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A Model Distinguishing

Production and Consumption Bundles
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Abstract

In contrast to the neo-classical theory of Arrow and Debreu, a model of a private
ownership economy is presented in which production and consumption bundles are
treated separately. Each of the two types of bundles is assumed to establish a convex
cone. The main part in the modelling is the introduction of production technologies
which can be thought of as replacing the notion of production sets in Arrow and
Debreu’s model. It is a point of further investigationwhether the notion of production
technology is also generating the notion of production set.
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Introduction

The introduction of a new mathematical model of a private ownership economy, a corre-
sponding Walrasian equilibrium theorem and the mathematics surrounding them are the
main topics of this paper. Thus, we hope to achieve a more realistic model of a private
ownership economy.
As far as the model is concerned, it differs from the neo-classical models, described in the
standard works of [Debreu] and [Arrow/Debreu], in the following two features.

• The model recognises commodity bundles instead of separate commodities.

• The model treats production and consumption on a different level.

Our model of a private ownership economy is only in terms of convex cones and their
properties, and not in terms of vector spaces, whereas the neo-classical models are set in
terms of the Euclidean space IRn. We emphasize this use of convex cones by the axiomatic
introduction of the concept of salient half-space. We define a salient half-space to be a set
in which addition and scalar multiplication over the positive reals are defined such that the
set is an addition semi-group and such that the distributive axioms are satisfied. The main
difference between a salient half-space and a vector space is that for a salient half-space
multiplication is allowed over the non-negative real numbers, only. Each pointed convex
cone in which addition and scalar multiplication are defined in the natural way by its
surrounding vector space, is a salient half-space. Furthermore, each salient half-space
induces an ordered vector space for which the salient half-space is the positive cone. A
great deal of effort in this paper is put in the presentation of this mathematical concept
and related topics.

The use of salient half-spaces allows us to not distinguish separate commodities. In fact,
we do not need to consider the concept of commodity at all, and will consider the con-
cept of “economy bundle" instead. In a worldlike example, our model can describe the
non-neo-classical situation in which fixed links between different commodities may be
assumed present, for instance an economy in which only fixed, prescribed combinations
of commodities can be traded.

In the presented model, an economy bundle is a unique concatenation of a production
(economy) bundle and a consumption (economy) bundle. Here, only production bundles
can be used as input for a production process whereas the output of this process is
always a consumption bundle. The set C of economy bundles is taken to be the product
set Cprod × Ccons where the salient half-spaces Cprod and Ccons contain the production and
consumption bundles, respectively.
If it is possible to produce consumption bundle xcons from production bundle xprod, we call
economy bundle (xprod, xcons) ∈ C a production process. A collection T of production
processes is called a production technology if it satifies certain conditions, to be specified
later. As far as we know, in the neo-classical models, consumption (economy) bundles and
production (economy) bundles are not distinguished explicitely: instead of introducing a
production technology T as a subset of Cprod × Ccons, the neo-classical models recognise a
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production technology (production set) as a subset Y of the Euclidean vector space IRn.
Globally speaking, the vector lattice IRn with corresponding production set Y is replaced
by the salient half-space Cprod × Ccons with production technology T . Indeed, IRn can
be regarded as the product of the positive cone (IRn)+ and the negative cone (IRn)− by
corresponding to each input-output vector x ∈ IRn, the pair (x−, x+) with output vector
x+ and input vector x− defined by x+ := 0 ∨ x and x− := (−x) ∨ 0. So, to each x ∈ Y
there is associated a unique pair (x+, x−) ∈ (IRn)+ × (IRn)+, and thus Y can be seen
as a subset Ỹ of (IRn)+ × (IRn)+. We emphasize that the natural lattice structure of IRn

with positive cone (IRn)+ enables to regard Y this way. However, Ỹ does not satisfy
the conditions we impose on T , in general. In fact, in our model, lattice structures are
not involved at all. In this paper, we shall not discuss whether the neo-classical notion
of production technology (Y ) is generalised by our notion of production technology (T ).
This will be part of further research.

Disregarding the concept of commodity, we cannot speak of the price of a commodity, and
so, we use the notion of “pricing function" which gives a value to every economy bundle.
Furthermore, the introduction of the concept of production and consumption bundles gives
rise to a slightly altered definition of Walrasian equilibrium. Although the model is pre-
sented in the general terms of salient half-spaces, existence of these Walrasian equilibria
can be guaranteed only if some assumptions are made, of which the assumption that the
vector space for which the salient half-space is the positive cone, is finite dimensional, is
the strongest. Despite this, we feel that the essential idea of this model is the use of the
concept of salient half-space and concepts related to it. Forcing ourselves to cope with this
general model structure, we have to apply an analysis and techniques which may be of use
when tackling models for private ownership economies where the finite dimensionality
restriction is not satisfied.

We conclude this introduction by describing the contents of the different sections.
Section 1 contains the introduction of the mathematical concepts and theorems which
are used to construct the model and to prove the Equilibrium Existence Theorem. Its
main item is the introduction of the concept of salient half-space and its relationship with
vector spaces. The presentation in this section is almost self containing. In Section 2
we describe the mathematical model introducing the features of the economic agents, and
of the production technologies. The Equilibrium Existence Theorem is stated and the
mathematical assumptions, needed in its proof, are introduced. Futhermore, a sketch of
the proof is presented.
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1 Mathematical concepts

The purpose of this section is the description of the mathematical concepts involved in the
model of a private ownership economy presented in Section 2.

1.1 Salient half-space

We start with the concept of salient half-space, since we shall use this notion to model
the set of economy bundles. Thereafter, we describe some similarities and differences
between salient half-spaces, vector spaces, and convex cones.

Definition 1.1.1 A salient half-space is a set C with the following properties:

• An addition is defined on C , which is commutative, associative and satisfies

1.1.1.a) there exists an element v ∈ C , called the vertex of C , such that x + y =
v ⇐⇒ x = y = v, for all x, y ∈ C ,

1.1.1.b) for every x ∈ C the mapping addx : C → C , defined by addx(y) := y+x,
is injective.

• To every pair x ∈ C and α ≥ 0, there corresponds an element αx ∈ C , called
the (scalar) product of α and x. Scalar multiplication over IR+ thus defined, is
associative and satisfies the distributive laws. Furthermore, 1x = x for every
x ∈ C .

Note that Condition 1.1.1.a implies that the mapping addx is surjective if and only if
x = v. Given x, y, z ∈ C , with x = y + z, it is meaningfull to write z = x− y. To avoid
confusion, we shall not use this notation.

Example
Let C be a pointed convex cone in a vector space V , then C is a salient half-space with
the zero-element of V as vertex, and addition and multiplication defined in the natural
way. Recall that a subset C of a vector space V is called a cone if αx ∈ C for all x ∈ C
and α ≥ 0. A cone is called pointed if the zero-element of V is the only extreme point of
C . A subset D of a vector space is called convex if τx+ (1− τ )y ∈ D for all x, y ∈ D
and τ ∈ [0, 1]. Thus, a cone in a vector space is convex if and only if it is closed under
addition.

We shall see that the converse also holds: For every salient half-space C , there is a vector
space V [C] such that C is a pointed convex cone in V [C].

It is not difficult to prove that the vertex of a salient half-space is unique and satisfies

a) ∀α > 0 : αv = v,
b) ∀x ∈ C : x+ v = x,
c) ∀x ∈ C : 0x = v.

From the second property together with Conditions 1.1.1.a and 1.1.1.b, we conclude that
(C,+) is an addition semi-group with zero-element v. Since in a salient half-space, scalar
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multiplication is defined only over IR+ and due to Condition 1.1.1.a, (C,+) is not a group.
However, we can extend (C,+) to a group in a similar way as IN ∪ {0} extends to ZZ .
We shall present this extension in short. Define the equivalence relation∼ on the product
set C ×C by:

(x1, x2) ∼ (y1, y2) :⇐⇒ x1 + y2 = y1 + x2.

Let V [C] be the collection of all equivalent classes [(y1, y2)] := {(z1, z2) ∈ C × C |
(z1, z2) ∼ (y1, y2)}, so V [C] := (C×C)/∼. Unambiguously, we can define the following
addition and scalar multiplication on V [C]:

[(y1, y2)] + [(z1, z2)] := [(y1 + z1, y2 + z2)]

α[(y1, y2)] :=

{
[(αy1, αy2)] if α ≥ 0
[((−α)y2, (−α)y1)] if α < 0.

We shall make plausible that with these definitions, the set V [C] becomes a real vector
space. We call V [C] the vector space generated by the salient half-space C .
In general, if (A,+) is a semi-group with a zero-element, then the above construction can be
applied to construct a group. So the proof thatV [C] is indeed a vector space can concentrate
on the introduction of the scalar product over negative α. The construction yields that
[(v, v)] is the origin of V [C] and −[(y1, y2)] = [(y2, y1)]. Note that multiplication by
negative scalars is defined properly. Let α > 0 then

(−α)[(y1, y2)] = α(−1)[(y1, y2)] = α[(y2, y1)] = α(−[(y1, y2)]).

Furthermore, the salient half-space C is a total subset of the vector space V [C], i.e., the
linear span of C equals V [C]. The vertex v of C coincides with the origin of the vector
space V [C], and henceforward we shall denote the vertex of a salient half-space by 0.

Definition 1.1.2 On a salient half-space C the partial ordering ≤C is given by

x ≤C y if and only if ∃z ∈ C : x+ z = y,

x <C y if and only if ∃z ∈ C \ {0} : x+ z = y.

The salient half-space C , when identified with {[(y1, y2)] ∈ V [C] | ∃x ∈ C : [(y1, y2)] ∼
[(x, 0)]}, can be regarded as a subset of V [C]. The partial ordering≤C , defined on C , can
be extended to a partial ordering on V [C] by defining for all [(y1, y2)], [(z1, z2)] ∈ V [C]:

[(y1, y2)] ≤C [(z1, z2)] if ∃[(x1, x2)] ∈ C : [(y1, y2)] + [(x1, x2)] = [(z1, z2)].

Note that this is equivalent with y1 + x1 + z2 = y2 + x2 + z1, or

y1 + z2 ≤C y2 + z1.

Also, note that C := {[(y1, y2)] ∈ V [C] | [(0, 0)] ≤C [(y1, y2)]}.

It is costumary to introduce a pointed convex cone in a vector space, therewith introducing
a partial ordering on this vector space. Since we consider the salient half-space, rather
than the vector space, to be the essential element of the model, we introduce these notions
the other way around,
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Definition 1.1.3 An element u of C is called an order unit for C if

∀x ∈ C ∃λ ≥ 0 : x ≤C λu.

Lemma 1.1.4 Let u be an order unit for C , and let [(y1, y2)] ∈ V [C]. Then

∃λ ≥ 0 : −λ[(u, 0)] ≤C [(y1, y2)] ≤C λ[(u, 0)].

Proof

Since u is an order unit for C , we find

{
∃λ1 ≥ 0 : y1 ≤C λ1u
∃λ2 ≥ 0 : y2 ≤C λ2u.

Define λ := max{λ1, λ2}, then

{
y1 ≤C y2 + λu
y2 ≤C y1 + λu.

2

1.2 Salient half-dual space

Let C be salient half-space.

Definition 1.2.1 A functional p : C → IR+ is said to be half-linear if p satisfies{
p(x+ y) = p(x) + p(y) ∀x, y ∈ C
p(αx) = αp(x) ∀x ∈ C ∀α ≥ 0.

The set of all half-linear functionals defined on C will be denoted by C∗. From the
definiton it follows that the set C∗ is a salient half-space also, where the zero-functional
is its vertex and addition and positive scalar multiplication are defined pointwise; for
p, q ∈ C∗ and α ≥ 0 : {

(p+ q) (x) := p(x) + q(x) ∀x ∈ C
(αp) (x) := αp(x) ∀x ∈ C.

We call C∗ the salient half-dual space of C or, in short, the half-dual of C .
It turns out (cf. [Conway]) that existence of an order unit in C is sufficient to guarantee
that C∗ is non-trivial, i.e., C∗ 6= {0}.

Proposition 1.2.2 If C has an order unit, then C∗ 6= {0}.

Proof
Let u be an order unit for C . Define the set U ⊂ V [C] by U := {λ[(u, 0)] | λ ∈ IR}, then
U is a subspace of V [C]. By Lemma 1.1.4, we find

∀[(y1, y2)] ∈ V [C] ∃λ ≥ 0 : −λ[(u, 0)] ≤C [(y1, y2)] ≤C λ[(u, 0)].

Thus, we can define the sublinear functional q : V [C]→ IR by

q([(y1, y2)]) := inf{λ | [(y1, y2)] ≤C λ[(u, 0)]}.
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Define f(λ[(u, 0)]) := λ, for every λ ∈ IR. With this definition, f : U → IR is a
positive linear functional on U satisfying ∀λ ∈ IR : f(λ[(u, 0)]) = q(λ[(u, 0)]). By the
Hahn-Banach Theorem, there exists a linear functional f̃ : V [C] → IR such that on the
set U , f̃ is equal to f , and ∀[(y1, y2)] ∈ V [C] : f̃([(y1, y2)]) ≤ q([(y1, y2)]). For every
[(x1, x2)] ∈ C it holds that q([(x1, x2)]) ≥ 0. We conclude that the functional f̃ acts
positively on C since for all [(x1, x2)] ∈ C : f̃ (−[(x1, x2)]) ≤ q(−[(x1, x2)]) ≤ 0. 2

Applying Definition 1.1.2 on the salient half-dual space, we find the partial ordering ≤C∗
on C∗, which is given by

p ≤C∗ q if and only if ∃r ∈ C∗ : p + r = q.

p <C∗ q if and only if ∃r ∈ C∗ \ {0} : p + r = q.

Note that this partial ordering is equivalent with the standard partial ordering on functionals
in (V [C])∗:

p ≤C∗ q ⇐⇒ ∀x ∈ C : p(x) ≤ q(x).

p <C∗ q ⇐⇒ (∀x ∈ C : p(x) ≤ q(x))∧ (∃x ∈ C : p(x) < q(x)).

First we examine the relationship between the vector space V [C∗], generated by the
half-dual C∗ of C , and the dual space (V [C])∗ of V [C].

Proposition 1.2.3 V [C∗] is canonically injected in (V [C])∗ and therefore can be consid-
ered a subspace of (V [C])∗. Furthermore, C∗ = {p ∈ (V [C])∗ | ∀x ∈ C : p(x) ≥ 0}.

Proof
Let [(p1, p2)] ∈ V [C∗] and define for every [(y1, y2)] ∈ V [C]:

[(p1, p2)] ([(y1, y2)]) := p1(y1)− p1(y2)− p2(y1) + p2(y2).

It is easy to check that this definition is independent of the choice of the representatives
(y1, y2) and (p1, p2), and that with this definition [(p1, p2)] acts as a linear functional on
V [C]. Secondly, it is easy to check that the mapping, described above, which adds a linear
functional to every pair [(p1, p2)] ∈ V [C∗] is linear. Furthermore, if ∀[(x1, x2)] ∈ V [C] it
holds that [(p1, p2)]([(x1, x2)]) = 0, then∀x ∈ C : [(p1, p2)]([(x, 0)]) = p1(x)−p2(x) = 0,
and we conclude p1 = p2, or, in other words, [(p1, p2)] = [(0, 0)]. 2

In the sequel we shall regard C∗ as a subset of (V [C])∗.

Let W be a vector space. Then S ⊂ W ∗ is said to be separating the elements of a subset
M ⊂ W if ∀x, y ∈ M,x 6= y ∃p ∈ S : p(x) 6= p(y). If M is linear, this comes down to
∀x ∈M \ {0} ∃p ∈ S : p(x) 6= 0.

Lemma 1.2.4 A set S0 ⊂ C∗ separates the elements of C if and only if the collection
S := {[(p1, p2)] | p1, p2 ∈ S0} ⊂ V [C∗] separates the elements of V [C].
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Proof
Let x, y ∈ C . Consider the following sequence of equivalent statements

∀p ∈ S0 : p(x) = p(y),
∀p1, p2 ∈ S0 : p1(x) + p2(y) = p1(y) + p2(x),
∀[(p1, p2)] ∈ S : p1(x) + p2(y)− p1(y)− p2(x) = 0,
∀[(p1, p2)] ∈ S : [(p1, p2)] ([(x, y)]) = 0.

Note that x 6= y is equivalent with [(x, y)] 6= [(0, 0)]. 2

From now on, we assume that V [C] is finite-dimensional. As usual in this situation, we
identify V [C] and its bidual (V [C])∗∗, i.e., we identify each x ∈ V [C] with its action
p 7→ p(x) on (V [C])∗. To show this duality to full advantage, instead of p(x), we write
[x, p] for every p ∈ (V [C])∗ and x ∈ V [C]. Note that with this identification, we have
C ⊆ C∗∗. Since in this paper, we are particularly interested in salient half-spaces, and
since we regard the vector space generated by a salient half-space merely as a mathemati-
cal tool, we shall often adopt the notation [x, p]C to denote p(x) where x ∈ C and p ∈ C∗.

Because C ⊆ C∗∗, we can consider the partial ordering ≤C∗∗ on C as follows. Let
x, y ∈ C , then

x ≤C∗∗ y ⇐⇒ ∃z ∈ C∗∗ : x+ z = y
⇐⇒ ∀p ∈ C∗ : [p, x]C∗ ≤ [p, y]C∗

⇐⇒ ∀p ∈ C∗ : [x, p]C ≤ [y, p]C.

So, if C∗∗ = C , then x ≤C y is equivalent with ∀p ∈ C∗ : [x, p]C ≤ [y, p]C .

Proposition 1.2.5 Let C∗∗ = C . Then C∗ separates the elements of C .

Proof
Let x, y ∈ C , and suppose ∀p ∈ C∗ : [x, p]C = [y, p]C. Of course, since C∗∗ = C , this
means x ≤C y and y ≤C x. The partial ordering ≤C being anti-symmetric, this implies
x = y. 2

Assuming C∗∗ = C , Lemma 1.2.4 yields that V [C∗] is a subspace of (V [C])∗, separating
the elements of the finite dimensional vector space V [C]. This yields

C∗∗ = C =⇒ V [C∗] = (V [C])∗.

It is in general not true, that V [C∗] = (V [C])∗ implies C∗∗ = C , since the latter equality
is related to a non-algebraic condition on C .

Finally, we mention the consequences of the condition C∗∗ = C for the partial ordering
on C:

x ≤C y :⇐⇒ ∃z ∈ C : x+ z = y

⇐⇒ ∀p ∈ C∗ : [x, p]C ≤ [y, p]C,
x <C y :⇐⇒ ∃z ∈ C \ {0} : x+ z = y

⇐⇒ (∀p ∈ C∗ : [x, p]C ≤ [y, p]C) ∧ (∃p ∈ C∗ : [x, p]C < [y, p]C).
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1.3 Topology and order units

We start by introducing the topology T (C,C∗) for a salient half-space C .

Definition 1.3.1 Let (xn)n∈IN be a sequence in C , then we say that (xn)n∈IN converges
to x (notation: xn → x), if ∀f ∈ C∗ : lim

n→∞
f(xn) = f(x).

Definition 1.3.2 A set S ⊂ C is T (C,C∗)-closed in C , if for all sequences (xn)n∈IN in
S, satisfying xn → x ∈ C , it holds that x ∈ S.

Thus, a topology on C is defined, where O ⊂ C is an open set if and only if C \ O is
T (C,C∗)-closed. The proof that the collection of all such open sets satisfies the conditions
of a topology for C is straightforward. We shall denote this topology by T (C,C∗).

In the following, we shall assume C to be a salient half-space satisfying the conditions
presented at the end of Subsection 1.2, i.e. C 6= {0}, dim(V [C]) < ∞, and C∗∗ = C .
Note that if a salient half-space C satisfies these conditions, so does its dual C∗, since
(V [C∗])∗ = (V [C∗])∗∗∗. Therefore, every result derived for C has a dual result for C∗.
Furthermore, note that the construction of V [C] from C implies that C is solid in V [C].

On V [C] we introduce the unique linear topology T . We note that this topology is induced
by the choice of any norm on V [C]. Since C∗ contains a basis for V [C∗], we find the
following lemma which yields that the relative topology on C equals T (C,C∗).

Lemma 1.3.3 Let (yn)n∈IN be a sequence in V [C]. Then (yn)n∈IN is convergent if and
only if ∃y ∈ V [C] ∀f ∈ C∗ : lim

n→∞
f(yn) = f(y).

Henceforward, we shall refer to topology T (C,C∗) as the relative topology on C . We
shall denote the T -interior of a set A ⊂ V [C] by int(A) and the boundary of A by ∂A.
In particular, we shall use the notation int(C) to denote the T -interior of C , where C is
regarded as a subset of V [C]. With the notation ∂C , we denote C \ int(C).

Lemma 1.3.4
C∗∗ = C ⇐⇒ C is closed in V [C].

Proof
Suppose C∗∗ = C , and let (xn)n∈IN be a sequence in C which is convergent in V [C],
with respect to topology T , with limit x ∈ V [C]. Since by Lemma 1.3.3

∀f ∈ C∗ ∀n ∈ IN : f(xn) ≥ 0,

we conclude that x ∈ C∗∗ = C .
For the converse, suppose that C is T -closed. We shall prove that C∗∗ ⊆ C . Let x ∈ C∗∗

and suppose x 6∈ C . Then by the Strong Separation Theorem of Minkowski ([Panik,
p.59])

∃f ∈ V [C∗] ∃α ∈ IR :

{
f(x) < α
∀y ∈ C : f(y) > α.
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Suppose there exists y ∈ C with f(y) < 0, then we come to a contradiction since λy ∈ C
for all λ > 0. Hence, f ∈ C∗, which is in contradiction with x ∈ C∗∗. 2

Since C is solid in V [C], int(C) 6= ∅. Since, in this paper, we regard the salient half-
space C , rather than the vector space V [C], to be the essential concept, we would like to
have a salient half-space related characterisation of int(C).

Lemma 1.3.5 Let x0 ∈ C . Then x0 ∈ int(C) if and only if ∀p ∈ C∗ \ {0} : [x0, p]C > 0.

Proof
Let x0 ∈ int(C). Suppose there exists p ∈ C∗ such that [x0, p]C = 0. Since x0 ∈ int(C)
there is an open set O ∈ T satisfying {x0} + O ⊂ C . For all y ∈ O, [y, p]C =
[x0 + y, p]C ≥ 0, from which we conclude that p = 0.
For the converse, suppose x0 ∈ ∂C \ {0}. Since C is a convex cone, int(C) is a convex
cone. By the Weak Separation Theorem of Minkowski ([Panik, p.60])

∃ p0 ∈ (V [C])∗ \ {0} ∃ α ∈ IR :

{
∀ λ ≥ 0 : [λx0, p0] ≤ α
∀ x ∈ int(C) : [x, p0] ≥ α.

Choosing λ equal to 0, and choosing a sequence in int(C) converging to 0, we find α = 0.
As a consequence p0 ∈ C∗ \ {0}. By subsequently choosing λ equal to 1, we find
[x0, p0]C ≤ 0. 2

Note that as a consequence of this lemma, every element x ∈ ∂C satisfies ∃p ∈ C∗ \{0} :
[x, p]C = 0.

Proposition 1.3.6 Let p0 ∈ int(C)∗. Then there is a unique norm ‖ . ‖p0 on V [C], where
∀x ∈ C : ‖ x ‖p0 = [x, p0]C .

Proof
For every y ∈ V [C] define ‖ y ‖p0 := inf{[x1 +x2, p0]C | x1, x2 ∈ C with y+x2 = x1}.
It is not difficult to check that ‖ . ‖p0 indeed is a norm on V [C]. To prove that
∀x ∈ C : ‖ x ‖p0 = [x, p0]C , we remark that ∀x ∈ C : [x, p0]C ≤ ‖ x ‖p0 , since for all
x, x1, x2 ∈ C satisfying x+ x2 = x1 it holds that x ≤C x+ 2x2 = x1 + x2. Furthermore,
we can choose x1 = x and x2 = 0 to obtain that ‖ x ‖p0 ≤ [x, p0]C . 2

Since C∗∗ = C , interchanging the role of C and C∗ in the above proposition yields that
each x0 ∈ int(C) induces the unique norm ‖ . ‖x0 on C∗.

Corollary 1.3.7 Let p0 ∈ int(C∗) and let (xn)n∈IN be a sequence in C . Then (xn)n∈IN
converges to 0 with respect to the relative topology if and only if lim

n→∞
[xn, p0]C = 0.

Corollary 1.3.8 Let S be a subset of C and let p0 ∈ int(C∗). Then S is bounded if and
only if the set {[x, p0]C | x ∈ S} is bounded.
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Corollary 1.3.9 For all p0 ∈ int(C∗), the sets K1(p0) := {x ∈ C | [x, p0]C ≤ 1} and
L1(p0) := {x ∈ C | [x, p0]C = 1} are compact.

Proof
Let p0 ∈ int(C∗) be given. The sets K1(p0) and L1(p0) are closed subsets of V [C]. 2

Proposition 1.3.10 Let x0 ∈ int(C). Then x0 is an order unit for C for the partial
ordering ≤C . So, there is a function Ux0 : C → IR+ satisfying ∀x ∈ C : x ≤C Ux0(x)x0.
Moreover, there is a function Lx0 : C → IR+ satisfying ∀x ∈ C : Lx0(x)x0 ≤C x and
∀x ∈ int(C) : Lx0(x) > 0.

Proof
The statement

∀x ∈ C ∃ψ, ϕ ≥ 0 : ψx0 ≤C x ≤C ϕx0 (1)

is equivalent with

∀x ∈ C ∃ψ, ϕ ≥ 0 ∀p ∈ C∗ : ψ[x0, p]C ≤ [x, p]C ≤ ϕ[x0, p]C .

Consider the compact set L1(x0) := {p ∈ C∗ | [x0, p]C = 1}. Then C∗ = {αp | p ∈
L1(x0), α ≥ 0}. So, statement (1) is equivalent with

∀ x ∈ C ∃ ψ, ϕ,≥ 0 ∀ p ∈ L1(x0) : ψ ≤ [x, p]C ≤ ϕ.

If we define Ux0 : C → IR+ and Lx0 : C → IR+ by

Ux0(x) := max{[x, p]C | p ∈ L1(x0)}
Lx0(x) := min{[x, p]C | p ∈ L1(x0)}.

Then Lx0(x) ≤ [x, p]C ≤ Ux0(x) for all p ∈ L1(x0). Clearly, Lx0(x) > 0 if x ∈ int(C).
2

From the definition of Ux0 and Lx0 in the above proof, it is not difficult to prove that these
functions are continuous on C .

Brouwer’s Fixed Point Theorem [Conway, p.149]
Let K be a non-empty compact convex subset of a finite-dimensional normed vector space
X and let F : K → K be a continuous function, then there exists x ∈ K such that
F(x) = x, i.e., F has a fixed point in K.

Since we assumed the salient half-spaceC to satisfy V [C] is finite-dimensional andC∗∗ =
C , Brouwer’s Fixed Point Theorem yields the following consequence for continuous
functions on C .

Proposition 1.3.11 Let G : C \ {0} → C be a continuous function. Then there exists an
x ∈ C \ {0} such that G(x) = αx for some α ≥ 0. In fact, for all p0 ∈ int(C∗) there is
x ∈ C such that G(x) = [G(x), p0]x.
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Proof
Let p0 ∈ int(C∗). The set K1(p0) := {x ∈ C | [x, p0]C = 1} is non-empty, convex
and compact by Corollary 1.3.9. Define the function F : K1(p0)→ K1(p0) by F(x) :=

x+G(x)
1+[G(x),p0]C

. Then F is a continuous function. By the preceding theorem the function F
has a fixed point x in K1(p0), so

x = F(x) =
x+ G(x)

1 + [G(x), p0]C
.

2

We finish this subsection with the introduction of a Lebesgue measure. Letx0 ∈ int(C) and
consider the hyperplaneH1(x0) := {p ∈ (V [C])∗ | [x0, p] = 1} of the dual space (V [C])∗.
Let Φ : IRn−1 → H1(x0) be an affine parametrisation of H1(x0), where n = dimV [C]
and endowH1(x0) with the topology such that Φ is a homeomorphism. Take the standard
Lebesgue measure λ on IRn−1 and define µ to be the measure onH1(x0) induced by Φ and
λ. Hence, for every subset A of H1(x0) we have µ(A) = λ(Φ←(A)) and for a real-valued
function f on (a subset of) H1(x0), for which f ◦ Φ is continuous, f is integrable with
respect to µ, and ∫

A
fdµ =

∫
Φ←(A)

(f ◦ Φ)dλ.

This measure µ is a regular Borel measure. Therefore, if f is continuous on a subset A of
H1(x0) with a dense interior, and if the set L := {x ∈ A | f(x) < 0} satisfies µ(L) = 0,
then L = ∅, i.e. ∀x ∈ A : f(x) ≥ 0.
Let W denote a finite-dimensional real vector space with {g1, . . . gm} a basis in the dual
space W ∗, and let f : H1(x0) → W be continuous. Then ∀i ∈ {1, . . . ,m} : gi ◦ f is
continuous from H1(x0) into IR. Furthermore, for a subset A of H1(x0), we denote the
unique element w in W which satisfies

∀i ∈ {1, . . . ,m} :
∫
A
(gi ◦ f)dµ = gi ◦ w,

by
∫
A fdµ. For a norm ‖ . ‖ on the vector space W , we have

‖
∫
A
fdµ ‖ ≤

∫
A
‖ f ‖ dµ.

1.4 Direct sums

In our model (cf. Section 2) we shall define a production technology set which will be a
subset of a direct sum of two salient half-spaces.

Definition 1.4.1 Let Ca and Cb be two salient half-spaces. Their direct sum is the salient
half-spaceCa⊕Cb, consisting of all ordered pairs x = (xa, xb) with xa ∈ Ca and xb ∈ Cb.
The salient half-space operations are for all x, y ∈ Ca ⊕ Cb and for all α ≥ 0 given by:{

(x+ y)a := xa + ya

(αx)a := αxa
and

{
(x+ y)b := xb + yb

(αx)b := αxb.

11



For every x ∈ Ca ⊕ Cb, there are unique xa ∈ Ca and xb ∈ Cb such that x = (xa, xb).
SinceCa⊕Cb is a salient half-space, every property for salient half-spaces derived thusfar,
is also applicable to Ca ⊕ Cb.

On the direct sum Ca ⊕ Cb the partial ordering≤(Ca⊕Cb) is given by:

x ≤(Ca⊕Cb) y :⇐⇒

{
xa ≤Ca y

a

xb ≤Cb y
b.

We continue this subsection on direct sums by remarking that

V [Ca ⊕ Cb] = V [Ca]⊕ V [Cb],

where the second ⊕ denotes the usual direct sum defined for two vector spaces (cf.
[Halmos]), and that

(Ca ⊕Cb)
∗ = C∗a ⊕ C

∗
b ,

where the action of p ∈ C∗a ⊕C
∗
b on an element x ∈ Ca ⊕ Cb is defined by

[x, p](Ca⊕Cb) = [xa, pa]Ca + [xb, pb]Cb.

To simplify notation we shall use C to denote Ca⊕Cb. Furthermore, we shall write [., .]a
and [., .]b instead of [., .]Ca and [., .]Cb, respectively. Hence, for every x ∈ C, p ∈ C∗ we
write [x, p]C = [xa, pa]a + [xb, pb]b. Also, we shall write ≤a and ≤b instead of ≤Ca and
≤Cb .

Definition 1.4.2 For all x ∈ C we define the set Fx by

Fx := {z ∈ C | xa ≤a z
a and zb ≤b xb}.

Let U ⊂ C . For all x ∈ U we define the set Rx(U) by

Rx(U) := {z ∈ U | x ∈ Fz and Fz ⊂ U}.

Furthermore, the set E(U) is defined by

E(U) := {e ∈ U | Re(U) = {e}}.

Without proof we state the following two properties.

Lemma 1.4.3 Let x ∈ C . Then

• ∀y ∈ Fx : Fy ⊂ Fx.

• If y ∈ Fx and x 6= y, then x 6∈ Fy.

Lemma 1.4.4 Let U ⊂ C satisfy

• U =
⋃

e∈E(U)
Fe
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• ∀e, f ∈ E(U) ∀τ ∈ [0, 1] : τe+ (1− τ )f ∈ U.

Then the set U is convex.

Proof
Let x, y ∈ U and τ ∈ [0, 1]. By the first statement of U , there exist e, f ∈ E(U) such that
x ∈ Fe and y ∈ Ff . Thus,{

∃x̃a ∈ Ca : xa = ea + x̃a

∃x̃b ∈ Cb : eb = xb + x̃b
and

{
∃ỹa ∈ Ca : ya = fa + ỹa

∃ỹb ∈ Cb : f b = yb + ỹb.

To prove convexity of U we shall show that τx + (1 − τ )y ∈ F(τe+(1−τ )f). Indeed,
this proves the assertion since both properties of U , combined with the first statement of
Lemma 1.4.3, yield F(τe+(1−τ )f) ⊂ U .
Firstly, note that

τxa + (1− τ )ya = τ (ea + x̃a) + (1− τ )(fa + ỹa)
= (τea + (1− τ )fa) + (τ x̃a + (1− τ )ỹa),

and secondly,

(τxb + (1− τ )yb) + (τ x̃b + (1− τ )ỹb) = τeb + (1− τ )f b.

Since τ x̃a+(1− τ )ỹa ∈ Ca and τ x̃b+(1− τ )ỹb ∈ Cb, we conclude that τx+(1− τ )y ∈
F(τe+(1−τ )f). 2
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2 The private ownership model

2.1 Economy bundles and pricing functions

As mentioned in the introduction, the main goal of this paper is the introduction of a
model of a private ownership economy, which differs from the neo-classical models in the
following two aspects.

• Commodities are not assumed to occur separately. Instead of introducing the
commodity space (IRn)+ describing n different commodities, we shall only assume
appearance of so called economy bundles. Here, we use the term “economy bundle"
to describe exchangable objects in the economy. Thus, economy bundles can
represent a single commodity, a bundle of commodities or a fixed combination
of commodities, of which one of the elements can only be obtained by buying
this specific fixed combination, i.e., of which one element is not sold separately.
The latter case describes a situation in which our model allows for links between
commodities.

• Production and consumption are not treated on the same level. In the model, two
different types of economy bundles occur: production bundles which can be used
as input to production processes, and consumption bundles which can be output
of these processes. Bundles of both types can be consumed by economic agents
and bundles of both types will be present in the initial endowment. However, the
production processes can convert only production bundles into consumption bundles
and not the other way around.

In our model, we incorporate the above described situation as follows.
Firstly, considering economy bundles instead of separate commodities, we model the set
of all economy bundles in the economy by a salient half-space C , reflecting that the
only possible manipulations with economy bundles are adding and scaling over IR+. If
x, y ∈ C represent two economy bundles then we can speak of the sum x+ y of x and y,
and if α ≥ 0 we can speak of the scaled version αx of x. Both x+ y and αx are economy
bundles in C . Requiring the economy bundle set C to be salient (Condition 1.1.1.a)
describes the fact that it is impossible for two economy bundles to cancel each other out
after addition.
Secondly, considering two types of economy bundles, we assume that C is the direct sum
of two salient half-spaces Cprod and Ccons, where Cprod and Ccons consists of all production
bundles and all consumption bundles, respectively. Both Cprod and Ccons are assumed to
be non-trivial, i.e., assumed to be different from {0prod} and {0cons}, respectively. So, C
is also non-trivial. In every economy bundle x ∈ C , each of the two types is uniquely
represented: x = (xprod, xcons) with xprod ∈ Cprod and xcons ∈ Ccons.

Since in our model commodities are not assumed to occur separately, the price of a single
commodity is not a meaningful concept. Instead, we speak of the value of an economy
bundle, which will be determined on the basis of “pricing functions". These pricing
functions are described by subadditive positive functionals on C . The set of all such
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functionals has been introduced in Section 1 as the salient half-dual space C∗ and we have
seen that C∗ = (Cprod)∗ ⊕ (Ccons)∗. Let x ∈ C and p ∈ C∗, then the value of economy
bundle x with respect to the pricing function p equals

[x, p]C := [xprod, pprod]prod + [xcons, pcons]cons.

Instead of the notation [x, p]C we shall mostly write V(x, p) for the value of the pair (x, p)
with x ∈ C and p ∈ C∗.

2.2 Economic agents

The features of an economic agent are an economy bundle w = (wprod, wcons) ∈ C , called
initial endowment, and a preference relation � defined on C , on the basis of which the
agent is supposed to make choices. By x � y we denote that the agent considers economy
bundle x to be at least as preferable as bundle y. By x � y we mean x � y and ¬(y � x).
This preference relation � on C satisfies reflexivity, transitivity and completeness.
For a given value κ ≥ 0 and a pricing function p ∈ C∗, the budget set B(p, κ) := {x ∈
C | V(x, p) ≤ κ} consists of all economy bundles that can be afforded given value κ and
pricing function p. The set D(p, κ) := {x ∈ B(p, κ) | ∀y ∈ B(p, κ) : x � y} of all best
(most preferable) elements of the budget set B(p, κ), is called the demand set. In the final
model, κ will be specified as being the value V(w, p) of the initial endowment plus the
values of the shares in the profit of production.

2.3 Production processes and technologies

Since we deal with an exchange economy with production, we have to model so called
production processes, i.e., processes that incorporate the possibility of converting pro-
duction bundles into consumption bundles. For our model this means that we say that
an economy bundle x ∈ C represents the production process which converts production
bundle xprod ∈ Cprod into consumption bundle xcons ∈ Ccons. A collection of production
processes being technologically feasible is said to be a production technology. Hence, a
production technology is modelled by a subset T of C . Each production technology T
will satisfy the following natural assumptions from a feasible point of view:

a ) The production process “no production" belongs to T ;

b ) A production process in T with zero input has zero output;

c1) Free disposal of input;

c2) Free disposal of output.

Free disposal of input states that if x = (xprod, xcons) is an feasible production process and
x̃prod = xprod + yprod for some yprod ∈ Cprod, then (x̃prod, xcons) is also a feasible production pro-
cess since after disposal of yprod, production process x can be exectuted. Put differently, if
x ∈ T and x̃prod ∈ Cprod with xprod ≤prod x̃

prod then (x̃prod, xcons) ∈ T . Similarly, free disposal of
output states that if x = (xprod, xcons) is a feasible production process and xcons = ycons + x̃cons
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for some ycons, x̃cons ∈ Ccons, then (xprod, x̃cons) is also a feasible production process since after
production of xcons out of xprod, ycons can be disposed of, leaving x̃cons as output. So, if x ∈ T
and x̃cons ∈ Ccons with x̃cons ≤cons x

cons then (xprod, x̃cons) ∈ T .
In fact, for every x ∈ T , the set Fx (as defined in Definition 1.4.2) is a subset of T , since
Fx consists of precisely all the production processes inC which are executable due to the
fact that x is executable and the two free disposal properties c1 and c2.

So, we come to the following definition of the concept of production technology.
A set T ⊂ C is a production technology if the set T has the following properties:

a) (0prod, 0cons) ∈ T ,

b) If (0prod, xcons) ∈ T then xcons = 0cons,

c) T =
⋃
x∈T

Fx.

We call a production process (xprod, xcons) of a technology T efficient, if at least xprod is
needed to produce xcons, and if it is not possible to produce more than xcons out of xprod.
Mathematically speaking, this boils down to the following definition.

Definition 2.3.1 For a production technology T , a production process e ∈ T is efficient
if ∀x ∈ C:

• ((xprod, econs) ∈ T and xprod ≤prod e
prod) =⇒ xprod = eprod;

• ((eprod, xcons) ∈ T and econs ≤cons x
cons) =⇒ econs = xcons.

Put differently, e is efficient if and only if e ∈ E(T ) (cf. Definition 1.4.2). Note that
(0prod, 0cons) ∈ E(T ).

Given a pricing function p ∈ C∗ and a production process x ∈ T , the gain G(x, p) of the
pair (x, p) equals the value of the produced economy bundle xcons minus the value of the
production bundle xprod, used as input. So,

G(x, p) := [xcons, pcons ]cons − [xprod, pprod]prod. (2)

Note that the following two properties are a direct consequence of the definition of G and
Fx.

• Let x ∈ C , p ∈ C∗ and y ∈ Fx, then G(x, p) ≥ G(y, p).

• Let x ∈ C , p ∈ int(C∗) and let y ∈ Fx satisfy y 6= x, then G(x, p) > G(y, p).

Since for every pair (x, p) ∈ C×C∗ we can speak of both its value, where x is considered
as an economy bundle, and its gain, where x is considered as a production process, we
have introduced the distinguishing notation V(x, p) and G(x, p). Note that V is a mapping
from C × C∗ into IR+, while G is a mapping into IR.

Given p ∈ C∗, the (possibly empty) set of all gain maximizing production processes in T
is called the supply set S(p) of T , i.e.,

S(p) = {x ∈ T | ∀y ∈ T : G(x, p) ≥ G(y, p)}. (3)

The conditions on T and the definition of E(T ) imply that ∀p ∈ C∗ : S(p) ⊆ E(T ).
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2.4 Agents, production and equilibrium

Let I denote the number of economic agents and J the number of production technologies
present in the private ownership economy. The set of agents and the set of production
technologies is labelled by i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, respectively. For each
i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, agent i has initial endowment wi ∈ C , and share θij,
0 ≤ θij ≤ 1, in the gain of production technology Tj, i.e., if production process xj ∈ Tj
is executed at pricing function p, the gain G(xj, p) of this production process is divided
amongst the agents, such that agent i receives θijG(xj, p). So, for all j ∈ {1, . . . , J} these

shares satisfy
I∑
i=1

θij = 1.

At pricing function p ∈ C∗ and executed production processes xj ∈ Tj, j ∈ {1, . . . , J},
the income κi(p; x1, . . . , xJ) of agent i is defined by

κi(p; x1, . . . , xJ) := V(wi, p) +
J∑
j=1

θijG(xj, p),

where the first term denotes the value of the initial endowment of agent i and the second
term denotes the total value received from shares in the gain of the production technologies.
In this seting, an equilibrium concept analogous to that of the neo-classical Walrasian
equilibrium can be introduced.

Definition 2.4.1 A Walrasian equilibrium is an (I + J + 1)-tuple ((sj)Jj=1, (di)
I
i=1, peq)

consisting of

• peq ∈ C∗ \ {0},

• sj ∈ Sj(peq) for all j ∈ {1, . . . , J};

• di ∈ Di(peq , κi(peq ; s1, . . . , sJ)) for all i ∈ {1, . . . , I};

•
I∑
i=1

di +
J∑
j=1

(sj prod, 0cons) =
I∑
i=1

wi +
J∑
j=1

(0prod, sj
cons).

We call peq a (Walrasian) equilibrium pricing function.

Finally, we present additional assumptions for this model, such that existence of such
equilibria is guaranteed.

Equilibrium Existence Theorem

The model of a private ownership economy, described above, admits a Walrasian equilib-
rium, under the following assumptions:

A1 V [C] is finite-dimensional.

A2 C∗∗ = C .

A3 For every j ∈ {1, . . . , J}, production technology Tj satisfies
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a) Tj =
⋃

e∈E(Tj)
Fe.

b) Tj is closed with respect to topology T (C,C∗),

c) if e1, e2 ∈ E(Tj), e1 6= e2, τ ∈ (0, 1) then τe1 + (1− τ )e2 ∈ Tj and τe1 + (1−
τ )e2 6∈ E(Tj).

A4 For every i ∈ {1, . . . , I}, preference relation �i is

a) monotone: ∀ x, y ∈ C : x ≤C y implies y �i x,

b) strictly convex: ∀x, y ∈ C , τ ∈ (0, 1) : x �i y and x 6= y imply τx+(1−τ )y �i
y,

c) continuous: ∀y ∈ C the sets {x ∈ C | x �i y} and {x ∈ C | y �i x} are closed
in C .

A5 Furthermore,

a) ∃p ∈ int(C∗) ∀j ∈ {1, . . . , J} : Sj(p) 6= ∅,

b) for all pcons ∈ C∗cons \ {0
cons} satisfying ∀i ∈ {1, . . . , I} : [wicons, pcons]cons = 0, there

is j0 ∈ {1, . . . , J} and x ∈ Tj0 such that [xcons, pcons]cons > 0,

c) ∀pprod ∈ Cprod \ {0prod} : [
I∑
i=1

wi
prod, pprod]Cprod > 0.

Let us shortly discuss these extra assumptions, and give a short sketch of the proof of this
theorem. The complete proof can be found in [Schalk].
Assumptions 1 and 2 guarantee that C is a closed subset of V [C] with respect to the
natural topology T . Furthermore, they guarantee that every bounded set is pre-compact
and so the budget sets are compact for interior pricing functions. The interpretation of
Assumption 3.a is that for every production process x ∈ Tj, there is an efficient production
process e ∈ E(Tj) such thatx ∈ Fe, i.e., x is the result of e and the free disposal properties.
On the basis of Assumptions 3.b and 3.c it can be proved that instead of dealing with supply
sets, we deal with supply functions Sj with values in E(Tj). So, in order to guarantee that
we can use supply functions, we introduce Assumption 3.b, which resembles “decreasing
returns to scale” or “strict convexity conditions”. Assumption 3.c guarantees the continuity
of the supply functions. Similarly, Assumption 4 implies that we can deal with continuous
demand functions. Assumption 5.a yields that the total supply function has a non-trivial
domain. Existence of a Walrasian equilibrium, in the sense of Definition 2.4.1, follows
from a generalisation of Brouwers’ Fixed Point Theorem, for continuous functions on
salient half-spaces (cf. Proposition 1.3.11). In this, Assumptions 5.b and 5.c will be used.
Assumption 5.b states that if pcons is such that [wicons, pcons ]cons = 0 for every i ∈ {1, . . . , I},
there is a production technology j0 which can produce something with positive value at
pcons . If this were not the case, every consumer would have zero income at pricing function

(0prod, pcons). Since Assumption A5.c only requires that the production part
I∑
i=1

wi
prod of the

total initial endowment is strictly positive, it is an assumption more natural than the one

which is usually made (cf. [Debreu]), stating that
I∑
i=1

wi is strictly positive. Hence, in
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this model, the existence of a Walrasian equilibrium is guaranteed even if
I∑
i=1

wi
cons = 0cons .

Moreover, as can be seen in the proof below, Asumption A5.b and 5.c can be replaced by
the weaker condition

A5.b’) for every sequence (pn)n∈IN in the domain of the total supply function with
non-zero limit, there is i0 ∈ {1, . . . , I} such that

lim inf
n→∞

{κi0(pn;S1(pn), . . . ,SJ(pn)) | n ∈ IN} > 0.

Proof
Let (pn)n∈IN be a sequence in the domain of the total supply function, with limit p ∈
C∗ \ {0}. We have to prove

∃i0 ∈ {1, . . . , I} : lim inf
n→∞

([wi
prod, pn

prod]prod︸ ︷︷ ︸
≥0

+ [wi
cons, pn

cons]cons︸ ︷︷ ︸
≥0

+
J∑
j=1

θi0j G(Sj(pn), pn)︸ ︷︷ ︸
≥0

) > 0.

Since, by Assumption 5.c,
I∑
i=1

wi
prod ∈ int(Cprod), we may as well assume pprod = 0prod .

Furthermore, we may as well assume that ∀i ∈ {1, . . . , I} : [wicons, pcons]cons = 0. By
Assumption 5.c, ∃j0 ∈ {1, . . . , J} ∃x ∈ Tj0 : [xcons, pcons]cons > 0. The continuity of the
function G yields ∃N ∈ IN ∀n > N : G(Sj0(pn), pn) ≥ G(x, pn) >

1
2
G(x, p) > 0. Take

i0 ∈ {1, . . . , I} such that θi0j0 6= 0 and the proof is done. 2

Sketch of the proof of the Equilibrium Existence Theorem: first we establish continuity
of the total supply function S and the total demand function D on a suitable domain in
C∗. Then, we introduce the functionZ by

Z(p, q) := V(D(p), q)− G(S(p), q)− V(
I∑
i=1

wi, q).

Now, peq is an equilibirum pricing function if and only if for all q ∈ C∗ : Z(peq, q) ≤ 0.
To find peq we introduce the function F by

F(p) :=
∫
L1(x0)

max{0,Z(p, q)}qdµ(q),

where L1(x0) := {q ∈ C∗ | V(x0, q) = 1}, where µ is the standard Lebesgue measure on
L1(x0) and where x0 ∈ int(C) can be taken arbitrarily. Precisely those p for which there
is α ≥ 0 such that F(p) = αp, are equilibrium pricing functions. To prove existence, we
use Proposition 1.3.11, by extending F in an appropriate way.
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