-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Tilburg University Repository

S

NS
ILBURG & 2z ¢ UNIVERSITY

Tilburg University

A Model Distinguishing Production and Consumption Bundles
Schalk, S.

Publication date:
1998

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Schalk, S. (1998). A Model Distinguishing Production and Consumption Bundles. (CentER Discussion Paper;
Vol. 1998-84). Microeconomics.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021


https://core.ac.uk/display/420777791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/94a90eb9-068b-4327-880b-f9ee48b97266

A Model Distinguishing

Production and Consumption Bundles

Sharon Schalk

August 1998

Abstract

In contrast to the neo-classical theory of Arrow and Debreu, a model of a private
owner ship economy is presented in which production and consumption bundles are
treated separately. Each of the two types of bundlesis assumed to establish a convex
cone. The main part in the modelling is the introduction of production technologies
which can be thought of as replacing the notion of production sets in Arrow and
Debreu’'smodel. Itisa point of further investigationwhether the notion of production
technology is also generating the notion of production set.
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| ntroduction

The introduction of a new mathematical model of a private ownership economy, a corre-
sponding Walrasian equilibrium theorem and the mathematics surrounding them are the
main topics of this paper. Thus, we hope to achieve a more realistic model of a private
ownership economy.

Asfar asthemodel is concerned, it differsfrom the neo-classical models, described in the
standard works of [Debreu] and [Arrow/Debreu], in the following two features.

e The model recognises commodity bundles instead of separate commodities.

e The model treats production and consumption on a different level.

Our model of a private ownership economy is only in terms of convex cones and their
properties, and not in terms of vector spaces, whereas the neo-classical models are set in
terms of the Euclidean space IR". We emphasi ze thisuse of convex cones by the axiomatic
introduction of the concept of salient half-space. We define a salient half-space to be a set
in which addition and scalar multiplication over the positive real s are defined such that the
set is an addition semi-group and such that the distributive axioms are satisfied. Themain
difference between a salient half-space and a vector space is that for a salient half-space
multiplication is allowed over the non-negative real numbers, only. Each pointed convex
cone in which addition and scalar multiplication are defined in the natural way by its
surrounding vector space, is a salient half-space. Furthermore, each salient half-space
induces an ordered vector space for which the salient half-space is the positive cone. A
great deal of effort in this paper is put in the presentation of this mathematical concept
and related topics.

The use of salient half-spaces allows usto not distinguish separate commodities. In fact,
we do not need to consider the concept of commodity at al, and will consider the con-
cept of “economy bundle” instead. In a worldlike example, our model can describe the
non-neo-classical situation in which fixed links between different commodities may be
assumed present, for instance an economy in which only fixed, prescribed combinations
of commaodities can be traded.

In the presented model, an economy bundle is a unique concatenation of a production
(economy) bundle and a consumption (economy) bundle. Here, only production bundles
can be used as input for a production process whereas the output of this process is
always a consumption bundle. The set C' of economy bundles is taken to be the product
set Cpoa X Cens Where the salient half-spaces C,,, and C,,s contain the production and
consumption bundles, respectively.

If it is possible to produce consumption bundle z** from production bundle z**, we call
economy bundle (z"* z**) € C' a production process. A collection 7" of production
processes is called a production technology if it satifies certain conditions, to be specified
later. Asfar asweknow, in theneo-classical models, consumption (economy) bundlesand
production (economy) bundles are not distinguished explicitely: instead of introducing a
production technology 7" as a subset of Cl,y X Cee, the neo-classical models recognise a
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production technology (production set) as a subset Y of the Euclidean vector space IR".
Globally speaking, the vector lattice IR™ with corresponding production set Y isreplaced
by the salient half-space C,w X Cone With production technology 7'. Indeed, IR" can
be regarded as the product of the positive cone (/[R")* and the negative cone (IR")~ by
corresponding to each input-output vector x € IR", the pair (z~, ™) with output vector
z and input vector x~ defined by z* :=0Vzandz~ := (—z) V0. So,toeachz € Y
there is associated a unique pair (z*,27) € (IR")" x (IR")", and thus Y can be seen
asasubset Y of (IR")" x (IR")*. We emphasize that the natural |attice structure of IR"
with positive cone (IR")" enables to regard Y this way. However, Y does not satisfy
the conditions we impose on 7', in genera. In fact, in our model, lattice structures are
not involved at all. In this paper, we shall not discuss whether the neo-classical notion
of production technology (Y") is generalised by our notion of production technology (7).
Thiswill be part of further research.

Disregarding the concept of commaodity, we cannot speak of the price of acommodity, and
S0, we use the notion of “pricing function™ which gives a value to every economy bundle.
Furthermore, the introduction of the concept of production and consumption bundles gives
rise to adightly atered definition of Walrasian equilibrium. Although the model is pre-
sented in the general terms of salient half-spaces, existence of these Walrasian equilibria
can be guaranteed only if some assumptions are made, of which the assumption that the
vector space for which the salient half-space is the positive cone, isfinite dimensional, is
the strongest. Despite this, we feel that the essentia idea of this model is the use of the
concept of salient half-space and conceptsrelated to it. Forcing ourselvesto copewiththis
general model structure, we have to apply an analysis and techniqueswhich may be of use
when tackling models for private ownership economies where the finite dimensionality
restriction is not satisfied.

We conclude this introduction by describing the contents of the different sections.
Section 1 contains the introduction of the mathematical concepts and theorems which
are used to construct the model and to prove the Equilibrium Existence Theorem. Its
main item is the introduction of the concept of salient half-space and its relationship with
vector spaces. The presentation in this section is amost self containing. In Section 2
we describe the mathematical model introducing the features of the economic agents, and
of the production technologies. The Equilibrium Existence Theorem is stated and the
mathematical assumptions, needed in its proof, are introduced. Futhermore, a sketch of
the proof is presented.



1 Mathematical concepts

The purpose of this section isthe description of the mathematical conceptsinvolved inthe
model of a private ownership economy presented in Section 2.

1.1 Salient half-space

We start with the concept of salient half-space, since we shall use this notion to model
the set of economy bundles. Thereafter, we describe some similarities and differences
between salient half-spaces, vector spaces, and convex cones.

Definition 1.1.1 A salient half-spaceis a set C' with the following properties:
e An addition isdefined on C, which is commutative, associative and satisfies

1.1.1.a) thereexistsan element v € C, called the vertex of C, such that z + y =
v < cz=y=uv,foralz,yeC,

1.1.1.b) for everyz € C themappingadd, : C — C, definedby add,.(y) := y+z,
isinjective.

e To every pair z € C and o > 0, there corresponds an element ax € C, called

the (scalar) product of o and z. Scalar multiplication over IR thus defined, is

associative and satisfies the distributive laws. Furthermore, 1z = x for every
xeC.

Note that Condition 1.1.1.a implies that the mapping add, is surjective if and only if
x =wv. Givenz,y, z € C,withx = y + z, itismeaningfull to write z = z — y. To avoid
confusion, we shall not use this notation.

Example

Let C be a pointed convex cone in a vector space V, then C' is asalient half-space with
the zero-element of V' as vertex, and addition and multiplication defined in the natural
way. Recall that a subset C' of avector space V iscaled aconeif ax € Cforal z € C
and o > 0. A coneiscalled pointed if the zero-element of 1 is the only extreme point of
C'. A subset D of avector spaceiscaled convex if rz + (1 — 7)y € Dforal z,y € D
and 7 € [0, 1]. Thus, aconein avector space is convex if and only if it is closed under
addition.

We shall see that the converse also holds. For every salient half-space C, thereis a vector
space V' [C'] such that C' isa pointed convex conein V[C].

It isnot difficult to prove that the vertex of a salient half-space is unique and satisfies

a) YVa>0 :av=v,
b) VreC :x+v=ux,
c) VeeC :0z=nw.

From the second property together with Conditions 1.1.1.a and 1.1.1.b, we conclude that
(C, +) isan addition semi-group with zero-element v. Sincein asalient half-space, scalar
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multiplicationisdefined only over IR and dueto Condition 1.1.1.a, (C, +) isnot agroup.
However, we can extend (C, +) to agroup in asimilar way as IN U {0} extends to Z7.
We shall present this extension in short. Define the equivalence relation ~ on the product
set C' x C by:

(w1, 22) ~ (Y1, 42) = 21 + Y2 = Y1 + T2
Let V[C] be the collection of all equivalent classes [(y1, y2)] := {(z21,22) € C x C |

(21, 22) ~ (y1,92)}, 0 V[C] := (C x C) /... Unambiguously, we can define the following
addition and scalar multiplication on V' [C]:

(1, 92)] + (21, 22)] = [(yh%wﬁ@)] ifa >0
o oY1, Y2 Mo =
al(y1,92)] = { [(—a)ya, (—a)yy)] ifa <.

We shall make plausible that with these definitions, the set V' [C] becomes a real vector
space. We call V[C] the vector space generated by the salient half-space C'.

Ingenerd, if (A, +) isasemi-group with azero-element, then theabove construction can be
appliedto construct agroup. So theproof that V[C] isindeed avector space can concentrate
on the introduction of the scalar product over negative «. The construction yields that
[(v,v)] is the origin of V[C]| and —[(y1,y2)] = [(y2,%1)]. Note that multiplication by
negative scalars is defined properly. Let o > 0 then

(=) [(y1, y2)] = a(=D)[(y1,92)] = a[(y2,y1)] = a(=[(y1,92)])-

Furthermore, the salient half-space C' is atotal subset of the vector space V' [C], i.e, the
linear span of C' equals V[C]. The vertex v of C' coincides with the origin of the vector
space V'[C], and henceforward we shall denote the vertex of a salient half-space by 0.

Definition 1.1.2 On a salient half-space C the partial ordering <. is given by
r<cy Iifandonlyif dzeC:z+2z=y,
z<cy ifandonlyif Jze C\{0}:z+2z=uy.

The sdlient half-space C, when identified with {[(y1,y2)] € V[C] | 3z € C : [(y1, y2)] ~

[(z,0)]}, can beregarded as a subset of V[C]. The partial ordering <., defined on C, can

be extended to a partial ordering on V' [C'] by defining for al [(y1, y2)], [(21, 22)] € V[C]:
[(y1,92)] <c [(21,22)] if T[(z1, 22)] € C+ [(y1, 92)] + [(21, 22)] = [(21, 22)]-

Note that thisisequivalent with y; + x1 + 2o = yo + 22 + 21, OF
Y1+ 22 <c Y2 + 21-
Also, notethat C' := {[(y1, v2)] € V[C] | [(0,0)] <c [(y1,2)]}-
It iscostumary to introduce a pointed convex conein avector space, therewith introducing
a partial ordering on this vector space. Since we consider the salient half-space, rather

than the vector space, to be the essential element of the model, we introduce these notions
the other way around,



Definition 1.1.3 An €ement « of C iscalled an order unit for C if
Vee CIA>0:z<c .
Lemma 1.1.4 Let u be an order unit for C, and let [(y1, y2)] € V[C]. Then

A= 0: =Al(w,0)] <c [(y1,92)] <o Al(u, 0)].

Proof

E|>\1 Z 0: U1 SC’ )\1’LL
E|>\2 Z 0 Y2 SC’ )\Q'U/.
y1 <c Y2+ Au

Y2 <c Y1 + Au.

Sincew isan order unit for C, we find {

Define \ = max{)\l, )\2}, then {

1.2 Salient half-dual space
Let C be salient half-space.

Definition 1.2.1 Afunctional p : C — IR issaid to be half-linear if p satisfies

{ plz+y) =p(z) +ply) Vr,yeC
plaz) = ap(z) Ve e C'Va > 0.

The set of all haf-linear functionals defined on C' will be denoted by C*. From the
definiton it follows that the set C* is a salient half-space also, where the zero-functional
is its vertex and addition and positive scalar multiplication are defined pointwise; for
p,g€ C*anda > 0:

{ (p+q)(z) :=px)+q(x) Veel
(ap) (z) := ap(z) vz € C.

We call C* the salient half-dual space of C' or, in short, the half-dual of C.
It turns out (cf. [Conway]) that existence of an order unit in C is sufficient to guarantee
that C* isnon-trivial, i.e., C* # {0}.

Proposition 1.2.2 If C' has an order unit, then C* # {0}.

Proof
Let « be an order unit for C. Definetheset U C V[C| by U := {A[(u,0)] | A € IR}, then
U isasubspace of V[C]. By Lemma 1.1.4, we find

VI(y1, 92)] € VIC] 3A = 0 =A[(u, 0)] <c [(41,42)] <c Al(w, 0)].
Thus, we can define the sublinear functional ¢ : V[C] — IR by
q([(y1,92)]) := inf{A | [(y1,92)] <c Al(u, 0)]}-
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Define f(A[(u,0)]) := A, for every A € IR. With this definition, f : U — R isa
positive linear functional on U satisfying VA € IR : f(A[(u,0)]) = g(A[(u,0)]). By the
Hahn-Banach Theorem, there exists a linear functional f : V[C] — IR such that on the

set U, fisequal to f, and V(y1,32)] € VIC] : f([(41,92)]) < a([(y1,92)))- For every
[(z1,22)] € C it holds that ¢([(z1,22)]) > 0. We conclude that the functional f acts
positively on C sincefor al [(z1,z2)] € C : f(—[(z1,22)]) < q(=[(z1,22)]) <0. O

Applying Definition 1.1.2 on the salient half-dual space, we find the partial ordering <.
on C*, which is given by

p<c-q ifandonlyif IreC*:p+r=gq.
p<c-q ifandonlyif JIreC*\{0}:p+r=q.

Notethat thispartial orderingisequivalent withthe standard partial ordering on functionals
in(V[C])*

p<c-q = Veecl:p(r)<q)
p<c-q <= (VoxeC:plx)<qx)A(FzeC:p)<q)).

First we examine the relationship between the vector space V[C*|, generated by the
half-dual C* of C', and the dual space (V[C])* of V[C].

Proposition 1.2.3 V[C*] iscanonically injected in (V'[C])* and therefore can be consid-
ered a subspace of (V[C])*. Furthermore, C* = {p € (V[C])* | Vz € C : p(z) > 0}.

Pr oof
Let [(p1,p2)] € V[C*] and definefor every [(y1,y2)] € V[C]:

[(p1, 2)] ([(y1, 92)]) := p1(y1) — pr(y2) — p2(y1) + p2(v2)-

It is easy to check that this definition is independent of the choice of the representatives
(y1,y2) and (p1, p2), and that with this definition [(p;, p2)] acts as a linear functional on
V[C]. Secondly, it iseasy to check that the mapping, described above, which adds alinear
functional to every pair [(p1, p2)] € V[C*] islinear. Furthermore, if V[(x1, z2)] € V[C] it
holdsthat [(p, p2)]([(x1, 22)]) = 0, thenVa: € C' [(p1, p2))([(, 0)]) = pi () —pa(x) = 0,
and we conclude p; = p», or, in other words, [(p1, p2)] = [(0,0)]. O

In the sequel we shall regard C* as asubset of (V[C])*.

Let W be avector space. Then S € W* issaid to be separating the elements of a subset
M cCcWifVe,y e Myx #y Ip € S :p(x) # p(y). If M islinear, this comes down to
Vee M\ {0} Ip e S:p(x)#D0.

Lemmal24 A st Sy, C C* separates the elements of C' if and only if the collection
S = A{[(p1,p2)] | P1,p2 € So} C V[C*] separates the elements of V'[C].



Proof
Let z,y € C. Consder the following sequence of equivalent statements

Vp € So : p(r) = p(y),
Vp1,p2 € So = p1(x)
V[(p1,p2)] € S : p1(z) + paf
V[(p1,p2)] € St [(p1,p2)] ([(
(

Note that = # y is equivaent with [(z, y)] # [(0, 0)]. O

From now on, we assume that V'[C] is finite-dimensional. Asusua in this situation, we
identify V[C] and its bidual (V[C])**, i.e, we identify each x € V[C] with its action
p — p(x) on (V[C])*. To show this duality to full advantage, instead of p(z), we write
[z, p|] for every p € (V[C])* and x € V[C]. Note that with this identification, we have
C C C**. Since in this paper, we are particularly interested in salient half-spaces, and
since we regard the vector space generated by a salient half-space merely as a mathemati-
cal tool, we shall often adopt the notation [z, p] - to denote p(x) wherez € C'andp € C*.

Because C C C**, we can consider the partial ordering <c« on C' as follows. Let
x,y € C, then
r<pguwy < dzeC™:x+z=y
<~ VpeC*:[pzle- <I[p,yles
< VpeC":[z,plc < [y, ple-

So, if C** = C, then z < y isequivalent withVp € C* : [z, plc < [y, D]c-
Proposition 1.2.5 Let C** = C. Then C* separates the elements of C.

Proof

Let z,y € C, and suppose Vp € C* : [z,p|lc = [y, p]c. Of course, since C** = C, this
meansz <¢ y and y <¢ x. The partial ordering <. being anti-symmetric, thisimplies
r=7y. 0

Assuming C** = C, Lemma 1.2.4 yields that V[C*] is asubspace of (V[C])*, separating
the elements of the finite dimensional vector space V'[C]. Thisyields

O =C = V[ = (V[O))".

Itisin general not true, that V' [C*] = (V[C])* implies C** = C, since the | atter equality
isrelated to a non-algebraic condition on C'.

Finally, we mention the consequences of the condition C** = C' for the partial ordering
onC:

r<gy <= dJzelC:zx+2z=y
< VpeC:z,plc <ly,plc,
r<cy <= Jz€C\{0}:z+z2=y
— (VpeC*:[z,plo <ly,plo) A(Bp € C*: [z, ple < [y,ple)



1.3 Topology and order units
We start by introducing the topology 7 (C, C*) for a sdient half-space C'.

Definition 1.3.1 Let (,), v beasequencein C, then we say that (z,,), _ py converges
to z (notation: z, — x),ifVf € C* : lim f(zn) = f(2).

Definition 1.3.2 Aset S C C'isT(C,C*)-closed in C, if for all sequences (x,,),, v in
S, satisfying x,, — « € C,itholdsthat z € S.

Thus, atopology on C' is defined, where O C C'isan open set if and only if C'\ O is
T (C, C*)-closed. The proof that the collection of all such open sets satisfiesthe conditions
of atopology for C' is straightforward. We shall denote thistopology by 7 (C, C*).

In the following, we shall assume C' to be a salient half-space satisfying the conditions
presented at the end of Subsection 1.2, i.e. C' # {0}, dim(V[C]) < oo, and C** = C.
Note that if a salient half-space C' satisfies these conditions, so does its dual C*, since
(V[C*])* = (V[C*])***. Therefore, every result derived for C' has a dual result for C*.
Furthermore, note that the construction of V'[C] from C impliesthat C'issolidin V[C].

On V[C] weintroducetheunique linear topology 7. We note that thistopology isinduced
by the choice of any norm on V[C]. Since C* contains a basis for V[C*], we find the
following lemmawhich yields that the relative topology on C' equals 7 (C, C*).

Lemma 1.3.3 Let (y.),. v be asequencein V[C]. Then (y,),. v is convergent if and
onlyif 3y € V[C]Vf € C*: lim f(yn) = f(y).

Henceforward, we shall refer to topology 7 (C, C*) as the relative topology on C'. We
shall denote the T-interior of aset A C V[C] by int(A) and the boundary of A by 0A.
In particular, we shall use the notation int(C') to denote the 7-interior of C, where C'is
regarded as a subset of V' [C']. With the notation 0C, we denote C'\ int(C).

Lemma 1.3.4
C*=C <= CisdosdinV[C].

Proof
Suppose C** = C, and let (z,,), v be a sequence in C which is convergent in V[C],
with respect to topology 7, with limit z € V[C]. Since by Lemma 1.3.3

VfeC*Vne N : f(z,) >0,

we concludethat z € C** = C.
For the converse, suppose that C' isT-closed. We shall provethat C** C C. Let x € C**
and suppose = ¢ C. Then by the Strong Separation Theorem of Minkowski ([Panik,

p.59])

IfeV[C]IacR: { é;féé‘f‘ﬂy) -
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Supposethereexistsy € C with f(y) < 0, then we cometo acontradiction since \y € C
foral A > 0. Hence, f € C*, which isin contradiction with x € C**. O

Since C is solid in V[C], int(C) # (. Since, in this paper, we regard the salient half-
space C, rather than the vector space V'[C], to be the essential concept, we would like to
have a salient half-space related characterisation of int(C').

Lemma 135 Letz, € C. Thenz € int(C) if and only if Vp € C* \ {0} : [z0, p]c > 0.

Proof

Let 2o € int(C). Supposethereexists p € C* such that [z, p]c = 0. Since z, € int(C)
there is an open set O € T satisfying {zo} + O C C. Foradl y € O, [y,plc =
[zo + y, plc > 0, from which we conclude that p = 0.

For the converse, suppose =, € dC' \ {0}. Since C isaconvex cone, int(C) is a convex
cone. By the Weak Separation Theorem of Minkowski ([Panik, p.60])

YA>0: [Azo, po] < o

Ipo e (VICD)*\ {0} Fac R: { Vo ein(C): [z,p] > a.

Choosing A equal to 0, and choosing a sequenceinint(C') converging to 0, wefind « = 0.
As a consequence p, € C*\ {0}. By subsequently choosing A equa to 1, we find
[0, o] < 0. O

Note that as a consequence of thislemma, every element z € 9C satisfies3p € C*\ {0} :
[z, plc = 0.

Proposition 1.3.6 Letp, € int(C)*. Thenthereisauniquenorm || . ||,, onV|[C], where
Ve e C: |z lp = [, poe-

Proof
Forevery y € VI[C| define || y ||y, := inf{[z1 + 22, po]c | 1,22 € C Withy + 25 = 21 }.
It is not difficult to check that | . |,, indeed is a norm on V[C]. To prove that

Ve e C: || z |y, = [x,po]c, weremark that Vo € C : [z, po]c < || = ||p, , Since for all
x,x1,xe € C saisfyingx + zo = x itholdsthat = < x + 2z, = x1 + z2. Furthermore,
we can choose z; = z and z, = O toobtainthat || z ||,, < [z, polc- O
Since C** = (), interchanging the role of C' and C* in the above proposition yields that
each z, € int(C') inducesthe uniquenorm || . ||, on C™.

Corollary 1.3.7 Let py € int(C*) and let (x,), v be asequencein C. Then (z,.), v
convergesto 0 with respect to the relative topology if and only if nll_)Iglo [0, Do]c = 0.

Corollary 1.3.8 Let S be a subset of C' and let p, € int(C*). Then S is bounded if and
only if the set {[z, po]c | = € S} isbounded.
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Corollary 1.3.9 For all py € int(C*), the sets K1(py) := {z € C | [z, polc < 1} and
Li(po) :=={z € C | [z,po]c = 1} are compact.

Proof
Let py € int(C*) begiven. The sets K;(po) and Ly (po) are closed subsetsof V[C]. O

Proposition 1.3.10 Let zy € int(C'). Then xz, is an order unit for C for the partial
ordering <c. So, thereisafunctioni4,, : C — IR satisfyingVr € C : x <¢ Uy, ().
Moreover, there is a function £,, : C — R satisfyingVx € C : £,,(7)xo <¢ z and
Vr eint(C) : Ly, (x) > 0.

Proof
The statement
Ve e C I, >0:vry <czx<cpxy D

is equivalent with
Vo e C I, 9 >0Vpe C*:plwg, plo < [z, plo < ¢lwo, plo-

Consider the compact set Li(xg) := {p € C* | [zo,p]c = 1}. ThenC* = {ap | p €
Ly(z0), > 0}. So, statement (1) is equivalent with

VoeeC3vY,p,>0 Vpe€ Li(xg) : ¢ < [z,plo < o
If wedefineld,, : C — Rt and L,, : C — IR* by

= max{[z,plc | p € Li(z0)}
= min{[z, plc | p € Li(z0)}-

Then L,,(z) < [z,p|lc < Uy, (z) foral p € Ly(zo). Clearly, L,,(z) > 0if z € int(C).
O

(x
(x

Uy () :
L., (z):

From the definition of U4, and L., in the above proof, it is not difficult to prove that these
functions are continuous on C'.

Brouwer’s Fixed Point Theorem [Conway, p.149]

Let K be a non-empty compact convex subset of a finite-dimensional normed vector space
X and let 7 : K — K be a continuous function, then there exists x € K such that
F(z) =z,i.e, F hasafixed pointin K.

Since we assumed the salient half-space C to satisfy V' [C] isfinite-dimensional and C** =
C, Brouwer’s Fixed Point Theorem yields the following consequence for continuous
functionson C.

Proposition 1.3.11 Let G : C'\ {0} — C be a continuous function. Then there exists an
x € C\ {0} such that G(x) = ax for some o > 0. Infact, for all py € int(C*) thereis
z € C suchthat G(z) = [G(z), po] .

10



Proof

Let po € int(C*). Theset Ki(py) := {x € C | [z,po]c = 1} is non-empty, convex
and compact by Corollary 1.3.9. Define the function F : K;(po) — Ki(po) by F(z) :=
%. Then F is a continuous function. By the preceding theorem the function F
has a fixed point z in K (pg), SO

z + G(x)
1+ [G(x), polc

r=F(z) =

a

Wefinish thissubsectionwith theintroduction of aL ebesguemeasure. Let zy € int(C') and
consider the hyperplane H; (x¢) := {p € (V[C])* | [x0, p] = 1} of thedual space (V[C])*.
Let ® : R" ' — H,(x) be an affine parametrisation of H,(x,), where n = dimV[C]
and endow H; (x,) with the topology such that ® is ahomeomorphism. Take the standard
L ebesgue measure A on JR™* and define 1 to be the measure on H, () induced by ® and
A. Hence, for every subset A of H; (zo) wehave i(A) = A(®(A)) and for areal-valued
function f on (a subset of) H; (z), for which f o ® is continuous, f is integrable with

respect to u, and
/Afdu — L(_(A)(fotb)dk

Thismeasure i isaregular Borel measure. Therefore, if f iscontinuous on asubset A of
H,(z0) with adenseinterior, and if theset L := {x € A | f(z) < 0} satisfies u(L) = 0,
then L =0,i.e Vx € A: f(z) > 0.

Let 1 denote a finite-dimensional real vector space with {g¢1, ... g, } abassin the dua
space W+, and let f : Hy(xo) — W becontinuous. ThenVi € {1,...,m} : g;o fis
continuous from H; (x) into IR. Furthermore, for a subset A of H;(z,), we denote the
unique element w in W which satisfies

WE{1,...,m}:/A(giof)d,u:giow,

by [, fdu. Foranorm || .|| onthe vector space W, we have

| [ sdul < [ 07 an

1.4 Direct sums

In our model (cf. Section 2) we shall define a production technology set which will be a
subset of adirect sum of two salient half-spaces.

Definition 1.4.1 Let C, and C, be two salient half-spaces. Their direct sumisthe salient
half-space C, & Cy, consisting of all ordered pairsz = (z¢, z°) withz® € C, andz® € C;.
The salient half-space operations are for all =,y € C, & Cy, and for all « > 0 given by:

a . a a b ._ b b
{(fc+y) = 2 +y and{(chrby) = 2’ +y

(ax)® = az® (ax) = ax’.

11



For every z € C, & Gy, there are unique z* € C, and 2° € C, such that z = (2%, 2°).
Since C, @ C) isasalient half-space, every property for salient half-spaces derived thusfar,
isaso applicableto C, ® C,.

On thedirect sum C, © Cj, the partia ordering <(c,«c,) isgiven by:

xa <C ya
r < C.®C, e -
(Ca®Cy) Y { 2 <c, yb.

We continue this subsection on direct sums by remarking that
V[Co ® Cy] = V[C,] & V[Ch],

where the second ¢ denotes the usua direct sum defined for two vector spaces (cf.
[Halmos]), and that
(Ca®Gy)" = C @ Gy,

wherethe action of p € C¥ & Cf onan element x € C,, & C,, isdefined by
[z, p(cuscyy = [2%0%c, +[2°1"]c,-
To simplify notation we shall use C' to denote C,, & C;,. Furthermore, we shall write|., .],
and [.,.] instead of |., .|, and [., .]¢,, respectively. Hence, for every x € C,p € C* we
write [z, plc = [2%, p%]a + [2° p°]s. Also, we shall write <, and <, instead of <, and
<c,-
Definition 1.4.2 For all x € C' we define the set F, by
F,:={zcC|2°<, z%and 2’ <, 2'}.
Let U C C. For all x € U we definethe set R, (U) by
R,(U):={2€U|xe€F,andF, C U}.
Furthermore, the set E(U) is defined by
E(U) :={e € U| R(U) = {e}}.
Without proof we state the following two properties.
Lemma1.4.3 Letx € C. Then
eVyecF,:F,CF,.
o Ify c F,andx # y, thenx ¢ F,.
Lemmal44 LetU C C satisfy
e U= |J F,

ecE(U)
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e Ve,fc E(U)Vre|0,1]:re+(1—71)f €U.

Then the set U is convex.

Proof
Letz,y € U and T € [0, 1]. By thefirst statement of U, thereexist e, f € E(U) such that
x € F.andy € Fy. Thus,

3¢ € O, : 2% = € + §° g e Cp:y* = fr+9y°
b e Oy eb = 20 + 7 P e Cy: fr=9b+ 7"

To prove convexity of U we shall show that 72 + (1 — 7)y € Flreq(1—r)y). Indeed,
this proves the assertion since both properties of U, combined with the first statement of
Lemma1.4.3, yield Fi ci1—rp) C U.

Firstly, note that

T2+ (1 —7)y* =7(e"+2%)+ (1 —7)(f*+ 9%
= (re® + (1 =7)f*) + (2% + (1 — 7)5),

and secondly,
(tz’+ (1= 1)) + (r2° + (1 = )% = 7e® + (1 — 7) f°.

Since 2%+ (1 —17)§* € C, and 72° + (1 — 7)3® € C,, weconcludethat 7z + (1 —7)y €
Frer-ns): =

13



2 Theprivate ownership model

2.1 Economy bundlesand pricing functions

As mentioned in the introduction, the main goal of this paper is the introduction of a
model of a private ownership economy, which differsfrom the neo-classical modelsinthe
following two aspects.

e Commodities are not assumed to occur separately. Instead of introducing the
commodity space (IR")* describing n different commodities, we shall only assume
appearance of so called economy bundles. Here, we use the term “economy bundle’
to describe exchangable objects in the economy. Thus, economy bundles can
represent a single commodity, a bundle of commaodities or a fixed combination
of commodities, of which one of the elements can only be obtained by buying
this specific fixed combination, i.e., of which one element is not sold separately.
The latter case describes a situation in which our model allows for links between
commodities.

e Production and consumption are not treated on the same level. In the model, two
different types of economy bundles occur: production bundles which can be used
as input to production processes, and consumption bundles which can be output
of these processes. Bundles of both types can be consumed by economic agents
and bundles of both types will be present in the initial endowment. However, the
production processes can convert only production bundlesinto consumption bundles
and not the other way around.

In our model, we incorporate the above described situation as follows.

Firstly, considering economy bundles instead of separate commodities, we model the set
of al economy bundles in the economy by a salient haf-space C, reflecting that the
only possible manipulations with economy bundles are adding and scaling over IR*. If
x,y € C represent two economy bundles then we can speak of the sum x + y of x and y,
and if a > 0 we can speak of the scaled version ax of z. Both x 4+ y and ax are economy
bundles in C'. Requiring the economy bundle set C' to be salient (Condition 1.1.1.a)
describes the fact that it isimpossible for two economy bundlesto cancel each other out
after addition.

Secondly, considering two types of economy bundles, we assume that C' isthe direct sum
of two salient half-spaces C,,; and Co,, Where C,,; and C,,s consists of al production
bundles and all consumption bundles, respectively. Both C,, and C, are assumed to
be non-trivial, i.e., assumed to be different from {0} and {0*}, respectively. So, C
is aso non-trivial. In every economy bundle x € C, each of the two types is uniquely
represented: = = (P, ) with 2" € Cppq aNd 2 € Cirs.

Since in our model commodities are not assumed to occur separately, the price of asingle
commodity is not a meaningful concept. Instead, we speak of the value of an economy
bundle, which will be determined on the basis of “pricing functions'. These pricing
functions are described by subadditive positive functionals on C. The set of all such
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functionals has been introduced in Section 1 asthe salient half-dual space C* and we have
seen that C* = (Cyoa)* ® (Coms)*. Let z € C and p € C*, then the value of economy
bundle x with respect to the pricing function p equals

[imp]c - [xprod’pprod]prOd 4+ [:Uoons7 poons]oor]s.

Instead of the notation [x, p|- we shall mostly write V(z, p) for the value of the pair (z, p)
withz € C andp € C*.

2.2 Economic agents

The features of an economic agent are an economy bundle w = (w™™, w**) € C, called
initial endowment, and a preference relation = defined on C, on the basis of which the
agent is supposed to make choices. By = > y we denote that the agent considers economy
bundle z to be at least as preferableasbundley. By z - y wemeanz = y and =(y = x).
This preferencerelation > on C' satisfies reflexivity, transitivity and completeness.

For agiven value k > 0 and apricing function p € C*, the budget set B(p, k) := {z €
C | V(z,p) < k} consists of al economy bundles that can be afforded given value  and
pricing function p. Theset D(p, k) := {x € B(p,k) | Yy € B(p, k) : © = y} of al best
(most preferable) elements of the budget set B(p, «), iscalled the demand set. In thefina
model, x will be specified as being the value V(w, p) of the initial endowment plus the
values of the sharesin the profit of production.

2.3 Production processes and technologies

Since we deal with an exchange economy with production, we have to model so called
production processes, i.e., processes that incorporate the possibility of converting pro-
duction bundles into consumption bundles. For our model this means that we say that
an economy bundle x € C represents the production process which converts production
bundle ™ € C,q into consumption bundle z*~ € C,,.. A collection of production
processes being technologically feasible is said to be a production technology. Hence, a
production technology is modelled by a subset 7" of C'. Each production technology T
will satisfy the following natural assumptions from afeasible point of view:

a) The production process “no production™ belongsto T';

b) A production processin 7" with zero input has zero output;
cl) Freedisposal of input;

c2) Freedisposal of output.

Free disposal of input states that if x = (2", ™) is an feasible production process and
o = P 4 P for some y*™ € Cpo, then (27, ™) is also afeasible production pro-
cess since after disposal of 3", production process = can be exectuted. Put differently, if
z € T and 27 € Cpoq With 27 <, 27 then (27, ™) € T'. Similarly, free disposal of
output states that if z = (=™, x™) isafeasible production process and z®® = y** 4 7™
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for some y™, 2 € Ci, then ("™ £°*) is a so afeasible production process since after
production of x** out of x™, y*™ can be disposed of, leaving z*™ asoutput. So, if x € T
and 2 € Cipe With 2 <, 2 then (z", ™) € T.

In fact, for every x € T, the set F,, (asdefined in Definition 1.4.2) isasubset of 7', since
F, consists of precisaly all the production processes in C' which are executable dueto the
fact that x is executable and the two free disposal properties cl and c2.

So, we come to the following definition of the concept of production technology.
A set T' C C isaproduction technology if the set T" has the following properties:

a) (0prod7 Ooons) c T’
b) If (0pr0d7 xoons) c T thm s — Ooons’
cT=UF.

zeT
We call a production process (z™, z**) of atechnology T efficient, if at least "™ is
needed to produce z®*, and if it is not possible to produce more than z*™ out of x".
Mathematically speaking, this boils down to the following definition.

Definition 2.3.1 For a production technology 7', a production process e € T' is efficient
ifvVe € C:

° ((.,Ij.prod7 eoons) c T and xprod Sprod eprod) SN xprod — eprod;
° ((eprod’ xoons) c T and eoors Soons xoons) SN oS — oS

Put differently, e is efficient if and only if e € E(T') (cf. Definition 1.4.2). Note that
(07 0=) € E(T).

Given a pricing function p € C* and a production process z € T', the gain G(z, p) of the
pair (z,p) equas the value of the produced economy bundle z®* minus the value of the
production bundle ™, used asinput. So,

g(l’, p) = [xoons> poons]oons - [xpmda ppmd]prod' (2
Note that the following two properties are a direct consequence of the definition of G and
F,.

e letzcC,pe C*andy € F,, thenG(z,p) > G(y,p).
o Letz € C,peint(C*)andlety € F, satisfy y # z, then G(z,p) > G(y, p).

Sincefor every pair (x,p) € C' x C* we can speak of bothitsvalue, where z is considered
as an economy bundle, and its gain, where x is considered as a production process, we
have introduced the distinguishing notation V(z, p) and G(z, p). Notethat VV isamapping
from C' x C* into IR™, while G isamapping into IR.

Given p € C*, the (possibly empty) set of all gain maximizing production processesin T’
is called the supply set S(p) of T',i.e,

S(p)={z €T |VyecT:G(x,p)>G(yp} €)
The conditionson 7" and the definition of E(7T") imply that Vp € C* : S(p) C E(T).
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2.4 Agents, production and equilibrium

Let I denote the number of economic agentsand J the number of production technologies
present in the private ownership economy. The set of agents and the set of production
technologies is labelled by i € {1,...,I} and j € {1,...,J}, respectively. For each
ie{l,...,1},5 € {1,...,J}, agent i has initial endowment w; € C, and share 0,;,
0 < #,; <1, inthegain of production technology 73, i.e., if production process z; € T}
is executed at pricing function p, the gain G(z;, p) of this production process is divided
amongst theagents, such that agent ¢ receives§,;G(x;,p). So,forall j € {1,..., J} these

shares satisfy Z 0;; = 1.

At pricing functlon p € C* and executed production processes z; € 1}, j € {1,...,J},
theincome «;(p; 1, . .., ;) of agent i is defined by

J
Hz(pa AP >xJ) = V(w17p) + Zeijg(xj>p)>

j=1

where the first term denotes the value of the initial endowment of agent 7 and the second
term denotesthetotal valuereceived from sharesin thegain of the productiontechnologies.
In this seting, an equilibrium concept analogous to that of the neo-classical Walrasian
equilibrium can be introduced.

Definition 2.4.1 A Walrasian equilibriumisan (I + J + 1)-tuple ((s;)7_;, (di){_;, Deg)
consisting of

® peg € C"\ {0},
o s, € Si(peg) foralyje{l,...;J}
o d; € Di(Deq, Ki(Deg; 51, --.,85)) foralli e {1,...,1};

° Z d + Z( _prod Ooons) Z w; + Z (Oprod oons).

Jj=

We cdll p., a(Walrasian) equilibrium pricing function.

Finally, we present additional assumptions for this model, such that existence of such
equilibriais guaranteed.

Equilibrium Existence Theorem

The model of a private ownership economy, described above, admitsa Walrasian equilib-
rium, under the following assumptions:

Al VI[C]isfinite-dimensional.
A2 C* =C.
A3 For every j € {1,..., J}, production technology 7; satisfies
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aTl,= U F.

e€E(T))
b) T; isclosed with respect to topology 7 (C, C*),

C) ifer,eo € E(T}),e1 # €2, 7 € (0,1) thente; + (1 — 7)ex € Tjand rey + (1 —
T)ea & E(T}).

A4 Foreveryi € {1,...,1}, preferencerelation >-; is

a) monotone: V z,y € C' : z <¢ yimpliesy =, z,
b) strictlyconvex: Vx,y € C,7 € (0,1) : x =; yandz # yimplyrz+(1—7)y >,
Y,

c) continuous: Vy € C'thesets{x € C' |z =; y}and{x € C | y »=; x} areclosed
inC.

A5 Furthermore,

a) Ipeint(C*)Vje{l,...,J}:S;(p) #0,
b) for all p= € C* \ {0} satisfying Vi € {1,..., 1} : [w;*, p"ens = 0, there

cons

isjo € {1,...,J}and z € T}, such that [z°®, p*®|ems > 0,

€) Vp™ € Chea \ {077} [ Wi P G > 0-

Let us shortly discuss these extra assumptions, and give a short sketch of the proof of this
theorem. The complete proof can be found in [Schalk].

Assumptions 1 and 2 guarantee that C' is a closed subset of V[C] with respect to the
natural topology 7. Furthermore, they guarantee that every bounded set is pre-compact
and so the budget sets are compact for interior pricing functions. The interpretation of
Assumption 3.aisthat for every production processz € T}, thereisan efficient production
processe € E(T};) suchthatx € F,,i.e., zistheresult of e and thefreedisposal properties.
Onthebasisof Assumptions3.band 3.cit can be proved that instead of dealing with supply
sets, we deal with supply functionsS; with valuesin E(T}). So, in order to guarantee that
we can use supply functions, wei ntroduce Assumption 3.b, which resembles “ decreasing
returnsto scale” or “ strict convexity conditions’. Assumption 3.c guaranteesthe continuity
of the supply functions. Similarly, Assumption 4 impliesthat we can deal with continuous
demand functions. Assumption 5.a yields that the total supply function has a non-trivial
domain. Existence of a Walrasian equilibrium, in the sense of Definition 2.4.1, follows
from a generalisation of Brouwers Fixed Point Theorem, for continuous functions on
salient half-spaces (cf. Proposition 1.3.11). Inthis, Assumptions 5.b and 5.c will be used.
Assumption 5.b states that if p™* is such that [w;”®, p**|.. = 0 foreveryi € {1,..., 1},
there is a production technology j, which can produce something with positive val ue a
p™=. If thiswere not the case, every consumer would have zero income at prici ng function

(0 p™=). Since Assumption A5.c only requires that the production part Z w;"™ of the

total initial endowment is strictly positive, itisan a$umpt|on more natural than the one

which is usualy made (cf. [Debreu]), stating that Z w; is gtrictly positive. Hence, in
=1
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this model, the existence of a Walrasian equilibrium is guaranteed even if Z w; ™™ = 0%,

Moreover, as can be seen in the proof below, Asumption A5.b and 5.c can be replaced by
the weaker condition

AS5.b") for every sequence (p,),.pv in the domain of the total supply function with
non-zero limit, thereisiy € {1,..., I} such that

lim inf{x;, (pn; S1(pn), -, Ss(pn)) | n € IN} > 0.

n—o0

Proof
Let (pn), v b€ asequence in the domain of the total supply function, with limit p €
C*\ {0}. We have to prove

J
Jig € {1,..., I} : iminf([w", pn™™ ] wes + [Wi™™, Pn ] cons + ZHW G(S;(pn),pn)) > 0.
—_—

n—o0

—
>0 >0 J >0

Since, by Assumption 5.c, Z w"™ € int(Cye), We may as well assume pP™ = (0.

Furthermore, we may aswell assume that Vi € {1,...,1} : [w,™, 0™ s = 0. By
Assumption 5.c, 3jp € {1,...,J} 3z € Tj, : [z, p°°”5]0ons > 0. The continuity of the
function G yieldsIN € IV Vn > N : Q’(Sjo(pn),pn) > G(z,pn) > 3G(z,p) > 0. Take
io € {1,...,1} suchthat ¢,,;, # 0 and the proof is done. O

Sketch of the proof of the Equilibrium Existence Theorem: first we establish continuity
of the total supply function S and the total demand function D on a suitable domain in
C*. Then, we introduce the function Z by

2(r.0) = VOW).0) ~ 9(SB)0) - V(X w0

Now, p* is an equilibirum pricing function if and only if for al ¢ € C* : Z(p®,q) < 0.
To find p* we introduce the function F by

F(p) = /L o) max{0, Z(p, q) }qdu(q),

where Ly (z¢) := {q € C* | V(z0,q) = 1}, where i is the standard L ebesgue measure on
Ly (zo) and where z € int(C') can be taken arbitrarily. Precisely those p for which there
isa > 0 such that F(p) = ap, are equilibrium pricing functions. To prove existence, we
use Proposition 1.3.11, by extending  in an appropriate way.
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