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Abstract

In a common agency game a set of principals promises monetary trans-
fers to an agent which depend on the action he will take. The agent then
chooses the action, and is paid the corresponding transfers. Principals an-
nounce their transfers simultaneously. This game has many equilibria; Bern-
heim and Whinston ([1]) prove that the action chosen in the coalition-proof
equilibrium is e±cient. The coalition-proof equilibria have an alternative
characterization as truthful equilibria. The other equilibria may be ine±-
cient.

Here we study the sequential formulation of the common agency game:
principals announce their transfers sequentially. We prove that the set of
equilibria is di®erent in many important ways. The outcome is e±cient
in all the equilibria. The truthful equilibria still exist, but are no longer
coalition-proof. Focal equilibria are now a di®erent type of equilibria, that
we call thrifty. In thrifty equilibria of the sequential games, principals are
better o® (and the agent worse o®) than in the truthful equilibria of the
simultaneous common agency.

These results suggest that the sequential game is more desirable institu-
tion, because it does not have ine±cient equilibrium outcomes; but it is less
likely to emerge when agents have the power to design the institution.

Keywords: Common Agency, Sequential Games, Principal Agent Games,
Political In°uence.
JEL Classi¯cation numbers: C72, C78.

¤We thank Eric van Damme, Jean-Fran»cois Mertens, G¶erard Roland for extremely useful
conversations.
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1 Introduction

In a common agency game there are several principals and one agent. The agent
must choose one action. Each principal has preferences over the set of possible
actions and tries to in°uence the agent by o®ering monetary contributions condi-
tional on the action chosen. A principal can make o®ers on more than one action
and she will only have to pay for the action that the agent chooses. The agent has
preferences over the set of possible actions, but also derives utility from the total
amount of monetary contributions he receives. After observing the contributions
o®ered by the principals, the agent chooses the action that maximizes his expected
utility.
The model of common agency has many applications (see Bernheim and Whin-

ston ([1] for a discussion). It is of particular interest in the study of pressure
group politics (See for instance Grossman and Helpman ([6], [7] ). The agent is a
politician who must make a decision over a particular issue. The principals are the
various lobbies who are a®ected by the decision. Each lobby represents a subset of
voters with preferences over the issue at stake. Lobbies may o®er monetary contri-
butions to the politician conditional on the decision made. The contributions are
bene¯cial to the politician either because he keeps them for personal use or - as is
the case in the US and in other democracies - because he can use them to ¯nance
his campaign expenditures.
Bernheim and Whinston [1] analyze the common agency game under the as-

sumption that all lobbies choose their contributions simultaneously. In general this
game has multiple equilibria. However, Bernheim and Whinston prove the strik-
ing result that in coalition-proof equilibria the agent chooses an e±cient action,
that is an action which maximizes a weighted sum of the utilities of principals and
agent (gross of monetary transfers). Moreover, principals can restrict without loss
their attention to a particular contribution schedule, which Bernheim and Whin-
ston call truthful. If all principals use truthful contribution schedules, the resulting
equilibrium is coalition-proof.
Bernheim and Whinston's results are valid under the assumption that princi-

pals make their o®ers simultaneously and secretly. However, this assumption may
not correspond to the practice of lobbying in the USA. According to a survey con-
ducted by Schlozman and Tierney ([12]) on a sample of interest groups active in
Washington, the most widely used lobbying technique is testifying at congressional
hearings. Often legislators ask interest group representatives to provide their views
on a particular bill under consideration. This is a highly structured process which
is both public and sequential. Interest groups provide technical expertise, but also
what Schlozman and Tierney call \political intelligence," that is, information about
how various alternatives will a®ect the members of that particular interest group.
Congressional hearings give lobbyists the opportunity to make implicit promises
of contributions. Suppose an interest group has a reputation for rewarding sym-
pathetic politicians in a generous way. Then, by stating its preferences over the
proposed alternatives, the group signals its willingness to reward the politician for
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each of the alternatives. The fact that the implicit promise is made in a public
and focal way adds credibility. If the same promise were made in secret, the group
could renege without hurting its reputation.
With this motivation in mind, we turn our attention to the common agency

game played in a sequential manner. In a pre-speci¯ed order, principals make o®ers
to the agent. Each o®er is public, so that the principals who have not yet made
their o®er can condition their strategy on the o®ers already made. After every
principal has signaled her intentions, the agent makes his choice.
How do the results in the sequential game di®er from those in the simultaneous

game? We ¯nd that the e±ciency property of common agency is strengthened in
the sequential game: for any given ordering of principals, in all subgame-perfect
equilibria the agent chooses an e±cient action. Thus, in the sequential version the
e±ciency result does not depend on the use of equilibrium re¯nements. Since the
choice of a re¯nement is always controversial, the sequential game seems preferable
from the normative point of view.
Next, we characterize the equilibrium transfers and we ¯nd that SPE can in

general be supported by several transfer pro¯les. There always exists a SPE trans-
fer pro¯le which corresponds to one of the truthful equilibria of the simultaneous
game. There also exists another SPE transfer pro¯le, which we call thrifty, in
which the total amount of transfers on the equilibrium action is lower than in the
truthful case. We show that if there exists a coalition-proof equilibrium, it must
entail thrifty transfers. Hence, the connection between truthfulness and coalition-
proofness does not carry over to the sequential case.
Finally we note that the agent may get more than his reservation value, even in

the case in which he is indi®erent among the actions. It is su±cient that principals
have a divergence of interests, that is they do not all prefer the same action to all
the other actions. In this case the attempt of a principal to implement his preferred
action produces a positive transfer at equilibrium to the agent.
It may be useful to compare the equilibria of the common agency game, as we

move from simultaneous to sequential setup, with the equilibria in the Cournot
duopoly, when we move from the simultaneous move to the Stackelberg. It is well
known that (i) in the Stackelberg oligopoly the ¯rst mover has a higher payo®,
but (ii) the sum of payo®s of the two ¯rms may decrease, (iii) the welfare of the
consumer increases, and ¯nally (iv) the total welfare increases.
The fact that the competition is in quantities rather than in prices is very

important: this issue, and the comparison of Bertrand and Cournot models, are
thoroughly discussed by van Damme and Hurkens in a sequence of papers ([8], [9],
[10]). Let us take these four points in detail.
The last point is similar in common agency and oligopoly: although it is not

true in general that the move to sequential games improves e±ciency. As one
moves from a simultaneous-move game to its sequential version, the set of equilibria
can be radically modi¯ed. However, it is not possible to say in general how the
equilibrium outcome and payo®s change. For instance, consider the simple game
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with two players:
L C R

T 3; 3 0; 0 0; 0
M 0; 0 4; 1 0; 0
B 0; 0 0; 0 1; 4

(1.1)

The simultaneous version of the game has three pure-strategy Nash equilibria. The
outcome which maximizes the players' joint payo® is MC and it corresponds to
one of the three equilibria. In the sequential version of the game, if the row player
goes ¯rst, the equilibrium is TL, while if the column player goes ¯rst, it is BR.
Thus, in this particular game, passing from simultaneous to sequential: (i) bene¯ts
the ¯rst-mover; (ii) hurts the second-mover; (iii) reduces the total payo®. As we
shall see, the conclusions of this simple game tend to be reversed in the common
agency game.
But, roughly, the opposite holds on all the other three counts in common agency.

The ¯rst principal does not necessarily do better (for instance, if the agent has no
preferences among actions, then the last mover pays zero in the thrifty equilibrium).
The sum of the net payo®s of the principals increases as we pass from the truthful
equilibrium in the simultaneous common agency to the thrifty in the sequential.
And the agent does worse in the simultaneous common agency.
The plan of the work is as follows. The next two subsections use a simple exam-

ple to provide intuition on the di®erences between simultaneous common agency
and sequential common agency. Section 2 states the problem of sequential common
agency. Section 3 characterizes the set of subgame-perfect equilibria. Section 4
de¯nes and studies the thrifty equilibrium. Section 5 focuses on the truthful equi-
librium of the sequential game and on its relation with the truthful equilibria of the
simultaneous game. Section 6 applies two game-theoretical re¯nements, namely,
trembling-hand perfection and coalition-proofness. Section 7 concludes.

A simple example

Bernheim and Whinston (1986) introduce their discussion of the common agency
game with a simple problem, which we also take as our starting point. In the
game there are two principals and one agent. The agent can choose one out of four
di®erent actions; the payo®s of the principals are monetary, and are determined
by the action chosen by the agent. The payo® to the agent only depends on the
transfers of the principals, and he is otherwise indi®erent among the actions. The
two principals can promise non-negative monetary transfers to the agent, one for
each action. The payment of these transfers will be made only for the action that
is chosen by the agent.
The payo® of the principal i when action s is chosen is written as Gis, and are

as follows:
G1 = (8; 0; 6; 5); G2 = (0; 7; 6; 5): (1.2)

The two principals move simultaneously, announce their transfers, then the agent
observes the transfers and chooses the action.
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This game has a large set of equilibria. To organize their description we can
classify them in three types.
In the ¯rst type, each agent bids on his most favorite action, that is the ¯rst

and the second action respectively for the ¯rst and second principal. The second
principal is willing to bid at most 7 for the second action, so the ¯rst principal
gets his favorite action by bidding the same amount. If we denote the transfer of
principal i for action s by tis, then the equilibrium is:

t1 = (7; 0; 0; 0); t2 = (0; 7; 0; 0);

and the agent chooses the ¯rst action if indi®erent.
In the second type of equilibrium, the principals try to coordinate on a better

action, but choose the "wrong" action, namely the fourth. One of these equilibria
is, for example:

t1 = (6; 0; 0; 3); t2 = (0; 6; 0; 3);

Here the agent chooses the ¯rst action if indi®erent. Note that neither of the two
principals can unilaterally move to the better action (the third), because of the 6
o®ered by the other principal on his favorite action.
Finally, in the third type of equilibria, the action chosen at equilibrium is the

third action, which gives the highest total payo®. A particularly interesting case
of equilibrium is the following. The transfers are:

t1 = (3; 0; 1; 0); t2 = (0; 3; 2; 1):

The agent chooses the third action if indi®erent. In this equilibrium the di®erence
between the payo® from an action and the transfer for that action is the same
for each principal, when the transfer is positive. When the transfer is zero, the
di®erence must be smaller. Bernheim and Whinston call any equilibrium with this
property truthful. One of their main, striking results is that this equilibrium is also
robust to coalitional, self-enforcing, deviations of the principals: there is no other
equilibrium that gives a higher payo® to both.
The same, e±cient, outcome is achieved in this other equilibrium, e±cient

but expensive, where principals coordinate on the good action, but still bid one's
favorite action:

t1 = (7; 0; 5; 0); t2 = (0; 7; 2; 0):

Here each of the two principals is forcing the other to counter with a high transfer
for the third action the existing bid on the other's favorite action.
These are not the only equilibria. Bernheim and Whinston describe six of them

in their discussion. Of these equilibria, the ones giving the fourth action as outcome
seem arti¯cial. The two principals fail to coordinate on the third action, which is
similar in many respects, and gives a higher payo® to both. It is harder to say that
also the equilibrium yielding the ¯rst action is arti¯cial.
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A sequential game

Consider the common game discussed in the previous section (with the same play-
ers, and same payo®s) but assume that principals move sequentially: the principal
1 moves ¯rst, and announces his transfers; then the principal 2 does the same, and
¯nally the agent chooses his actions. We prove later (see theorem 3.4) that the
only equilibrium outcome action is the e±cient action, in this example the third
one.
If we use this information, the equilibrium transfers are easy to ¯nd. We look

for an equilibrium where the ¯rst mover is trying to implement the third action.
The result we have mentioned insures that no equilibrium is lost when we add this
constraint.
Now we can use backward induction, looking ahead and considering the best

response of the second mover. For any vector of transfers of the ¯rst principal,
the second may induce the agent to choose any action s he wants, by paying the
di®erence between the maximum amount o®ered by the other principal on any
action, and the amount o®ered for s. So he has to make the third, e±cient, action
more appealing than the second action. The di®erence in payo® between these
two actions for the second principal is 1, so the ¯rst principal must o®er a transfer
on the third action at least equal to the transfer on the second, plus 1. The least
expensive way for him to do this is to set t13 = 1; t

1
2 = 0 on these two actions.

He has now to decide the transfers on the other actions. Here, any transfer with
0 � t11 � 6 and 0 � t14 � 2 will still induce the second principal to implement the
e±cient action. So these transfers are just di®erent ways of supporting the same
outcome, and they give the same payo® to the ¯rst principal. They do change,
however, the amount that principals pay at equilibrium to the agent, as it was
happening in the e±cient but expensive equilibrium. For instance, by o®ering 6 on
the ¯rst action (his favorite) the ¯rst principal is forcing the second to counteract
with a transfer of 5 on the third action.
In particular the equilibrium with the transfer t1 = (0; 0; 1; 0) is robust to

coalitional, self-enforcing deviations. As we discuss later in more detail, (see section
(6.2) in this game all equilibria are Pareto-undominated if we say that a payo®
vector Pareto-dominates another one when all the players are strictly better o®.
But if we simply require it to give a higher payo® to both, and strictly larger to at
least one, then this is the only equilibrium which is robust to coalitional deviations.
Since this equilibrium gives the highest aggregate payo® to the principals, and the
gross payo® in the same in all equilibria, this is also the equilibrium that gives the
minimum payo® to the agent.
We can now spend a few words on the intuition for the result that the e±cient

action is the only chosen action.
Consider for simplicity the case of two principals. The general case is slightly

more complicated, but is based on the iteration of the argument for this simple
case. It is easy to see that the problem the principal who moves ¯rst is equivalent
to the following problem. Choose the action that maximizes his payo®, net of the
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transfer on that action, and subject to the constraint that this action is in fact
going to be chosen in the subgame that begins after this transfer. This is similar
to a reduction which is typical in agency problems: the problem of the principal
can be reformulated as the problem of choosing the compensation as well as the
action of the agent, provided the choice is the best choice of the agent given that
compensation.
In the new, equivalent, problem the principal is choosing the action with the

highest payo® to him, minus the minimum cost to implement that action. How
does the payo® of the other principal enter into this cost? The more the second
principal likes this action, the less the ¯rst principal has to pay to induce him to
implement it. So the payo® of the second principal for the chosen action reduces
the cost of the ¯rst principal, and therefore increases his net payo®. So the ¯rst
principal directly takes into account the payo® of the second principal in his choice
of action. Hence the chosen action is e±cient.
In other words, the sequential setup automatically forces the players to inter-

nalize the externality on the others. A reader who is familiar with the Groves-Clark
mechanisms will recognize that this is the very e®ects that those mechnisms intend
to produce. This e®ect is internalized only because there is an agent which is act-
ing as intermediary. In general, the e®ect of the con°ict among principals might
dominate, as it does in the simple game (1.1) where the ¯rst mover advantage is
there, and in fact dominates, and forces an ine±cient action.

2 The game

There is one agent and a set M = f1; : : : ;mg of principals. The agent has a ¯nite
action set S = fs1; : : : ; sng: Principals can o®er monetary transfers to the agent
conditional on the action he eventually chooses. Their strategy space is the product
Rn+ of the non-negative reals. For each principal, t

j 2 Rn+ denotes the vector of
transfers.
The game has m + 1-stages. In stage 1 principal m announces his transfers

publicly, in stage 2 principal m¡ 1 makes a similar announcement, and so on. So
we may interpret the index j of the principal as "j principals from the last." In
the last stage the agent chooses the action.
Note that we have excluded, by the de¯nition of the strategy space, the pos-

sibility that a principal can make his transfers conditional on the tranfers of the
other principals. This choice has several reasons. One is, of course, simplicity. The
second is that in many applications (like the political in°uence game) this seems
an institution too complex and fragile, and is hardly observed.
The payo® of the agent depends on the action chosen, according to a vectorG0 2

Rn, and on the amount of money received from the principals, and is additively
separable in the two components. So the utility from choosing the action s when
the transfers of the principals are (tj)j2M is

P
j2M t

j
s + G

0
s. The payo® to the

principal j is Gjs ¡ tjs, where t
j
s is the transfer he has promised on the actions s,
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and s is the action chosen by the agent.
A strategy for the principal j is a function ¾j from the vector of transfers an-

nounced by the principals who precede him into his vector of transfers. A strategy
for the agent is a function from the m-tuple of transfers announced by the princi-
pals into actions. Each principal j 2 M has a payo® which depends on the action
of the agent, and described by a vector Gj 2 Rn.
In this paper we do not consider mixed strategies. Equilibria exist in pure

strategies. It may be interesting to note that the common agency game with
multiple agents may not have pure strategy equilibria (see [11]).

3 The equilibrium set

For any k 2 f0; : : : ;mg and any vector of transfers (tk; : : : ; tm), we denote the sub-
game beginning after that vector of transfers has been announced by ¡(tk; : : : ; tm).
A subgame-perfect equilibrium (SPE) of the game induces for any such vector
of transfers an action chosen at equilibrium in that subgame, that we denote
´(tk; : : : ; tm). To lighten the notation we do not make the dependence of the
function ´ on the equilibrium explicit.

The equilibrium action

We begin with a characterizaton of the action chosen at the equilibrium outcome.

Proposition 3.1 For any k and any (tk+1; : : : ; tm), the action sk is a solution of
the problem:

max
sk
(
kX

j=0

Gj
sk
+

mX

j=k+1

tj
sk
) (3.3)

if and only if sk = ´(tk+1; : : : ; tm) for a SPE of the game ¡(tk+1; : : : ; tm).

Proof of proposition (3.1). The basic idea of the proof is the one used in the
solution of a principal agent problem. In the solution of the backwards induction
problem we may think that the principal k is choosing his transfer and the action
of the agent, provided this choice satis¯es the incentive constraint that the chosen
action is an equilibrium in the subgame beginning at (tk; : : : ; tm). We are then
going to use, in an induction argument, that this incentive constraint has the
special form described in the statement of the proposition.
We ¯rst de¯ne the auxiliary problem:

max
(sk;tk)

Gksk ¡ tksk ; (3.4)

subject to sk 2 argmax
k¡1X

j=0

Gjs +
mX

j=k

tjs:
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This is the reformulation of the backwards induction problem, with the incentive
constraint written in the form (3.3). In lemma (3.3) we prove that these two
di®erent ways of writing the incentive constraint are equivalent. To do this, we
¯rst observe that the problem (3.4) can be reformulated as:

max
sk
Gksk ¡ tk(sk)sk (3.5)

where for each action sk the vector tk(sk) is a solution of the cost minimization
problem for the principal k to implement the action k, that is the problem:

min
tk
tksk ; (3.6)

subject to
k¡1X

j=0

Gjsk +
mX

j=k

tjsk ¸
k¡1X

j=0

Gjs +
mX

j=k

tjs; for every s:

The cost minimization problem has a simple solution. In the next lemma, the
vector F replaces the term

Pk¡1
j=0 G

j
s +

Pm
j=k+1 t

j
s:

Lemma 3.2 For any F 2 Rn and any s0 2 S, the solution of:

min
ts0¸0

ts0; subject to: Fs0 + ts0 ¸ max
s2S

fFs + tsg

has value maxs Fs ¡ Fs0 , and solution any t such that

ts 2 [0;max
s
Fs ¡ Fs]; for s 6= s0; ts0 = maxs Fs ¡ Fs0:

Proof of lemma (3.2). Note that the constraint of the problem is satis¯ed if and
only if the constraint: Fs0 + ts0 ¸ maxs2S;s6=s0fFs + tsg is satis¯ed. So an optimal
solution is to set ts = 0 for any s 6= s0; so our problem has the same value as:
mint¸0 ts0; subject to: ts0 ¸ maxs2S Fs ¡Fs0. Now it is easy to check that any t is
the set of the statement is feasible; and that any other vector is not optimal.
Now we show that the two formulations of the incentive constraint are equiva-

lent:

Lemma 3.3 For any k and any (tk+1; : : : ; tm), an action sk is an optimal action
in a solution of (3.4) if and only if it solves (3.3).

Proof of lemma (3.3). Substitute the optimal value in the cost minimization
problem (3.6) determined in lemma (3.2) into the problem (3.5) to conclude that
the optimal action in the problem (3.4) is the solution of

max
sk
(
kX

j=0

Gjsk +
mX

j=k+1

tjsk)¡maxs2S
(
kX

j=0

Gjs +
mX

j=k+1

tjs)):

Since the second term is a constant, the choice of the optimal action in (3.4) is the
solution of (3.3) as claimed.
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Conclusion of the proof of proposition. The proof is by induction. For k = 0,
the proposition simply states that the agent chooses an action maximizing the sum
of his payo® and the total transfers.
Assume now that the statement holds for k ¡ 1; we claim the statement holds

for k. Take any vector of transfers (tk+1; : : : ; tm) of the principals who have moved
before k. Consider the backwards induction problem of k: he chooses his transfer
tk to solve:

max
tk
Gksk ¡ tksk (3.7)

where sk = ´(tk; tk+1; : : : ; tm), that is the action sk is the SPE action outcome in the
game ¡(tk; tk+1; : : : ; tm). If the equilibrium outcome is a probability distribution
on the action set, then (3.7) has to be understood as the expectation of the net
payo® with respect to this distribution. The argument below shows that equilibria
are in pure strategies.
Now we claim that t̂k is the solution of the problem (3.7), if and only if the pair

(ŝk; t̂k) of the equilibrium action and transfer is the solution of the problem (3.3).
The proof is a standard argument in principal-agent problems, that we spell out
for completeness. For the "if" part, proceed by contradiction. If the pair (ŝk; t̂k)
is not a solution of (3.3), then for some pair (s¤; t¤) we have:

Gks¤ ¡ t¤s¤ > Gkŝk ¡ t̂kŝk

and s¤ satis¯es the constraint in (3.3) with tk = t¤. But then for some ² small
enough s¤ is the unique element in argmax

Pk¡1
j=0 G

j
s + (t

¤
s + ²) +

Pm
j=k+1 t

j
s, and

therefore the unique action outcome in the subgame ¡(t¤; tk+1; : : : ; tm).
Since for ² small enough Gks¤ ¡ t¤s¤ ¡ ² > Gkŝk ¡ t̂kŝk , we have contradicted the

assumption that t̂k is the SPE choice of k. The "only if" part is immediate.
The following is an immediate corollary of the proposition, obtained by consid-

ering the k = m case. We assume that the action that solves:

max
s2S

mX

j=0

Gjs (3.8)

is unique, we call it the e±cient action, and we denote it by ŝ. Of course, this
action only depends on the payo®s of the players, and not on the order in which
they move. Then

Theorem 3.4 In any SPE the agent chooses the e±cient action.

Of course the e±cient action is independent of the order of move of the prin-
cipals. So in any of the games that can be obtained by choosing a di®erent order
of moves of the principal, and in any subgame perfect equilibrium, the outcome is
the same, and is the e±cient outcome.
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The equilibrium transfers

In addition the lemma (3.2) gives an explicit expression for the sequence of equi-
librium transfers of the principals. Recall that the the only equilibrium action is
ŝ.

Proposition 3.5 The sequence of equilibrium transfers is any sequence where

i. the transfer of the principal who moves ¯rst is any vector:

tms 2 [0;max
s2S

m¡1X

j=0

Gjs ¡
m¡1X

j=0

Gjs] for s 6= ŝ; (3.9)

tmŝ = max
s2S

m¡1X

j=0

Gjs ¡
m¡1X

j=0

Gjŝ; (3.10)

ii. and for any other principal k:

tks 2 [0;max
s2S

(
k¡1X

j=0

Gjs +
mX

j=k+1

tjs)¡ (
k¡1X

j=0

Gjs +
mX

j=k+1

tjs)]; (3.11)

tkŝ = max
s2S

(
k¡1X

j=0

Gjs +
mX

j=k+1

tjs)¡ (
k¡1X

j=0

Gjŝ +
mX

j=k+1

tjŝ) (3.12)

where tj; j = k + 1; : : :m is any equilibrium transfer for the previous princi-
pals.

Note that for each principal the transfer is uniquely determined for two actions:
the e±cient action and the action where the maximum in (3.11) is achieved. The
game has many equilibria. This is clear from the explicit solution for the transfers,
given in the proposition (3.5). Now we characterize them. We denote:

T k ´
mX

j=k

tj for every k; T ´
mX

j=1

tj; (3.13)

and for convenience we agree that

Tm+1 = 0: (3.14)

Then from (3.12):

tkŝ = maxs (
k¡1X

j=0

Gjs ¡
k¡1X

j=0

Gjŝ + T
k+1
s ¡ T k+1ŝ ): (3.15)

Now we denote:

¢k
s ´

kX

j=0

Gjs ¡
kX

j=0

Gjŝ; (3.16)
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and:
¢k ´ max

s
¢ks = (max

s6=ŝ
¢k
s)
+ = max

s6=ŝ
(¢k

s)
+ ¸ 0: (3.17)

where X+ ´ max(X; 0): Then:

Lemma 3.6 For every k = 1; : : : ;m,

T kŝ = max
j=k¡1;:::;m¡1

(max
s 6=ŝ

(¢js + T
j+2
s )+): (3.18)

Proof. For every k,

T kŝ = T k+1ŝ + tkŝ
= T k+1ŝ +max

s
(¢k¡1

s + T k+1s ¡ T k+1ŝ )

= max
s
(¢k¡1

s + T k+1s )

= max(max
s6=ŝ
(¢k¡1

s + T k+1s ); T k+1ŝ )

= max(max
s6=ŝ
(¢k¡1

s + T k+1s )+; T k+1ŝ ) (3.19)

(where the ¯rst equality is the de¯nition of T k, the second follows from (3.15)
above and the de¯nition of ¢k¡1

s , the third and fourth are clear, the ¯fth follows
from the fact that T k+1ŝ ¸ 0). This de¯nes a relation between T kŝ and T

k+1
ŝ . Note

that from (3.10)
Tmŝ = (max

s6=ŝ
(¢m¡1

s )+)

directly from (3.19) and (3.14). Now an easy induction argument shows that (3.18)
holds. Assume (3.18) for k. Then

T k¡1ŝ = max(max
s6=ŝ
(¢k¡2

s + T ks )
+; T kŝ )

= max(max
s6=ŝ
(¢k¡2

s + T ks )
+; max

j=k¡1;:::;m¡1
(max
s6=ŝ
(¢j

s + T
j+2
s )+))

= max( max
j=k¡2;:::;m¡1

(max
s6=ŝ
(¢j

s + T
j+2
s )+))

= max
j=k¡2;:::;m¡1

(max
s6=ŝ
(¢j

s + T
j+2
s )+); (3.20)

(the ¯rst equality is (3.19) above, the second follows from the induction hypothesis,
and the third and fourth are clear) which proves our claim.

4 Thrifty equilibria

From (3.9) and (3.9) we see that the outcome where

tks = 0; for all k 2 M; and for all s 6= ŝ (4.21)
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is an equilibrium outcome. Take now any subgame ¡(tk+1; : : : ; tm). The equi-
librium outcome action ´(tk+1; : : : ; tm) in that subgame is determined as in propo-
sition (3.1). There are many transfers that implement in equilibrium that action:
but there is always a vector of transfers which is zero on all actions, except the
action ´(tk+1; : : : ; tm). If we make this choice of strategy on any subgame, we have
a complete description of an equilibrium, which we call the thrifty.

Proposition 4.1 For any k = 1; : : : ;m the transfers at the thrifty equilibrium are
such that:

T kŝ = max
j=k¡1;:::;m¡1

¢j ; (4.22)

and
tkŝ = (¢

k ¡ max
j=k;:::;m

(¢j))+ (4.23)

Proof. The ¯rst equality (4.22) follows from setting T j+2s = 0 in (3.18) for
s 6= ŝ, which gives

T kŝ = max
j=k¡1;:::;m¡1

(max
s6=ŝ
(¢j

s)
+):

To prove (4.23),

tkŝ = max
s
(¢k¡1

s + T k+1s ¡ T k+1ŝ )

= max(0;max
s6=ŝ
(¢k¡1

s ¡ T k+1ŝ ))

= (max
s6=ŝ
(¢k¡1

s ¡ T k+1ŝ ))+

= (max
s6=ŝ
(¢k¡1

s )¡ T k+1ŝ )+

= (max
s6=ŝ
(¢k¡1

s )+ ¡ T k+1ŝ )+

= (max
s
¢k¡1
s ¡ T k+1ŝ )+

= (¢k¡1 ¡ T k+1ŝ )+

= (¢k¡1 ¡ max
j=k;:::;m

(¢j))+ (4.24)

where the ¯rst equality follows from (3.15) and the de¯nition of ¢k¡1
s , the

second is clear, the third is notational, the fourth is clear, the ¯fth follows by
considering the di®erent cases, the sixth is (3.17), the seventh is notational, the
last follows from (4.22).
In the thrifty equilibrium, principals only make the transfers that are strictly

necessary. So the aggregate transfers are minimal: the following proposition follows
directly from the lemma (3.6):
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Proposition 4.2 Let (tj)j=0;:::;m be the vector of transfers of any SPE, and t̂j, for
j = 1; : : : ;m the corresponding vector at the thrifty equilibrium. Then for any k:

mX

j=k

tjs ¸
mX

j=k

t̂js for any s:

Consider the transfer t̂js made at the thrifty equilibrium by the principal j for
the e±cient action s. It might be tempting to think that for all other equilibria
the transfer made at equilibrium by that principal is less that t̂js. This is not true.
The reason for this is the following. Take a principal k who has an action giving

a gross payo® to him higher than the e±cient action. Suppose that some other
principal n, moving earlier than him, makes a positive transfer on that action. This
transfer improves the bargaining position of k: he might his favorite action relying
on the transfer of n, so get t. In the resulting equilibrium, his transfers may be
smaller than in the thrifty equilibrium.
This is shown precisely in the next example. Consider the game:

s1 s2 s3
G0s 0 0 5
G1s 8 10 0
G2s 0 10 0
G3s 10 10 0

(4.25)

In the thrifty equilibrium, principals 3 and 2 make zero transfers, and 1 makes
a transfer (0; 5; 0). But there is another equilibrium, where the principal 3, the
¯rst to move, makes a transfer (10; 0; 0). The money o®ered on the ¯rst action
improves the position of the principal 1, who may get a payo® of 8 from the ¯rst
action, unless principal 2 counters the o®er of 3 on the ¯rst action with a transfer
of at least 8 on the third. Now principal 2 has only to o®er the amount 2 needed to
match the 10 in the ¯rst action, and that is the amount he pays at this equilibrium,
where t2 = (0; 8; 0) and t3 = (0; 2; 0).

Simultaneous and sequential common agency

In the next proposition we provide a comparison of the totals transfers in the two
games. Since both games have many equilibria, we focus on the truthful equilibrium
for the simultaneous game (which is also the coalition proof equilibrium) and the
thrifty equilibrium in the sequential game.

Proposition 4.3 The sum of transfers in the truthful equilibrium of the simulta-
neous common agency is larger than the total transfers in the thrifty equilibrium
of the sequential game, for any order of move of the principals.

Proof. Leave for the moment the order of the principals arbitrary. We denote
by t̂ the transfers in the thrifty equilibrium of the sequential game and by ¹t the
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transfers in the truthful equilibrium in the simultaneous game. The action pro¯le
of the agents is the same, and is denoted by ŝ. The total transfers in the thrifty
equilibrium are:

T 1ŝ =
mX

j=1

t̂jŝ = max
k=0;:::;m¡1

¢k; (4.26)

where we recall that

¢k ´ max
s

kX

j=0

Gjs ¡
kX

j=0

Gjŝ: (4.27)

Our claim is that

mX

j=1

¹tjŝ ¸ T 1ŝ for any order of move of the principals: (4.28)

In view of (4.26) and (4.27) proving (4.28) is equivalent to proving that
Pm
j=1
¹tjŝ ¸

maxs
Pk
j=0G

j
s¡

Pk
j=0G

j
ŝ for any k and for any order of move of the principals. If we

use the notation
P
j2J G

j + G0 ´ GJ (note that the sum includes the preferences
of the agent) this is equivalent to:

mX

j=1

¹tjŝ ¸ max
s
GJs ¡GJŝ for any J µ M: (4.29)

But now recall that transfers are non negative, and that in a truthful equilibrium:

X

j 62J
¹tjŝ ¸ max

s
GJs ¡GJŝ for any J µM: (4.30)

The inequality 4.30 is proved in Bernheim and Whinston [1, p. 28] as follows. Take
any s(J) 2 argmax s2SG

J
s , and J

c ´ M n J ; then:
X

j2M
t̂jŝ =

X

j2J
t̂jŝ +

X

j 62J
t̂jŝ

¸
X

j2J
t̂js(J) +

X

j 62J
t̂js(J) +G

0
s(J) ¡G0ŝ

¸
X

j2J
t̂js(J) +G

0
s(J) ¡G0ŝ

¸ GJs(J) ¡GJŝ +
X

j2J
t̂jŝ

(4.31)

where the ¯rst equality is obvious, the ¯rst inequality because agents optimize, the
second one is obvious, the third one follows because the equilibrium is truthful.
Cancelling terms gives (4.30), and our claim.
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5 Truthful Equilibria

The de¯nition of truthful equilibrium used in simultaneous common agency has a
natural extension to the sequential case:

De¯nition 5.1 A truthful equilibrium (¹t; ¹s) of the sequential game is a subgame-
perfect equilibrium in which, for all k 2 M , the transfer matrix ¹t satis¯es

¹tks = max(0; G
k
s ¡Gk¹s + ¹tk¹s ) (5.32)

for any principal k and any action s.

Proposition 5.2 A sequential common agency game has a truthful equilibrium.

Proof. Let ¹s be an e±cient action and let the transfer matrix ¹t be de¯ned
recursively as follows: For k = 1; : : : ;m,

¹tk¹s = max
s2S

(
k¡1X

j=0

Gjs +
mX

j=k+1

¹tjs)¡ (
k¡1X

j=0

Gj¹s +
mX

j=k+1

¹tj¹s)

and, for s 6= ¹s,
¹tks = max(0; G

k
s ¡Gk¹s + ¹tk¹s ):

We want to show that ¹t satis¯es the conditions of Proposition 3.5. Suppose
that ¹t satis¯es 3.11 for principals k + 1 to m. By de¯nition, tk¹s satis¯es 3.11. To
tackle the case s 6= ¹s, notice that, by Proposition 3.1,

Gks ¡Gk¹s � (
k¡1X

j=0

Gj¹s +
mX

j=k+1

¹tj¹s)¡ (
k¡1X

j=0

Gjs +
mX

j=k+1

¹tjs):

Then, by substituting ¹tk¹s ,

Gks ¡Gk¹s ¡ ¹tks � max
s2S

(
k¡1X

j=0

Gjs +
mX

j=k+1

tjs)¡ (
k¡1X

j=0

Gjs +
mX

j=k+1

tjs):

Therefore, ¹tks satis¯es 3.11 for principal k. Then, by recursion, ¹t is a subgame-
perfect equilibrium of the sequential common agency game.
What is the connection between the truthful equilibrium of the sequential game

as de¯ned here and the truthful equilibrium of the simultaneous game as de¯ned
by Bernheim and Whiston? Let M be a set of principals and let P be a particular
ordering of this set of principals. Let ¡(M;S;G; P ) be the sequential common
agency game de¯ned by M , S, G, and P . Let ~¡(M;S;G) be the simultaneous
game de¯ned by M , S, and G. We say that ~¡(M;S;G) is the simultaneous game
corresponding to ¡(M;S;G; P ).
Clearly, the set of e±cient actions is the same in a sequential game and in its

corresponding simultaneous game. From Theorem 3.4 of this paper we know that
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any subgame perfect equilibrium, and therefore any truthful equilibrium, of the
sequential game selects an e±cient action. The same is true for the simultaneous
common agency game (Theorem 2 of Bernheim and Whinston). Then, all truthful
equilibria both in the simultaneous game and in the sequential game (for any order
P ) support actions in Ŝ. If Ŝ has one element {which is true generically{ all
truthful equilibria, whether in the sequential game or in the simultaneous game,
support the same action.
It remains to understand the relation between equilibrium transfers in the two

contexts.

Simultaneous common agency

We recall that in the simultaneous game a pair (¹t; ¹s) is an equilibrium if and only
if the following conditions are satis¯ed:

i. for every j = 1; : : : ;m and for every s 2 S
Gj¹s +

X

i 6=j
¹ti¹s ¸ Gjs +

X

i 6=j
¹tis; (5.33)

ii. for every j = 1; : : : ;m,

¹tj¹s = max
s2S

(G0s +
X

i 6=j
¹tis)¡ (G0¹s +

X

i 6=j
¹ti¹s) (5.34)

and for every s 2 S
¹tjs � max

s02S
(G0s0 +

X

i 6=j
¹tis0)¡ (G0s +

X

i 6=j
¹tis) (5.35)

iii. for every s 2 S,
G0¹s +

mX

i=1

¹t¹s ¸ G0s +
mX

i=1

¹ts (5.36)

The conditions are intuitively clear: the condition (5.33) determines the equilib-
rium action as the action giving the highest net payo® to the principal j; (5.34)
and (5.35) determine the minimum cost for that principal to implement the action
¹s; ¯nally (5.36) insures that the agent chooses the action ¹s.
The condition (5.34) implies

Pm
i=1
¹ti¹s+G

0
¹s = maxs2S(G

0
s+

P
i 6=j ¹t

i
s) and therefore

for every j there is an s(j) 6= ¹s such that ¹tjs(j) = 0, and s(j) gives maximum transfer
to the agent:

mX

i=1

¹ti¹s +G
0
¹s = G

0
s(j) +

X

i 6=j
¹tis(j) for every j:

In addition, (¹t; ¹s) is a truthful equilibrium if and only if ¹s 2 Ŝ, the condition
(5.32) is satis¯ed and

G0¹s +
mX

j=1

¹tj¹s = max
s2S

0
@G0s +

X

j 6=k
¹tjs

1
A (5.37)

for k = 1; : : : ;m (See Dixit, Grossman, and Helpman [5, Proposition 3]).
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Comparison of the equilibria

Proposition 5.3 If (¹t; ¹s) is a truthful equilibrium of a sequential game, then (¹t; ¹s)
is a truthful equilibrium of the corresponding simultaneous game.

Proof. Let (¹t; ¹s) be a truthful equilibrium of the sequential game. Then, ¹s 2 Ŝ
and, by Proposition 3.1, for k = 1; : : : ;m,

¹tk¹s = max
s2S

0
@

kX

j=0

Gjs +
mX

j=k+1

¹tjs

1
A ¡

0
@

kX

j=0

Gj¹s +
mX

j=k+1

¹tj¹s

1
A :

Truthfulness implies that, for any k 2 M and any s 2 S, Gks ¡Gk¹s � ¹tks ¡¹tk¹s . Hence,

¹tk¹s � max
s2S

0
@G0s +

X

j 6=k
¹tjs

1
A ¡

0
@G0¹s +

X

j 6=k
¹tj¹s

1
A : (5.38)

However, if 5.38 held as a strict inequality, then

max
s2S

0
@G0s +

mX

j=1

¹tjs

1
A > G0¹s +

mX

j=1

¹tj¹s;

in which case the agent would not choose ¹s. Thus, 5.38 must hold as an equality,
which implies 5.37.
A truthful equilibrium of a sequential game is always a truthful equilibrium of

the corresponding simultaneous game. One may wonder whether a truthful equi-
librium in the simultaneous game is always a truthful equilibrium of a sequential
game, at least for some ordering P . This is not true. In some cases, there is a
truthful equilibrium of ~¡(M;S;G), given which there exists no ordering P such
that it is also a truthful equilibrium (or just a subgame-perfect equilibrium) of
¡(M;S;G; P ). Consider for instance a game with three actions and in which the
agent cares only about transfers:

s1 s2 s3
G1s 3 0 0
G2s 1 0 2
G3s 1 2 0

This game, if played simultaneously, has a continuum of truthful equilibria such
that ~s = s1 and

s1 s2 s3
~t1s x 0 0
~t2s 1¡ x 0 2¡ x
~t3s 1¡ x 2¡ x 0

where x 2 [0; 1]. On the contrary, in the sequential game, given an ordering of
principals, there exists a unique truthful equilibrium. If 1 is the last to play, then
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the unique truthful equilibrium is

s1 s2 s3
¹t1s 1 0 0
¹t2s 0 0 1
¹t3s 0 1 0

For all other orderings,
s1 s2 s3

¹t1s 0 0 0
¹t2s 1 0 2
¹t3s 1 2 0

Therefore, of the continuum of truthful equilibria in the simultaneous game, only
the two extremes (x = 0 and x = 1) are also truthful equilibria of a sequential
game. For 0 < x < 1, the truthful equilibrium of the simultaneous game is not an
equilibrium of any sequential game.1 Notice that the total transfer for the e±cient
action s1 varies from a truthful equilibrium to the other.
However, there exists a very special case in which there is a one-to-one cor-

respondence between equilibria of the simultaneous game and equilibria of the
sequential game:2

Proposition 5.4 Suppose that there are only two principals and that the agent
is indi®erent among actions. Then, for any P , (¹t; ¹s) is a truthful equilibrium of
a sequential game if and only if it is a truthful equilibrium of the corresponding
simultaneous game.

Proof. It is easy to verify that, both in the simultaneous and in the sequential
game for any P , an equilibrium (ŝ; t̂) is truthful if and only if

ŝ 2 argmaxs2S(G1s +G2s)
t̂1s = max(0; G

1
s ¡G1ŝ + (max

s02S
G2s0)¡G2ŝ) for all s 2 S

t̂2s = max(0; G
2
s ¡G2ŝ + (max

s02S
G1s0)¡G1ŝ) for all s 2 S:

1The example above involves some symmetry between Principal 2 and Principal 3. This
structure has been chosen to simplify the analysis. However, the underlying result is robust. A
more generic example is:

s1 s2 s3

G1
s 4 0 0

G2
s 2 0 5

G3
s 3 4 0

In this example as well the simultaneous game has a continuum of truthful equilibria while the
sequential game has a unique equilibrium for each ordering.

2The truthful equilibrium of Proposition 5.4 is generically unique.
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6 Re¯nements

We have seen that sequential common agency has in general multiple subgame per-
fect equilibria. All of them select an e±cient action but the equilibrium transfer
vector varies from one equilibrium to the other. One may wonder whether some
equilibria are more plausible than others. This section considers two equilibrium
re¯nements: trembling-hand perfection and coalition-proofness. In the simulta-
neous game, Bernheim and Whinston show that perfection does not help while
coalition-proofness selects the truthful equilibrium. As we will see, also in the
sequential game perfection has little bite. On the other hand, coalition-proofness
signi¯cantly restricts the set of equilibria. An equilibrium is coalition-proof only
if it is payo®-equivalent to the thrifty equilibrium. Thus, the connection between
truthfulness and coalition-proofness that Bernheim and Whinston found for the
simultaneous game does not carry over to the sequential game.

6.1 Perfect Equilibria

Some of the equilibria, including the truthful ones, may seem fragile. Consider for
instance the common agency game with payo®s as in (1.2). One of the equilibria
has the transfers equal to

t1 = (6; 0; 1; 2); t1 = (0; 0; 5; 0):

This equilibrium may seem not very robust. The principal who moves ¯rst is
o®ering a large transfer on the ¯rst action, counting on the fact that in equilibrium
he will not pay it. But he will not pay because the second principal will o®er
exactly 5 on the third action, and the agent will choose the third action, even if
he is indi®erent between the ¯rst and the third action. Any small mistake of any
of the two players that come after him will cost him dearly.
We may formalize this idea with the perfectness criterion. Suppose that with

some positive probability, possibly very small, the principal 2 may make a mistake.
This mistake may take di®erent forms. To ¯x ideas, assume that when he does a
mistake the principal fails to show up, and makes a zero transfer on all the actions.
Suppose that also the agent may make a mistake, also with a small probability.
Again this mistake may take di®erent forms: suppose the agent chooses randomly,
with uniform probability, one of the actions.
If we look for the equilibria in the perturbed game where the second principal

and the agent may make mistakes, and then let the probability of the mistakes
go to zero we ¯nd only one equilibrium: the thrifty equilibrium, with equilibrium
transfers t1 = (0; 0; 1; 0) and t2 = (0; 0; 0; 0). The reason is clear: the redundant
transfers on the ¯rst and fourth action by the ¯rst principal are cost-less in the
game where nobody makes mistakes, but they become costly in the perturbed
game.
This result depends in a critical way on the speci¯cation we have chosen for the

mistakes. If we change the speci¯cation, the equilibrium that is selected will also
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change. In general, the issue of the form of the mistakes becomes critical in games,
like the common agency games, with in¯nite action space. A detailed discussion of
this issue is in the Simon and Stinchcombe paper ([14]; see also [13]). Since there
seem to be no natural way to restrict the type of mistake, we do not introduce any
restriction.
To make this discussion formal, we introduce a de¯nition of perfect equilibria for

this game, which is the standard de¯nition of perfect equilibrium for an extensive
form game (see for instance van Damme, [15], chapter 6.4, page 111). We only
have to adapt it to the our situation, in which the principals have a strategy space
which has in¯nite cardinality.

De¯nition 6.1 A perturbation is

i. a vector (²0; ²1; : : : ; ²m) of real numbers in (0; 1)

ii. for every k and for every vector of transfers (tk+1; : : : ; tm), a probability dis-
tribution Ák(tk+1; : : : ; tm) that gives positive probability to every open subset
of the strategy space of the principal k, or, when k = 0, of the agent.

The interpretation of a perturbation is the following. Every player makes a
mistake with probability ²k, and when he does he then chooses a strategy according
to the probability distribution Ák.
The perturbed game is completely described by the perturbation as follows:

De¯nition 6.2 For the sequential common agency game de¯ned in section 2, a
perturbed game assigns to every strategy (¾ ´ (¾0; ¾1; : : : ; ¾m) the strategy pro¯le

©(¾; ²; Á) = ¾k with probability 1¡ ²k
= Ák with probability ²k

(6.39)

The payo® in the perturbed game for the strategy pro¯le ¾ is the payo® in the
original game to the perturbed strategy pro¯le ©(¾; ²; Á).

This decomposition in the ² and Á components is of course without loss of gener-
ality, and is made simply for convenience. Then we say:

De¯nition 6.3 An equilibrium of the sequential common agency problem is perfect
if it is the limit point of a sequence of equilibria in the sequence of games perturbed
by some sequence f(²kn; Ák)k=0;:::;m; n = 1; 2; : : :g, where limn!1 ²kn = 0 for every k.

One can then prove that a subgame perfect equilibrium is also perfect. The
proof is omitted for simplicity, since it is not directly related to the main point of
this paper. The intuition is clear: the de¯nition of perfect equilibrium in 6.3 leaves
open a wide choice of perturbations. For any subgame perfect equilibrium it is
possible to ¯nd the appropriate perturbation that makes the equilibrium choice of
the principals approximately the best response in the perturbed game.
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Proposition 6.4 All the subgame perfect equilibria are perfect.

The proposition (6.4) depends critically on the fact that the probability dis-
tributions Ák may depend on the transfers of the previous players. If additional
restrictions are imposed on the possible mistakes of the players, then the set of
prefect equilibria is a proper subset of the subgame perfect equilibria.
A special case is, of course, the thrifty equilibrium. This equilibrium is perfect

however, even if the probabilities Ák do not depend on the transfers. In fact, it
is enough that the probability that an agent makes a mistake is higher than the
probability that a principal does, and that his mistakes are uniform.

Proposition 6.5 The thrifty equilibrium is perfect.

Proof. It su±ces to show that for some vector of probabilities Ák; k = 0; : : : ;m and
a sequence of mistakes f²kng; k = 0; 1; : : : ;m; n = 1; 2; : : :, the equilibrium of the
game converges to the thifty equilibrium. Take any ¯xed vector Ák; k = 1; : : : ;m,
let Á0 be the uniform distribution on actions. Then let the sequence of mistakes
²kn satisfy:

lim
n!1

²kn
²0n
= 0: (6.40)

It is now easy to see that for this sequence of mistakes the sequence of equilibria
converges to the thrifty equilibrium. From the condition (6.40) it is clear that the
principles only take into account, in the limit, the mistake of the agent. But the
Á0 is independent of the transfers. So any transfer with positive components for
actions di®erent from the e±cient only adds to the expected cost, without altering
the choice of the agent. So principals choose transfers which are zero for actions
di®erent from the e±cient.

6.2 Coalition-Proof Equilibria

The re¯nement suggested in [1] for common agency problem is the concept of
Coalition-Proof. Since the game we consider is sequential, we need to introduce
and discuss the extension of this concept to games in extensive form. An extension
is presented in [3], and the corresponding equilibrium concept is called Perfectly
Coalition-Proof Nash equilibrium.
The concept of Perfectly Coalition-Proof Nash equilibrium requires that there

is no other self-enforcing strategy that Pareto dominates it. It is important to
note that the concept of Pareto dominance used in the de¯nition in [3], page 10,
is strict: each player in the deviating coalition must be strictly better o®.
Now consider our game. In any subgame ¡(tk+1; : : : ; tm), once the principal k

has determined the action ´(tk+1; : : : ; tm) he has no choice in the transfers that he
is going to pay. In particular the payo® of the principal who moves ¯rst is the same
in all the equilibria. Now every coalition will have a principal who moves ¯rst, and
the payo® for this principal is ¯xed. Hence, if we adopt the de¯nition of Perfectly
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Coalition-Proof Nash Equilibrium given in [3], page 10, then all equilibria in the
sequential common agency problem are perfectly coalition-proof.
This de¯nition ignores the fact that each principal has a direct in°uence on the

transfer paid by those who move after him, and he can always choose this to be
a minimum amount. It seems natural to adopt a slightly weaker de¯nition, in our
context, of perfect coalition-proof, which replaces the strict Pareto dominance with
the weaker requirement that each player is at least as well o®, and at least one
strictly better o®. Therefore, we adopt in the following the natural modi¯cation
of the concept of Perfectly Coalition-Proof when the Pareto dominance criterion
is the weak criterion, and we call this concept Strongly Perfect Coalition-Proof.
With this more restrictive concept, the only equilibria are the thrifty, at least as
payo®s are concerned. Formally, we say as usual that two equilibria are payo®
equivalent if the payo® at equilibrium for each player is the same. Then:

Proposition 6.6 A SPE is strongly perfect coalition proof only if it is payo® equiv-
alent to the thrifty equilibrium.

Proof. Take the SPE, and denote by ¾¤j¤ its strategies, by t¤j its transfers, by
T ¤k its aggregate transfers. Also denote by tj and T k the corresponding quantities
in the thrifty equilibrium. Since the two equilibria are not payo® equivalent,

T ¤ŝ > Tŝ: (6.41)

(It has to be the case that T ¤kŝ ¸ T kŝ , by the proposition (4.2); and the equality
holds for every k, then the transfers of each principal have to be the same in the
two equilibria.) Now take the principal with the largest index k0 such that the
following two conditions are satis¯ed:

i. for some s0 6= ŝ, t¤k0s0
> 0;

ii. in the equilibrium where the transfer t¤k0s0
> 0 is replaced by t¤¤k0s0

= 0 the
total transfer of the principals is strictly less than T ¤ŝ .

Recall that setting tk0s0 = 0 and leaving all the other transfers equal to t
¤j gives a set

of transfers of a subgame-perfect equilibrium, by the (3.5). Also a principal with
this property must exist, because of (6.41). Since the total transfers are smaller
in this new equilibrium, there is also a principal k1 who is paying an amount t

¤¤k1
ŝ

strictly smaller than t¤k1ŝ . Now take a coalition of the two principals k0 and k1,
adopting the strategies which are equal to ¾¤, except at the equilibrium path,
where they set t¤¤k0s0

and t¤k1ŝ respectively. For ¯xed strategies ¾¤j; j 6= k0; k1, this
is a self-enforcing strategy pro¯le for these two principals, hence ¾¤ is not strongly
perfect coalition proof.
The thrifty equilibrium may fail to be strongly coalition proof. In the example

(4.25), the strategy pro¯le where the principal 3 makes a positive o®er on the ¯rst
action is self enforcing, and strictly improves the payo® of the principal 1. In fact
this example and the previous result (6.6) show that a strongly perfect coalition
proof equilibrium may fail to exist. We report this observation formally as:
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Proposition 6.7 A strongly perfect coalition proof equilibrium may not exist.

Proof. Consider again the game described in the example (4.25). We claim it
does not have strongly perfect coalition proof equilibria. If such an equilibrium
exists, it must be payo® equivalent to the thrifty equilibrium by the proposition
(6.6). But such an equilibrium must have:

i. t32 = t22 = 0, since these are the transfers on the equilibrium action of the
thrifty equilibrium;

ii. t33 = t
2
3 = t

1
3 = 0, because if any of these tranfers is positive the amount on

the second action should be larger than 5, violating the payo® equivalence
condition;

iii. t31 + t
2
1 + t

1
1 � 5, by the same argument as before.

But now the same argument that shows that the thrifty equilibrium is not strongly
perfect coalition proof shows that any such equilibrium is not. Hence no equilibrium
with this property can exists.

7 Conclusions

Common agency is a way of modeling lobbying. Previous work has assumed that
lobbies make their o®ers simultaneously. However, we have argued that some
existing political arrangements involve lobbies acting in a public and sequential
manner. It is thus important to study sequential common agency.
Our two main results relate to e±ciency and total amount of trasfers. The ¯rst

result is that in a sequential game all subgame-perfect equilibria select an e±cient
action. In a simultaneous game all coalition-proof equilibria select an e±cient
action. As subgame-perfection is generally viewed as a much weaker requirement
than coalition-proofness, our result strengthens the conclusion that in a common
agency game one can expect an e±cient outcome to arise. As Besley and Coate [4,
page 32-40] point out, if in a simultaneous common agency game lobbies do not
play truthful, there can be welfare losses. However, this paper has shown that such
nontruthful equilibria do not carry over to the sequential case.
The second set of results relates to the transfer vector. While the equilibrium

outcome is generically unique, there exists a continuum of equilibrium transfers.
Within this continuum we single out the truthful equilibrium and the thrifty equi-
librium. The truthful equilibrium corresponds to one of the truthful equilibria of
the simultaneous game. In the sequantial game, the truthful equilibrium is not
coalition-proof. Only the thrifty equilibrium can be coalition-proof. This result
contrasts with Bernheim and Whinston's result that in a simultaneous game only a
truthful equilibrium can be coalition-proof. Also, we show that the agent is worse
o® in the thrifty equilibrium of the sequential game than in the truthful equilibrium
of the simulatneous game.
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Our results on equilibrium transfers have direct relevance for lobbying. The
politician is better o® if o®ers are made simultaneously. If he can choose, he will
therefore favor an institutional setting in which lobbies' contribution schedules are
unobservable (of course, he will have to ¯nd a way to solve the enforcement problem
implied by secrecy). Instead lobbies are in general better o® in a sequential model.
Thus, if the institutional choice is left to lobbies, they will select a setting in which
o®ers are public and sequential.
Common agency assumes that there are no transaction costs. Instead there may

be a waste associated with campaign contributions (due, for instance, to distortions
created by campaign ¯nance regulations). If this waste is increasing with the
amount of transfers, then clearly a sequential institutional setting is preferred to a
simultaneous setting.
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