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Characterizations of the Egalitarian
Solution for Convex Games1

FLIP KLIJN2, MARCO SLIKKER, AND STEF TIJS

Department of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands.

JOSÉ ZARZUELO

Department of Applied Mathematics, University of Pais Vasco, 48015 Bilbao, Spain.

Abstract: The egalitarian solution for TU-games as introduced by Dutta and Ray [3] is s-
tudied. Two characterizations of the restriction of this solution to the class of convex games
are given, using weak variants of the reduced game properties of Hart and Mas-Colell [6] and
Davis and Maschler [5]. The other properties are a stability property, inspired by Selten [8],
and a property restricting maximum payoffs. Further, a dual egalitarian solution is introduced
and it is proved that for a convex game the egalitarian allocation is equal to the dual egalitarian
allocation for its dual concave game.
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1 Introduction

Dutta and Ray [3] introduced the egalitarian solution as a solution concept for TU-games. This
solution unifies the two conflicting concepts of individualistic utility maximization and the
social goal of equality. Under certain conditions it is non-empty, and then its outcome is unique,
namely it is the Lorenz maximal element of the set of payoffs satisfying core-like participation
constraints. We refer to Dutta and Ray [3] for the details. For convex games Dutta and Ray [3]
describe an algorithm to locate the unique egalitarian solution, and they show, in addition, that
it is in the core. Dutta [2] characterizes the egalitarian solution over the class of convex games.
Dutta and Ray [4] consider a parallel concept, the S-constrained egalitarian solution. Arin and
Iñarra [1] introduce a solution concept that coincides with the egalitarian solution for 2-person
games. This solution concept is called the egalitarian set.

Dutta [2] characterized the egalitarian solution over the class of convex games. The main
properties used are the reduced game properties due to Hart and Mas-Colell [6] and Davis and
Maschler [5]. The egalitarian solution is the only solution concept satisfying either of the two
reduced game properties and a prescriptive property on two person games.

1The authors thank Herbert Hamers for useful suggestions and comments.
2Corresponding author. E-mail: F.Klijn@kub.nl.
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Here we provide two other characterizations. Both characterizations involve a stability
property due to the concept of the equal division core from Selten [8] and a property restricting
maximum payoffs. The first characterization involves in addition a weaker variant of the reduced
game property of Hart and Mas-Colell [6], whereas the second characterization is obtained by
making use of a weaker variant of the reduced game property of Davis and Maschler [5].

Further, a dual egalitarian solution is defined on the class of concave TU-games. It turns out
that for a convex game the egalitarian allocation is equal to the dual egalitarian allocation for its
dual (concave) game. Similar results hold for the Shapley value [9], the Prenucleolus [7], and
the τ -value [10].

The work is organized as follows. Section 2 deals with notation and definitions regarding
TU-games. Section 3 recalls the egalitarian solution for convex games. Two characterizations of
this solution concept are presented. Finally, in section 4 a dual egalitarian solution is introduced
and a duality result is proved.

2 Preliminaries

A cooperative game with transferable utilities (TU-game) is a pair (N, v), whereN = {1, . . . , n}
is the player set and v the characteristic function, which assigns to every subset3 S of N a value
v(S), with v(∅) = 0. A game (N, v) is called convex if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N,

and concave if

v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ) for all S, T ⊆ N.

The core of a game (N, v) is defined by

C(N, v) := {x ∈ IRN : x(N) = v(N), and x(S) ≥ v(S) for all S ⊆ N},

and its dual core is defined by

C∗(N, v) := {x ∈ IRN : x(N) = v(N), and x(S) ≤ v(S) for all S ⊆ N}.

The dual game of (N, v) is the game (N, v∗), given by

v∗(S) := v(N)− v(N\S) for all S ⊆ N.

It is easily shown that C(N, v) = C∗(N, v∗).
Throughout this paper we will denote the average worth of coalition S in game (N, v) by

a(S, v) :=
v(S)

|S|
.

3S ⊆ N denotes that S is a subset of N and S ⊂ N denotes that S is a strict subset of N .
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3 Convex games and the egalitarian solution

In this section we will provide two logically independent characterizations of the egalitarian rule
for convex games. To this end, let us first recall the algorithm of Dutta and Ray [3]. In every
step of the algorithm a cooperative game is considered. The set of players in this game is the
set of players that have not received a payoff yet. The largest coalition with the highest average
worth is selected and the players in this coalition receive this average worth.

Let (N, v) be a convex TU-game. Define N1 := N and v1 := v.

STEP 1: Let S1 be the largest coalition with the highest average worth in the game (N1, v1).
Define

Ei(N, v) := a(S1, v1) for all i ∈ S1.

STEP k: Suppose that S1, . . . , Sk−1 have been defined recursively and S1 ∪ · · · ∪ Sk−1 6= N .
Define a new game with player set Nk := Nk−1\Sk−1 = N\(S1 ∪ · · · ∪ Sk−1). For all
subcoalitions S ⊆ Nk, define vk(S) := vk−1(Sk−1 ∪ S) − vk−1(Sk−1). Convexity of
(Nk−1, vk−1) implies convexity of (Nk, vk). Define Sk to be the largest coalition with the
highest average worth in this game. Define

Ei(N, v) := a(Sk, vk) for all i ∈ Sk.

It can be checked that in every step convexity ensures the existence of a largest coaliton with
highest average worth. In at most n steps the algorithm ends, and the constructed allocation
E(N, v) is called the egalitarian solution of the game (N, v). Dutta and Ray [3] show that
E(N, v) is an element of the core of (N, v). Furthermore, they note that for each convex game
(N, v) it holds that

Ei(N, v) > Ej(N, v), for all i ∈ Sk, j ∈ Sk+1. (1)

Our first characterization of the egalitarian solution for convex TU-games involves the
properties equal division stability,bounded maximum payoff property,and HM max-consistency.
We describe these properties below. Let C be the set of convex TU-games. A solution on C is
a map ψ assigning to each convex game (N, v) ∈ C an element ψ(N, v) ∈ IRN . Let (N, v) be
a convex game. Given the solution ψ, define Sm(N, v, ψ) (or Sm for short, if no confusion is
possible) to be the set of players with the highest payoff. Formally,

Sm = Sm(N, v, ψ) := argmax
j∈N

ψj(N, v).

A solution ψ on C satifies

• equal division stability (EDS) if for all games (N, v) ∈ C and all S ⊆ N there exists i ∈ S
with

ψi(N, v) ≥ a(S, v).
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• bounded maximum payoff property (BMPP) if for all games (N, v) ∈ C:∑
i∈Sm

ψi(N, v) ≤ v(Sm).

• HM max-consistency (HMMC) if for all games (N, v) ∈ C, and all i ∈ N\Sm:

ψi(N, v) = ψi(N\S
m, v−S

m

),

where v−S
m

is the reduced subgame4 defined by

v−S
m

(T ) := v(Sm ∪ T )−
∑
i∈Sm

ψi(S
m ∪ T, v)

for all subcoalitions T ⊆ N\Sm.

(EDS) plays a role in the concept of equal division core from Selten [8]. (BMPP) states that
the payoffs of the players receiving most is bounded, which might be desirable from a social
point of view. (HMMC) is a weaker variant of the consistency property of Hart and Mas-Colell
[6]. The following lemma shows that (EDS) and (BMPP) together imply an efficiency property.

Lemma 3.1 If a solution ψ satisfies (EDS) and (BMPP) then for all (N, v) ∈ C∑
i∈Sm

ψi(N, v) = v(Sm). (2)

Proof. Let ψ be a solution that satisfies (EDS) and (BMPP). Let (N, v) be a convex game. By
(BMPP), ∑

i∈Sm
ψi(N, v) ≤ v(Sm).

Suppose ∑
i∈Sm

ψi(N, v) < v(Sm). (3)

Since all players in Sm receive the same payoff we have for all i ∈ Sm

|Sm|ψi(N, v) < v(Sm) = |Sm|a(Sm, v).

Hence,
ψi(N, v) < a(Sm, v) for all i ∈ Sm.

This contradicts ψ satisfying (EDS). So, equation (3) does not hold true. Hence equation (2)
holds. 2

The property incorporated in equation (2) will be called max-efficiency (MEFF).
We have the following characterization.

4With a slight abuse of notation we write (Sm ∪T, v) for the restriction of the game (N, v) to the set of players
Sm ∪ T . It is obvious that the restricted game is convex as well.
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Theorem 3.1 A solution ψ satisfies (EDS), (BMPP), and (HMMC) if and only if ψ = E.

Proof. First we show that E satisfies the properties. Since E assigns to every convex game a
core element, it satisfies (EDS). It follows from (1) that every player in S1 receives the maximum
payoff and that all other players receive less than this maximum. Since these players divide
v(S1) it follows that E satisfies (BMPP). Since E satisfies the reduced game property of Hart
and Mas-Colell [6] it satisfies (HMMC), a weaker variant of the reduced game property of Hart
and Mas-Colell [6].

Now suppose that a solution ψ satisfies the properties. We prove that ψ = E. By lemma 3.1
it follows that ψ satisfies (MEFF). The proof will be by induction on the number of players.

Clearly, for convex games (N, v) with |N | = 1 we have that ψ(N, v) = v({1}) = E(N, v)
by (MEFF). Suppose that for some p ≥ 2 we have ψ(N, v) = E(N, v) for all convex games
(N, v) with |N | ≤ p − 1. We prove that ψ(N, v) = E(N, v) also holds for all convex games
(N, v) with |N | = p.

Let (N, v) be a convex game with |N | = p. Let S1 be the largest coalition that maximizes the
average worth function a(·, v). First we will show that a(S1, v) = a(Sm, v). Since ψ satisfies
(EDS) there exist i ∈ S1 with ψi(N, v) ≥ a(S1, v). Then for all j ∈ Sm we have

a(Sm, v) = ψj(N, v) ≥ ψi(N, v) ≥ a(S1, v),

where the equality follows by definition of Sm and (MEFF). The first inequality follows by
definition of Sm. Since the definition of S1 implies a(S1, v) ≥ a(Sm, v) we conclude

a(Sm, v) = a(S1, v). (4)

Again by definition of S1 this implies Sm ⊆ S1. We will show that Sm = S1.
We need the following lemma. The proof is relegated to appendix A.

Lemma 3.2 For all T ⊆ N\Sm it holds that v−S
m

(T ) = v(Sm ∪ T )− v(Sm).

It follows from lemma 3.2 that the reduced game (N\Sm, v−S
m

) is convex.
We continue with the proof of Sm = S1. Suppose Sm ⊂ S1. For T = S1\Sm 6= ∅ lemma 3.2
gives

v−S
m

(S1\S
m) = v(S1)− v(Sm),

where the equality follows since Sm ⊆ S1. But then

v(S1)

|S1|
=
v(S1)− v(Sm) + v(Sm)

|S1\Sm|+ |Sm|
=
v−S

m
(S1\Sm) + v(Sm)

|S1\Sm|+ |Sm|
.

From this and (4) it follows that

a(S1, v) =
v(S1)

|S1|
=
v−S

m
(S1\Sm)

|S1\Sm|
. (5)
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Now, using the convexity of the reduced game (N\Sm, v−S
m

) it follows that

ψi(N\S
m, v−S

m

) = ψi(N, v) < a(S1, v) =
v−S

m
(S1\Sm)

|S1\Sm|
for all i ∈ S1\S

m, (6)

where the first equality follows from (HMMC), the strict inequality from (4) and the definition
of Sm, and the second equality from (5). Inequality (6) contradicts with (EDS) of S1\Sm in the
reduced game (N\Sm, v−S

m
). Hence, the assumption Sm ⊂ S1 is false. Since Sm ⊆ S1, this

completes the proof of Sm = S1.
It remains to prove that indeed from Sm = S1 it follows that ψ(N, v) = E(N, v). Note first

that (MEFF), the definition of Sm, and Sm = S1 yield

ψi(N, v) =
v(Sm)

|Sm|
= Ei(N, v) for all i ∈ Sm. (7)

Then, if Sm = N we are done. If Sm 6= N it holds that

ψi(N, v) = ψi(N\S
m, v−S

m

) = Ei(N\S
m, v−S

m

) = Ei(N, v) for all i ∈ N\Sm, (8)

where the first equality follows from (HMMC), the second equality from the induction hypoth-
esis, and the third equality from Sm = S1. The theorem now follows from (8) and (7). 2

It follows from the following examples that the propertiess in theorem 3.1 are logically
independent.

• The solution that equally divides the worth of the grand coalition to the players satisfies
(HMMC) and (BMPP), but does not satisfy (EDS).

• Define the solution α by αi(N, v) := maxS∈2N\{∅}
v(S)
|S| for all i ∈ N . The solution α

satisfies (EDS) and (HMMC). Obviously, it is does not satisfy (BMPP).

• Define the solution β as follows. Let

δ :=
v(S1)

|S1|
−
v(S1 ∪ S2)− v(S1)

|S2|
,

and define

βi(N, v) :=

{
Ei(N, v) if i ∈ S1;
Ei(N, v) + δ

2
otherwise.

The solution β satisfies (EDS) and (BMPP), but not (HMMC).

A second characterization is obtained by (EDS), (BMPP), and (DMMC), which is a weaker
variant of the reduced game property of Davis and Maschler [5]. Formally, a solution ψ on C
satisfies

6



• DM max-consistency (DMMC) if for all games (N, v) ∈ C, and all i ∈ N\Sm:

ψi(N, v) = ψi(N\S
m, v−Sm),

where v−Sm is the reduced subgame defined by

v−Sm(T ) :=


0 if T = ∅;
v(N)−

∑
i∈Sm ψi(N, v) if T = N\Sm;

maxQ⊆Sm {v(T ∪Q)−
∑
i∈Qψi(N, v)} if ∅ ⊂ T ⊂ N\Sm.

Thus, our second characterization of the egalitarian solution is as follows.

Theorem 3.2 A solution ψ satisfies (EDS), (BMPP), and (DMMC) if and only if ψ = E.

Proof. SinceE satisfies the reduced game property of Davis and Maschler [5] it follows that E
satisfies (DMMC), a weaker variant of the reduced game property of Davis and Maschler [5].
The proof is obtained from the proof of theorem 3.1 by replacing v−S

m
by v−Sm and lemma 3.2

by

Lemma 3.3 For all T ⊆ N\Sm it holds that v−Sm(T ) = v(Sm ∪ T )− v(Sm).

The proof of lemma 3.3 can be found in appendix B. 2

It follows from the same examples above that the properties in theorem 3.2 are logically
independent.

4 The dual egalitarian solution

In this section, we will introduce a dual egalitarian solution on the class of concave games. It
turns out that for a given convex game the egalitarian allocation is equal to the dual egalitarian
allocation for its dual concave game. This result is in the vein of the duality result regarding
the core (see section 2). Similar results can easily be proved for the Shapley value [9], the
Prenucleolus [7], and the τ -value [10].

Let us start with the definition of the dual egalitarian solution E∗. In every step of the
algorithm a cooperative game is considered. The set of players in this game is the set of players
that have not received a payoff yet. The largest coalition with the lowest average worth is
selected and the players in this coalition receive this average worth.

Let (N,w) be a concave game. Define N1 := N and w1 := w.

Step 1: Let T1 be the largest coalition with the lowest average worth in the game (N,w1).
Define

E∗i (N,w) := a(T1, w1) for all i ∈ T1.
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Step k: Suppose that T1, . . . , Tk−1 have been defined recursively and T1 ∪ · · · ∪ Tk−1 6= N .
Define a new game with player set Nk := N\(T1 ∪ · · · ∪ Tk−1). For all subcoalitions
T ⊆ Nk, define wk(T ) := wk−1(Tk−1 ∪ T )−wk−1(Tk−1). The game (Nk, wk) is concave
since (Nk−1, wk−1) is concave. Define Tk to be the largest coalition with the lowest
average worth in this game. Define

E∗i (N,w) := a(Tk, wk) for all i ∈ Tk.

The following lemma shows that concavity of the game (Nk, wk) ensures that there is a
largest coalition with the lowest average worth in the game (Nk, wk). The proof is skipped.

Lemma 4.1 For a concave game (N,w) the collection L(w) consisting of the empty set and
the coalitions with lowest average worth is a lattice. Hence, there is a unique largest coalition
with the lowest average worth.

Although in section we considered the egalitarian solution for convex games only it is defined
on a larger set of games. However, the egalitarian solution does not exist for all TU-games.
Specifically, if the game is concave and not additive then the egalitarian solution does not exist.
Hence, the dual egalitarian solution is not simply the egalitarian solution for concave games,
since the dual egalitarian solution exists for all concave games.

Dutta and Ray [3] already noted that for the E-algorithm it holds that in every next step the
payoff given to an agent is strictly less. The following lemma describes a similar result for E∗.

Lemma 4.2 Let (N,w) be a concave game. For i ∈ Tk and j ∈ Tk+1 it holds that E∗j (N,w) >
E∗i (N,w).

Proof.

E∗j (N,w) =
v∗k+1(Tk+1)

|Tk+1|
=
v∗k(Tk ∪ Tk+1) − v∗k(Tk)

|Tk+1|

>

v∗k(Tk)

|Tk|
(|Tk|+ |Tk+1|)− v∗k(Tk)

|Tk+1|
=
v∗k(Tk)

|Tk|
= E∗i (N,w),

where the inequality follows since vk(Tk∪Tk+1)
|Tk∪Tk+1|

> vk(Tk)
|Tk|

by definition of Tk and Tk ∩ Tk+1 = ∅.
2

We now turn to the main result in this section. It can be formulated concisely as follows:
for every convex game (N, v) it holds that E(N, v) = E∗(N, v∗). To prove this we need some
lemmas.

We start with lemma 4.3, which states that E∗(N, v∗) is an element of the dual core of
(N, v∗).

Lemma 4.3 For a convex game (N, v) it holds that E∗(N, v∗) ∈ C∗(N, v∗).
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Proof. Let T1, . . . , Tq be the sets that are generated by the E∗-algorithm. Then,

E∗i (N, v∗) =
1

|T1|
v∗(T1) ∀i ∈ T1,

and for 2 ≤ k ≤ q,

E∗i (N, v∗) =
1

|Tk|

[
v∗
(

k⋃
r=1

Tr

)
− v∗

(
k−1⋃
r=1

Tr

)]
∀i ∈ Tk.

Further, for all 1 ≤ k ≤ q and all T ⊆
⋃q
r=k Tr, T 6= ∅,

1

|T |

[
v∗
(
k−1⋃
r=1

Tr ∪ T

)
− v∗

(
k−1⋃
r=1

Tr

)]
≥

1

|Tk|

[
v∗
(

k⋃
r=1

Tr

)
− v∗

(
k−1⋃
r=1

Tr

)]
, (9)

since by definition Tk minimizes this expression.
First, we prove that E∗(N, v∗) is efficient:

∑
i∈N

E∗i (N, v
∗) =

∑
i∈T1

E∗i (N, v∗) +
q∑
k=2

∑
i∈Tk

E∗i (N, v∗)

= v∗(T1) +
q∑

k=2

[
v∗
(

k⋃
r=1

Tr

)
− v∗

(
k−1⋃
r=1

Tr

)]

= v∗
( q⋃
r=1

Tr

)
= v∗(N).

Second, we prove the stability of E∗(N, v∗), i.e.
∑
i∈T E

∗
i (N, v

∗) ≤ v∗(T ) for all T ⊆ N .
Let K ⊆ N . Define Kr := K ∩ Tr for all 1 ≤ r ≤ q. Then,

∑
i∈T

E∗i (N, v
∗) = |K1|

v∗(T1)

|T1|
+

q∑
k=2

|Kk|

[
v∗
(⋃k

r=1 Tr
)
− v∗

(⋃k−1
r=1 Tr

)]
|Tk|

≤ v∗(K1) +
q∑

k=2

[
v∗
((

k−1⋃
r=1

Tr

)
∪Kk

)
− v∗

(
k−1⋃
r=1

Tr

)]

≤ v∗(K1) +
q∑

k=2

[
v∗
((

k−1⋃
r=1

Kr

)
∪Kk

)
− v∗

(
k−1⋃
r=1

Kr

)]
= v∗(K).

Here the first inequality follows from (9), and the second inequality from the concavity of v∗.
This completes the proof of the lemma. 2

Note that since C∗(N, v∗) = C(N, v) it follows by lemma 4.3 that E∗(N, v∗) ∈ C(N, v).
Next we prove that E∗ satisfies two welfare properties, namely it is the element of the core

with the highest minimum and the lowest maximum payoffs among all core elements. The same
holds true for E.
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Proposition 4.1 Let (N, v) be a convex game. For all x ∈ C(N, v) it holds that

min
i∈N

xi ≤ min
i∈N

E∗i (N, v
∗) = min

i∈N
Ei(N, v), and

max
i∈N

xi ≥ max
i∈N

E∗i (N, v
∗) = max

i∈N
Ei(N, v).

Proof. We only give the proof for E∗; the proof for E is similar. Let T1, . . . , Tq be the sets that
are subsequently generated by the E∗-algorithm. Let x ∈ C(N, v).

Then,

min
i∈N

xi ≤ min
i∈T1

xi ≤
x(T1)

|T1|
≤
v∗(T1)

|T1|
= min

i∈N
E∗i (N, v∗),

where the last inequality follows from the fact that x ∈ C(N, v) = C∗(N, v∗), and the equality
from lemma 4.2. This proves the first part.

It also holds that,

max
i∈N

E∗i (N, v
∗) =

v(Tq)

|Tq|
≤
x(Tq)

|Tq|
≤ max

i∈Tq
xi ≤ max

i∈N
xi,

where the equality follows from lemma 4.2 and the first inequality from x ∈ C(N, v). This
proves the second part. 2

To prove the main result in this section we need one lemma more.

Lemma 4.4 Let (N, v) be a convex game. Let S1, . . . , Sp and T1, . . . , Tq be the sets that are
subsequently generated by the E-algorithm and the E∗-algorithm, respectively.
Then Sp ⊆ T1. Additionally it holds that Ei(N, v) = E∗i (N, v∗) for all players i ∈ Sp.

Proof. From proposition 4.1 it follows that for all i ∈ Sp and all j ∈ T1 we have that

v(N)− v(N\Sp)

|Sp|
= Ei(N, v) = max

x∈C(N,v)
min
k∈N

xk = E∗i (N, v∗) =
v(N)− v(N\T1)

|T1|
.

Then by lemma 4.1 it follows that Sp ⊆ T1. 2

The following theorem is the third main theorem of this paper.

Theorem 4.1 Let (N, v) be a convex game. Then, E(N, v) = E∗(N, v∗).

Proof. Let S1, . . . , Sp and T1, . . . , Tq be the sets that are subsequently generated by the E-
algorithm and the E∗-algorithm, respectively. We call these sets the E-sets and the E∗-sets,
respectively. The proof is by induction on the number p of E-sets.

Suppose (N, v) is a convex game with p = 1. Then Sp = S1 = N . By lemma 4.4 it
immediately follows that Ei(N, v) = E∗i (N, v∗) for all players i ∈ N .
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Now suppose that for some p ≥ 2 it holds that E(N, v) = E∗(N, v∗) for all convex games
(N, v) with at most p − 1 E-sets. We prove that E(N, v) = E∗(N, v∗) for all convex games
(N, v) with exactly p E-sets. So, let (N, v) be a convex game with p E-sets.

Again, by lemma 4.4, Ei(N, v) = E∗i (N, v∗) for all players i ∈ Sp. It remains to prove that
Ei(N, v) = E∗i (N, v

∗) for all players i ∈ N\Sp. Now, note that

Ei(N, v) = Ei(N\Sp, v) = E∗i (N\Sp, (v|N\Sp)
∗) for all i ∈ N\Sp. (10)

Here, the first equality can be readily verified, and the second equality follows from the induction
hypothesis. By (10) we are done if we show that

E∗i (N\Sp, (v|N\Sp)
∗) = E∗i (N, v) for all i ∈ N\Sp. (11)

First, we will prove that Sp = T1. By lemma 4.4 Sp ⊆ T1. Suppose Sp ⊂ T1. From the
proof of lemma 4.4 it follows that

v(N)− v(N\Sp)

|Sp|
=
v(N)− v(N\T1)

|T1|
. (12)

Since v(N\Sp)−v(N\T1) = [v(N)−v(N\T1)]− [v(N)−v(N\Sp)] and |T1\Sp| = |T1|−|Sp|,
(12) implies

v(N\Sp)− v(N\T1)

|T1\Sp|
=

v(N)− v(N\T1)

|T1|
. (13)

Using this, we can prove that the following two assertions hold true.

(i)
v(N\Sp)− v(N\(S ∪ Sp))

|S|
≥
v(N\Sp)− v(N\T1)

|T1\Sp|
for all S ⊆ N\Sp, S 6= ∅;

(ii) If S 6⊆ T1\Sp, then
v(N\Sp)− v(N\(S ∪ Sp))

|S|
>
v(N\Sp)− v(N\T1)

|T1\Sp|
.

We prove that (i) holds true ((ii) can be proved similarly). Suppose that (i) is not true. Hence,
there is a set S ⊆ N\Sp, S 6= ∅ with

v(N\Sp)− v(N\(S ∪ Sp))

|S|
<
v(N\Sp)− v(N\T1)

|T1\Sp|
. (14)

By (12), (13), and (14) it follows that

v(N\Sp)− v(N\(S ∪ Sp))

|S|
<
v(N)− v(N\Sp)

|Sp|
(15)

By (15) and again (12) we have

v(N)− v(N\(S ∪ Sp))

|S ∪ Sp|
=

v(N)− v(N\Sp) + v(N\Sp)− v(N\(S ∪ Sp))

|Sp|+ |S|

<
v(N)− v(N\Sp)

|Sp|

=
v(N)− v(N\T1)

|T1|
.
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This is a contradiction with the definition of T1. So, (i) holds true.
From (i) and (ii) we conclude that T1\Sp is the first E∗-set when we apply the E∗-algorithm

to the concave game (N\Sp, v). Hence, for all i ∈ T1\Sp

E∗i (N\Sp, (v|N\Sp)
∗) =

v(N\Sp)− v(N\T1)

|T1\Sp|

=
v(N)− v(N\T1)

|T1|
, (16)

where the last equality follows from (13). On the other hand, we have for i ∈ T1\Sp that

E∗i (N\Sp, (v|N\Sp)
∗) = Ei(N\Sp, v)

>
v(N)− v(N\Sp)

|Sp|

=
v(N)− v(N\T1)

|T1|
. (17)

Here the first equality follows from the induction hypothesis, the inequality follows from the
definition of Sp, and the second equality follows from (12).

We see that (16) and (17) give a contradiction. Hence, Sp = T1.
The algorithm for E∗ implies that equation (11) holds true. Combining (10) and (11) yields

Ei(N, v) = E∗i (N, v) for all i ∈ N\Sp,

completing the proof. 2
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Appendix A Proof of lemma 3.2

Let T ⊆ N\Sm. We first show that∑
i∈Sm

ψi(S
m ∪ T, v) = v(Sm). (18)

If T = N\Sm, then (18) holds by (MEFF). From now on assume T ⊂ N\Sm.
Suppose there is a player i ∈ Sm ∪ T such that

ψi(S
m ∪ T, v) > a(Sm, v). (19)

Define
Tm := argmax

j∈Sm∪T
ψj(S

m ∪ T, v). (20)

By (MEFF), ∑
j∈Tm

ψj(S
m ∪ T, v) = v(Tm). (21)

Now,
a(Tm, v) = ψj(S

m ∪ T, v) > a(Sm, v) ≥ ψj(N, v) for all j ∈ Tm (22)

The strict inequality follows from (19), the equality from (20) and (21), and the second inequality
from the definition of Sm and (MEFF). Equation (22) contradicts (EDS) of Tm in the game
(N, v). Hence, there is no player i ∈ Sm ∪ T such that ψi(Sm ∪ T, v) > a(Sm, v). Hence,

ψj(S
m ∪ T, v) ≤ a(Sm, v) for all j ∈ Sm ∪ T. (23)

By inequality (23) and (EDS): a(L, v) ≤ a(Sm, v) for all L ⊆ Sm ∪ T . Hence,

Sm ∈ argmax
∅6=L⊆Sm∪T

a(L, v). (24)

From the induction hypothesis it follows that

Ej(S
m ∪ T, v) = ψj(S

m ∪ T, v) for all j ∈ Sm ∪ T. (25)

From (24) and (25) one deduces (18).
Now, (18) implies that for all T ⊆ N\Sm it holds that

v−S
m

(T ) = v(Sm ∪ T )− v(Sm). (26)

This completes the proof of the lemma. 2
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Appendix B Proof of lemma 3.3

Let T ⊆ N\Sm. We prove

v−Sm(T ) = v(Sm ∪ T )− v(Sm). (27)

If T = ∅,
v−Sm(T ) = 0 = v(Sm)− v(Sm). (28)

If T = N\Sm, then by (MEFF) and the definition of the reduced game

v−Sm(T ) = v(N)−
∑
i∈Sm

ψi(N, v)

= v(Sm ∪ T )− v(Sm).

It remains to consider T with ∅ ⊂ T ⊂ N\Sm. Let Q ⊆ Sm. Note that∑
i∈Q

ψi(N, v) = |Q|a(Sm, v) = |Q|a(S1, v) ≥ |Q|a(Q, v) = v(Q). (29)

Here, the first equality follows from Q ⊆ Sm, the second equality from equation (4), and the
inequality from the definition of S1. Then,

v(Q ∪ T )−
∑
i∈Q

ψi(N, v) ≤ v(Q ∪ T )− v(Q)

≤ v(Sm ∪ T )− v(Sm), (30)

where the first inequality follows from (29) and the second inequality from the convexity of v.
We conclude that (27) holds true. 2
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