that ag can be rewritten as

un?0(0k + 26¢)
k—p

1 (6751 2
_Zm{(45§ +0(k+p)"x+

}.

It is now easily verified that if £ > p the parameters a and «; are positive
and a3 is, consequently, negative. So, M has exactly 2 positive eigenval-
ues. In case k < p, then @ < 0. So there will be exactly one equilib-
2
rium if either a; < 0 and (46¢ + 0(k + p))*x < % or &y > 0 and
2
(46€ + O(k + p))>x > L0020 - Denoting (46€ + 0(k + p))*x by y1 and

p—k
Ln*0(0k+26¢) by e, it is moreover easily verified that there exists no equilib-

p—k
rium in case a; < 0 and y; > ¥o, and that there are two equilibria in case
. . . . 2
a; > 0 and y; < yo. Using the definition of a; and denoting (pf]fc()‘?i(;%fggz f;))Q

2

—k UL by zs we can rewrite these conditions in terms of

by z1 and pT,u (kz_pz
inequalities that should be satisfied by the design parameter x. That is, there
is one equilibrium if either x < min(xy,x9) or x > max(z,x2); there is no
equilibrium if z; < x < x3; and there are 2 equilibria if o < y < ;. We

summarized these results in table 2. O

II. The cooperative case
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i From our model the next values for the matrices follow:

—1p -
A:{¢202 _0%6};B::[B1B2]:{ gjl qél];and

(1 + w)ub? (w—1)ube (1 —wr)uab (r —w)uab
(—14+w)ube (1 + w)pc? (—1 — wr)uac (—r — w)pac
(1—wrjpab (=1 —wr)pac (14+wrua* +x  r(1+ w)uad?

(r—w)pab  (—r — w)pac r(1+ w)pa® (r? + w)pa® + wyx

W =

Factorization of W immediately yields then the following parametervalues
for the matrices @), S and R:

_ | Qtwpb®  (w—1ube |
@= { (—1+w)pbe (1+w)uc® } ’

14+ wrHua® +x (1l +w)pad?
r(1 + w)pa? (r? + w)pa® + wy

(1 —wr)uab  (r —w)pab

o= [ (-1~ wrpac (~r - w)pac ] e [

Note that in our case matrix R is invertible. Furthermore, (A, B) is stabiliz-
able and (@, A) is detectable.

¢From Lancaster and Rodman ([7], chapter 16) we recall that the optimal
policies that result, equal,

ui(t) -1 T T
[ug(t)}:—R [ ST+ BTK ] x(t) (23)

where K is the unique positive semi-definite solution of the algebraic Riccati
equation

KBR'B"K - K(A—- BR'S") -~ (A- BR'S")"K — (Q — SR™'S™) = 0.
(24)

The corresponding minimal cost are z§ K zy.

To calculate the optimal policy for the cooperative game one can proceed now

similarly as in algorithm 1 of Appendix I (see e.g. Lancaster and Rodman (

[7], chapter 7). The only differences are that M must be replaced by

—(A— BR'S")  BR'BT

H = Q—SR_IST (A_BR—lsT)T )
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step 3 yields a unique solution; and that K := Y X! is obtained similarly

. N . X
as in step 4 by considering the decomposition I'm ( v | = K.
Substitution of the above mentioned parameter values into H yields after

some tedious manipulations, the following eigenvalues for this Hamiltonian:
{%9, —%9, +A}, where:

= - ap)w —rHaa
A= Aw(x + pa2(1 —12))2 +r2uax(1 + w)g){( ) w{2(1 )y
+4(1 + 7)bd1 }2 + px{—2(1 + w?)aau(2(1 — r*)aa,. + 4(1 + r)b¢aJ)

+(1 + w)*(2aaye + 2b¢1)*} + dwx?a, }.

By calculating the eigenvectors corresponding to the eigenvalues %9 and A\,
and using algorithm 1 the closed-loop structure (19) results. O

III. A detailed study of the parameter v

By definition v = vjv5 — sy + v3v4 4+ 2v513. This can be rewritten as

v = (1 +2u)vs+ (13 — )y
= 4[2au(1 — r*)aay. + dap(l + 7)bpy + 2xau)* uxria® —
161X (b1 — raaye)*(x + pa’(1 - r?))*
= 16ux{a*r*[auc(x + pa®(1 = 1%)) + 2apbei(1 + r)}* —
(b1 — raaue)*(x + pa®(1 —r%))*}

= —16pxb¢1 (x + a*p(1 +1)*)[(2arau. — bdr)(a’p(r? — 1) = x) — 2a°bdrpur(r + 1)]

The last equality can be verified, e.g., by straightforward expansion of both
sides of the equation and then comparing terms.

Since 16uxb1(x + a’u(1 + r)?) > 0, the conclusions concerning the sign of
v follow directly.

IV. Sensitivity analysis of the closed-loop eigenvalues w.r.t. y
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By substituting x = 0 and y = oo into the X's one obtains the figures as
mentioned in table 3.

To analyse the intermediate behaviour we consider the derivative of both
Ns w.r.t. x. First consider the non-cooperative case under the assumption
that 7 < 1. Then the appropriate \ is A = ﬁ{—cl + 4/ — 4as}, where

¢1 = (1 + r)uabp; (see 22). For analysis purposes we rewrite oy as q; + x
and ag as —joq(pix + p2) (with ¢1 == (1 — r)ua®, p1 = —45€(+,f+<’;)+2p>>2 and
gk
Next, we rewrite A\ as
N = 1 —4asg
2001 ¢ + \/m
1 pix+p

2¢)+ /- das

So,
A\ 1(er + /= dag) — \/— (prou + pix + p2)(prx + p2)
ax (O T o)
p1C1\/m + pr(c} — dag) — %(]%0&1 + pix + p2)(pix + p2)
V& = las(ci + /& — das)
pici(y/d —das+ ) — %(plx + p2)* + %p1041(p1X + p2)
m 61 + /A —dag)
prei(y/ — 4oz + 1) + $(pax + p2)(proa — pix — pa)
\/—740@ 01 + /T —as)
pic( \/TO&?, + 1) p1X + p2)(p1qs — p2)
¢:t2@¢y+¢:t2@”

JFrom this it is clear that > 0 if we can show that p;g; — po > 0. Substi-

tution of the modelparameters into this expression (see table 6) yields (note

that by assumption r < 1, i.e. k> p)

466+ 0(k+p)*k—p  (kn)*  pdn*(Ok + 26€)
k+oP kW= (k+pPk—p)
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k 2
k 22

Next, we show that this last expression is always positive. Thereto we first

note that since k£ > p, we have 2k > k + p. Therefore, %—%8659 — 26&0 >

%8559 — 26€0 > 0. Using this inequality, the claim is obvious now. Which
proves the positiveness of % for the non-cooperative case.

Next, we consider the cooperative case. Some elementary analysis shows that
in that case the corresponding A (see 25) can be rewritten as

\ = d1X2 + de + dg
d4X2 + d5X + d6’

where d;, © =1, ..,6 are pointed out in table 6.
Differentiation w.r.t. y yields:

dA . 1 €1X2 + 262)( + €3
dx 2\ (dax? + dsx + dg)*’
where ¢;, i = 1,2, 3 are simple expressions in d; (see either table 6 or below).

To analyze this derivative we first consider the sign of the parameters e; and
e3. By definition we have that

ey = didg — dyds
64a2u2w26¢1(1 + T)Q(—b¢1 + aay(r — 1))

Furthermore, by first substituting the appropriate modelparameters into d;
and next comparing terms on both sides of equality signs we obtain

es = dodg — dsds
= 16wa*bey i’ (r + 1)°[bp1 (1 + 2rw + w?) — 3be (rw?® + 2w + 1) +
20au.(r — 1)(rw? + 7 + 2w)]
= 16wa*bg i (r + 1)3[bgp1 (1 — r)(1 + w)* + 2(atue(r — 1) — by ) (rw? + 7 + 2w)].

. From the above expressions we see that both e; and es are positive if we can
show that (aa,.(r — 1) — bg1) > 0. Using the definition of these parameters
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1
it is easily verified that (aau.(r — 1) — bgp1) = ;TGZ, from which the above
inequality follows. So, both e; > 0 and e3 > 0.

Finally, we consider e;. Some elementary rewriting shows:

€T = d1d5 — d2d4
= 16wpbpy(—bd1 (1 + w)* + 2aaye(rw* — 2w + 1))

So, denoting —bg1 (1 + w)? + 2aayc(rw? — 2w + r) by o, we have that e; =
16wpbpyo.

Note that the sign of the derivative is completely determined by the sign of
e1x? +2eyx +e3. Using the above derived information concerning the signs of
e;, i =1,2,3 it is clear that if ¢ > 0, % > 0 for all ¥ > 0, and that if ¢ < 0,
d—; will be positive for small x and becomes negative if x is large. From this
the conclusions w.r.t. the behaviour of A as a function of y summarized in

table 3 and figure 3, respectively, are obvious then. O
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V. Table 6: List of parameters

name | value

Aye ¢2 - %9

ay | (L+7)pa®+x

ag | —((aucai + 2uabpran) (aye + 5-pabgi (1 — 1)) +2¢7ub*x)
5
b p
c i
k—p
dy dwa?,

dy p{=2(1 + w)aau.(2(1 — r*)aay + 4(1 + r)bd1) + (1 + w)?(2aa,. + 2bg;)?}
ds (ap)*w{2(1 — r?)aau. + 4(1 + r)bep; }

d4 4w

ds S8wpa*(1 — r?) + 4r?pa*(1 + w)?

dg dwptat(1 —r?)?

€1 d1d5 — d2d4

(] d1d6 — d4d3

€3 d2d6 - d3d5

k 1=~

0 ag? + 3

g (ap)*{2(1 = r*)aaye + 4(1 4 1r)bg1 }? + dx*az,
Vs px (20, + 2061 )?

V3 201X, (2(1 — 12)aay. + 4(1 + r)béy)

v | A(x + pa®(1 —1?))?

s dpxr?a?

v Vs — Uoly + 3y + 2Us13
(46¢+0(k+p))?
P (k-+p)>
ubn? (0k+26€)
P2 (h+0)?(h=p)
b1 £
k+p
¢ —26
2 k+p )
i (1=7)pa
P4

—b1 (1 + w)? + 2aay.(rw?* — 2w + 1)
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