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1 Introduction

In this paper we consider cost sharing problems arising from standard fixed tree
enterprises.t. Thereisafixed and finite set of agents who are connected to a source
through a fixed tree network. We seek to allocate the cost of this tree for cases
where the connections within the network is costly. Many read-life situations can
be modelled to fit in this general setting. For instance, consider the problem of
allocating the maintenance cost of an irrigation network or a cablevision network,
setting airport taxes for planes or setting dredging fees for ships. In a natural way
each standard fixed tree problem gives rise to a standard fixed tree game, which
relates each coalition of agents/playersto the minimal expenses for connecting all
its members to the source. This makes it possible to investigate this type of prob-
lems with techniques from cooperative gametheory. Extensive study for essentially
the same type of situations has resulted in along list of papers (see Bird (1976),
Claus and Granot (1976 ), Megiddo (1978), Galil (1980), Granot and Huberman
(1981), (1984), Granot and Granot (1992), Granot and Maschler (1994), Granot et
al. (1995), Maschler et al (1995)). The special casewhen theunderlying structure of
the gameisachain, isaso known as the airport problem and considered by several
authors (Littlechild (1974), Littlechild and Owen (1977), Littlechild and Thompson
(1977), Dubey (1982), Sudholter and Potters (1995), Aadland and Kolpin (1997)).

We are concerned with the core of the standard fixed tree game. It is a well
known fact that the game under consideration is concave. The importance of this
aspect and the implications of the tree structure become clear in Section 3, where
we characterize the core in three ways and investigate its geometrical structure. As
is known for concave games in general, the core is large and coincides with the
set of weighted Shapley values (Monderer et al. (1992)). Similar to thisresult, in
Section 4 we show that the core of the standard fixed tree game equals the set of
weighted constrained egalitarian alocations. Here, a weighted constrained egali-
tarian alocation is the weighted adaptation of the constrained egalitarian solution
of Dutta and Ray (1989), incorporating exogeneously given information about the
impact of the individual players that is summarized by a vector of weights. In a
way that is very natural, but particular to this model, weighted Shapley values and
weighted constrained egalitarian allocations are duals of each other. We show that
both sets of allocations can be seen as the result of a dynamical process of locally
distributing the costs of the arcs forming the tree. While aweighted Shapley value
isadown-home allocation in the sense that it is determined by splitting incremental

'Here we adopt the terminology asin Maschler et al. (1995)



costs from the source to the leafs (Section 6), a weighted constrained egalitarian
alocation is of home-down type, splitting the incremental costs from the leafs to
the source (Section 4). The above terminology is inspired by the painting story in
Maschler et al. (1995), which describes a dynamic process of the distribution of
costs. Monotonicity properties for both above mentioned classes of solutions can
be obtained easily from this dynamic approach. In Section 5 we provide two char-
acterizationsfor the constrained egalitarian solution as a cost sharing mechanism. It
is shown that among the class of cost monotonic mechanisms sharing the core prop-
erty it is, on one hand, the only mechanism that minimizes the range of cost shares,
and, on the other hand, the only mechanism that maximizes Rawlsian welfare. A
discussion of analogies of these results for weighted constrained egalitarian cost
sharing mechanisms is postponed till the Appendix. But first, in Section 2 we will
formally define the standard fixed tree problem, its game and introduce necessary
notations.

2 Thefixed tree connection problem: the model and
itsgame

In this paper we consider a fixed tree connection problem G := (G, ¢, N). Here
G = (V,E) isatree, i.e. adirected connected graph without cycles, with vertex
set V and arc set E. The set V' contains a vertex which has a special meaning. We
denotethisvertex by r and refer to it asthe source. Thefunctionc: £ — R, called
cost function, associates with each arc e acost c(e). It can beinterpreted as the cost
to maintain e. At each vertex thereisexactly one player, thefiniteset of all playersis
denoted by N = {1,...,n}. The objective of the playersisto maintain sufficiently
many arcs such that by the corresponding network each finds himself connected to
the source. We assume for simplicity that the source is not occupied and that only
one arc leaves the source. Then G is referred to as smply a maintenance problem
. In the sequel we identify vertices with players (V = N U {r}). For each vertex
1 € N thereis a unique path from the source to vertex . If that path, which we
denote by P(i), consists of the points jo = r, ji,...,j, = ¢, then j,_; is called
the predecessor 7 (i) of vertex i. We denote by e; the arc (7 (7), ). The precedence
relation (V, <) on the set of vertices and/or playersisdefined by ¢ < j if and only
if i € P(j). Analogoudly we define the precedence relation (£, <) onthe arcs. In
this way, the arcs are considered to be directed awvay from the source. A trunk of
G = (V,E)isasetof verticesT C N, whichisclosed under the precedencerelation
defined above, i.e. ifi € T and 5 < i, then j € T. Anoutgoing arc for a trunk
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T isaneemente; = (m(i),i) € E suchthat 7(i) € T buti ¢ T'. The followers of
avertex i condtitutethe set (i) = {j € N |i < j}. A vertex i is called a leaf if
F (i) = {¢}. With each maintenance problem G = (G, ¢, V) can be associated acost
game (N, c¢g), where the cost ¢g(S) of each coalition S is defined as the minimal
cost needed to connect all members of S to the source via a connected subgraph of
(V,E),i.e.

cg(S) =Y cle;) fordl 0#£SCN (1)
whereTs = {i € N | 35 € S with ¢ < j}, and cg(0) = 0. Ts isthe smallest
trunk containing S.

Remark The previous definition is similar to that of the standard tree enterprise
in Granot et al. (1996), only in their model they permit a vertex being occupied
by more than one player. However, our results can be generalized to this kind of
situations. Also the assumption that the source is not occupied, can be relaxed. As
Granot et al. (1996) pointed out, we can always add a zero-cost arc from a new
unoccupied sourceto the original source without changing the associated cost game.
Also the requirement that thereis only one arc leaving the sourceis not essential for
any of our results.?

Granot et al. (1996) prove that the cost game associated to a maintenance problem
isconcave. Thisresult also follows from the next proposition which deals with the
representation of the cost game with respect to the basis { (N, u%) } scn of the duals
of the unanimity games. Here, thegame (N, u¥) isthe concave s mple game defined

by

1 if SNT #0
0 otherwise.

w5 = {

2Supposethat morethan onearcleavesthesource. Intheobviousway wedefinetheassociated cost
game cg. Then ¢g can be decomposed (Shapley (1971)) into p > 2 components, each component
being itself a maintenance problem . That is, there exists a partition {Ni,..., N,} of N into p
nonempty subsetssuchthat cg (S) = cg(SNN1)+...+cg(SNN,) foral S C N. Theredtrictions
of c¢g to each element of the partition are called components and they correspond to the various
subtrees emanating from the source. The solution concepts of our concern are consistent in the sense
that the restrictionto each coalition V; of thesolutionfor NV equal sthe solutionfor the corresponding
component. For instance, itis verified (Shapley (1971), Granot and Huberman (1981)) that the core
of the game c¢, formally defined at the beginning of the next section, issimply the Cartesian product
of the cores of the various components.



Proposition 2.1 Let G = (G, ¢, N) bea maintenance problem. Then the associated
cost game (N, ¢g) can be represented as

Cg = Z C(ei)u*}?‘(i) (2

iEN
where F(i) is the set of followers of vertex i inthetree G.

Proof Let S be a nonempty coalition. It follows from expression (1) that S has
to pay thecost of arce; in E if andonly if thereisaplayer j in S suchthat j € F(i).0

3 Thecoreof a standard fixed tree connection prob-
lem

Theproblemweare concerned withiis, given amaintenanceproblem G = (G, ¢, N),
to divide the construction cost of thetree cg (V) among the players. A vector of cost
shares is by definition a vector 2 € RY which is efficient, i.e., Y;cn v = cg(N).
Here x; represents the amount player ¢ has to pay according to z. The core of acost
game (N, k) isthe set

core(k) = {x cRY

>z <k(S) fordl SCN,> z;= k(N)}.
i€S iEN

If = € core(k), then no coalition S has an incentive to split off if « is the proposed
vector of cost shares. The purpose of this section is to determine the structure of
the core of the cost game corresponding to a maintenance problem . The first part
of the section deals with alternative expressions of the core, while the last part is
devoted to its geometric properties. Thereisan easy way to characterize the core of
the game (N, ¢g). We show that the core consists of all those allocations according
to which each agent has to make at least a zero contribution and for which the core
inequalities are met for those coalitions being trunks. For convenience, we first
introduce some additional notations. For any vector = € ]Rf wedenote Y5 x; by
z(S) foral S C N. Inthesamefashion, let ¢(S) := Y,cq c(e;) foral S C N.

Proposition 3.1 Let = be a vector of cost shares. Then z is a core element if and
onlyifz > 0and z(T") < ¢(T') for each trunk T'.



Proof Trividly, if x € core(cg),thenz > 0 and z(T") < ¢(T') for each trunk 7.
Conversely, let = be a nonnegative vector of cost shares such that z(7") < ¢(7") for
each trunk T'. Let S C N be anonempty coalition. Then S C T and therefore,
according to (1), it holds cg(S) = ¢(T’s) > z(Ts) > z(S5). O

Lete = (4,j) beanarcof G, wedenoteby B, = (V, E.) the subtree of G generated
by theset F'(j) U{i} of followersof j together with vertex i . B, will bereferredto
asthe branch rooted at €. Then, the previous proposition can be rewritten in terms
of the amount players outside atrunk have to pay, under a core element, asfollows.

Proposition 3.2 Let = be a vector of cost shares. Then z is a core element if and
onlyif z > 0 and for eacharce = (i, j) € E,

Sooxp> > cele) (€©)

jeVe\{i} e'cBe
where B, = (V,, E.) isthe branch rooted at e.

Proof ThecomplementinV of V.\{:} isatrunk. Thereforetheresult followsfrom
efficiency and the application of the previous proposition. O

Remark The ‘if’ part of the above proposition appeared in fact in Granot et al.
(1996).

Thenext proposition showsthat every core element isobtained by means of splitting,
arbitrarily, the cost of each arc among its users.

Proposition 3.3 The vector z is a core element if and only if there exist ooyt
such that ¢ isa point in the unit smplexin R¥) for all j = 1,...,n and

z;= Y. yle(e;) foral i N. (4)

JEP(3)

Proof The coreisadditive on the cone of concave games (Dragan, Pottersand Tijs,
1989). Wewill giveashort outlineof theproof. Let G betheclassof TU gameswith
player set N. Firg, forall v, w € GV itholdsthat core(v) + core(w) C core(v+w).
The Weber set W (v) for v € GV isthe convex hull of the | N|! marginal vectors of
v. W is subadditive as a multifunction, i.e. W (v 4+ w) C W(v) + W (w) for dl

3 According to the terminology introduced in Granot et al., B, isthe branch at i in the direction
of jife=(i,75)



v, w € GN. Furthermore on the class of concave games the Weber set and the core
coincide (see Driessen (1988) or Ichiishi (1981)). Soif v,w € GV are concave we
also have the reversed inclusion, core(v +w) = W(v +w) C W(v) + W(w) =
core(v) + core(w), and consequently core(v + w) = core(v) + core(w).

All theelementsof thebasis { (V, uf) } sc v areconcave, thereforeit followsfromthe
combination of the above result, the fact that costs are non-negative, and expression
(2) that

core(cg) = Y c(ej)core(up ;). (5)
JEN
Since core(ujy ;) isthe unit smplex in R”7), we are done. O

Thefollowing results show that every core element of amaintenance problem can be
obtained by means of a partition of the original problem into various subproblems,
each one of them being itself a maintenance problem . Conversely, at each core
element = there is a unique finest partition S(z) into subproblems such that the
restriction of x to each subproblem is a core element of the corresponding game.
First we will formalize the notion of a subproblem.

Definition Let G beatree. A subtree G’ = (V', E') isrooted at ' € V' if

(¢) 7" istheminima elementin V' w.rt. <
(17) thereisexactly onevertex in V' that hasr’ as predecessor.

We stress that, contrary to the usual terminology, the above definition of a subtree
is nonstandard. According to our definition a subtree need not contain any leaf of
the original tree whatsoever.

Definition A subtree G’ = (V’, E’) of G rooted at ' defines arestricted connection
problemG’ = (G', ¢, N') where ¢’ istherestriction of cto £ and N’ = V'\{r'}.

Definition Let S = (G, ... G?) bean ordered collection of subtreesof G. Then, S
issaid to be a partition of G into subtrees if and only if the following conditions
hold:

(1) Fordlk=1,...,p, thereexistsr, € V and E;, C FE such that
G* = (S, U {ri}, E},) isthe subtree of G rooted at 7,
(i7) (Si,...,Sp) isapartition of the vertex set V.

Proposition 3.4



(i) Let S = (G',...GP) beapartition of G into subtrees. Then

P

I core(cgr) € core(cg) (6)
k=1

where (S, cgr) S the cost game corresponding to the restricted maintenance
problem G* = (G, ¥, Sy.).

(i7) Let = be a core element for cg. Then there is a unique finest partition S =
(G',...GP) of G into subtrees such that « € [[}_, core(cgr).

Proof Letz = (y',...,y?) be an element of [[_, core(cgs). Then z > 0, and
efficiency follows from

in = Z Z yr = Z Z c(e;) = Zc(ei).

1EN k=11i€S) k=11i€Sk iEN

Then, according to Proposition 3.1 we need only prove that z(7") < ¢(T") for each
trunk 7. Let T beatrunk of G. Forany k = 1,...,p, let T* be the set of vertices
T N Sg. Then Tk U {r;.} isatrunk of G* = (S, U {r.}, Ex) foral k € {1,...,p}
for which T% # (). Therefore

2(T)= D Dy < D D (e =) cle)

1<k<p jeT* 1<k<p jeTk €T
TR0 TR 20

This provesthefirst part, (7).

For the proof of (i7), let = beavector of cost shares. Then, atrunk 7" will bereferred
to as an autonomous trunk at x if and only if z(7") = ¢(T"). We claim that thereisa
unique minimal autonomoustrunk at = (with respect to inclusion). Since V' itself is
an autonomoustrunk we need only to prove that the intersection of two autonomous
trunks(whichisobvioudy atrunk) isautonomous. The uniqueminimal autonomous
trunk at = will then be the intersection of all autonomoustrunksat x. Let 77,75 be
two autonomous trunks at x, then

.’L‘(Tl N Tg) < C(Tl N Tg) = Cg(Tl N Tg) < Cg(Tl) + Cg(Tg) — Cg(Tl U Tg) =
.’L‘(Tl) + SL‘(TQ) — Cg(Tl U Tg) < .’L‘(Tl) + :L‘(Tg) — :L‘(Tl U Tg) =
= .’L‘(Tl ﬂTg).

The second inequality follows from (N, ¢g) being a concave game, while the re-
maining ones are core inequalities. So xz(1; NTz) = ¢(T1 N'T») and our claim is
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proved.

So, let T be the unique minimal autonomous trunk at x (which exists by the
above claim). Then, define G* = (S; U {r;}, E1) to be the subtree generated by T}
(S =Ti\{r}andr; =r). Obvioudy, z! = (;):cs, iSacoreelement of (N, cg1).
Let [(7}) bethe set of outgoing arcsof 7. Lete = (i, j) beanarcini(7}). Consider
the branch B, = (V., E,) rooted at e. Then, 2° = (z;);cv,\ (i} iSacore element of
the restricted problem defined by B.. Certainly, ¢ > 0 and efficiency followsfrom
the subsequent conditions

Yooxp> > ) fordl e=(i,5) € U(Th) (7)
jeve\{i} ¢'€Be
X m= > Y ) (8
e€l(T1) jeVe\{i} e€l(Th) €'€Fe

Let T be atrunk of B.. Then, T U T; isatrunk of GG, thus

(T +z(Th) = x(T°UT) < c(TUTY) = c(Th)+ Y cle;) = z(Th)+ >, cley).
ie€Te ie€Te

Therefore, according to Proposition 3.1, x°¢ is a core element of the restricted
problem.

Now, apply the previous reasoning to z¢ as a core element of (V,cge). Define
G? = (Sy U {r2}, E) to bethe subtree generated by T (S = T \ {i} and ry =i
if e = (i,7)), where T} is the unique minimal autonomous trunk at z¢ of B..
Then, select any outgoing arc of 7> and repest the previous reasoning until the
corresponding autonomous trunk 7™ were such that I(7*) = (. Then, go down
selecting the outgoing arcs which have not been selected previously. The process
finisheswhen all the arcs have been selected and the collection of subtrees obtained
at the end satisfies the desired conditions. 0

Let x beacoreelement, thenwerefer to the partition S which satisfiesthe conditions
of Proposition 3.4 (i) as the partition into subtrees induced by x.

Example 3.5 Consider the 10 player connection problem asis graphically depicted
in Figure 1. The different vertices are depicted as circles. Each of the encircled
numbers corresponds to a the location of the corresponding player. The special
vertex, the source, is depicted by the triangle below. Furthermore, the arcs in
the treenetwork are represented by the line segments connecting the different
players/vertices. The cost of a specific link is put next to the corresponding line



segment.

Figurel

The partition into subtrees induced by the core element =z =
(2,2,2,4,3,3,4,4,6,3) corresponds to the partition of the player set
({1,2,3},{4,7,8},{5}, {6, 10}, {9}). Note that player 2 plays the role of the
source for both the connection problemsinduced by the player sets {1, 2, 3} and
{5} respectively. We stress, that he is not considered as a player in either case.
The same counts for the players 3 and 6, who are now the local sources for
the problems associated with the player sets {6, 10} and {9} respectively, but
neither of them are included as a player in the description of the corresponding
connection problems.

We conclude this section with a geometric study of the core. This study is based
on the properties of the core of convex (concave) games (Shapley (1971), Ichiishi
(1983), Monderer, Samet and Shapley (1992)). Because it is concave, the game
corresponding to a maintenance problem has a full dimensiona core. (Shapley
(1971)). We show that the core has but two types of faces. faces associated
to nontrivial partitions into subtrees, which we refer to as faces of type I, and
faces associated to groups of players who are paying nothing, which we refer to
as faces of type Il. From Monderer et al. (1992) it follows that if (IV,v) is a
concave game, then for each o = (S4,...,S,), ordered partition of N, the set
F, = {z € core(v) | (UF_1S) = v(UF_,S;) foral 1<k < p}isanonempty
face of core(v) of dimensionn — k a most.

Lemma 3.6 An allocation x is in the face of core(cg) if and only if = verifies one
of the following conditions:

(I) Thereexists an autonomoustrunk 7" # V at
(II) z(T) < ¢(T) for all nontrivial trunks 7" and there exists a nonempty
coalition S C N\ {i € N | i isaleaf } suchthat z(S) = 0.

10



Proof 1) Let S(z) = (G*,...GP), where G' = (S, U {r;}, E) fordl [ =1,...p,
be the partition of G into subtreesinduced by z.

If = verifies condition (1), then S(x) is a nontrivial partition and = belongs to
the nonempty face of core(cg) defined as F, = {z € core(cg) | z(UF,S)) =
cg(Ur_,S;) foral 1<k <p}wheeo = (S,...5,) isthe ordered partition of
the player set IV defined by S(z).

If = verifies condition (1), then (N \ S) = z(N) = cg(N) = cg(IN \ S5),
therefore = belongs to the nonempty face of core(cg) defined as F, = {z €
core(cg) | x(UF_\T;) = cg(UF_,Th) fordl 1<k <2} whereo = (T}, Ty) isthe
ordered partition of the player set N definedasT; = N\ Sand T, = S,

2) Now we will show that if = does not satisfy neither (I) nor (I1) then z isin the
relative interior of core(cg). Let L # N be anonempty coalition. Then we claim
that (L) < cg(L). Denote by 77, thetrunk {¢ € N | 3 j € L suchthat j < i}.
Then two cases are possible.

Case 21. : If T, # N, then (L) < z(T1) < ¢(TL) = cg(L), where the
first inequality followsfromx > 0, according to Proposition 3.1 and the second one
follows from the negation of (1).

Case22. : If T, = N, then L contains al the leafs of thetreeand N \ L # ()
iscontainedin N \ {i € N | i isaleaf }. Therefore, it followsfrom the negation
of (1) and (I1) that z(7,\ L) # 0. Then, taking into account that = is a nonnegative
vector it holdsthat (L) < z(1%) = cg(L). O

Example 3.7 Let G! be the subtree defined in Example 3.5. Then, the core of the
cost game (N, cg1) isrepresented below. Here,

Fi={zcR’|o3=1,2+25=5,0<2;,<4,0<2y <5}

is the face of type (1) associated to the nontrivial partition into subtrees S; =
(G1,G?), where

Gi=({L2tu{r} {er,e2})
G2 = ({3} U {rs}, {es}) with mp =1

and Iy, = {z € ]R?’]xg =1, z1+23=5,0<1x; <4,0<x3 <5}isthe
face of type (1) associated to the nontrivial partition into subtrees S, = (G}, G2),

where
Gy = ({L,3yu{r}, {e1,es})
G2 = ({2} U {ra},{e2}) with ro =1

11



and Fs = {z € R¥|z; =0, 4+23 =6,0< 12, <5,0< 23 <5}isa
face of type (I1). The below figure shows the core, and in particular its faces,
laying inbedded in the imputation set (cg) := {z € RY|z(N) = cg(N),z; <
cg(i) forall i € N}, which isthe set of all individually rational and efficient al-
locationsfor thegamecg. Hereit equalsthe convex hull of the vectors (4, 5, —3),
(—4,5,5) and (4, -3, 5).

(4,5, —3)
Fy
(0,5,1) (4,1,1)
core(cq)
F3 F2
(—4,5,5) (0,1,5) (4,—-3,5)

4 Weighted constrained egalitarian allocations and
the core: a dynamic approach

The constrained egalitarian solution of Duttaand Ray (1989) is a solution concept
for TU games which combines commitment for egalitarianism and promotion of
individual interests in a consistent manner. In convex games, it selects the unique
core allocation which Lorenz-dominates al core allocations and can be computed
using afairly smple algorithm. According to the constrained egalitarian solution
players are treated in a symmetric way. However, in many situations, this seems
unrealistic. For a discussion on examples where lack of symmetry is present, the
reader is referred to Kala and Samet (1988) and Shapley (1981). In this section
we analyze the constrained egalitarian solution for standard fixed tree connection
problems, as well as weighted generalizations. Asymmetries between players are
represented by a weight vector w € ]Rf . For any maintenance problem G and
weight vector w € ]Rf , the weighted constrained egalitarian solution captures the
idea that the vector of proportional cost shares with respect to w should be chosen
whenever it determines a core element of (IV, ¢g). Throughout this section we will
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fix amaintenance problem G = (G, ¢, N). We will restrict ourselves to admissible
vectors of weights with respect to G, i.e. vectorsw € ]Rf such that for al i € N
with ¢(e;) > 0 there exists afollower j € F(i) of player i with strictly positive
weight, i.e. w; > 0. The set of all those weights for G is denoted by W(G). The
admissibility condition will express in the sequel no more than the idea that for
any arc of the tree there is at least one user that can be held responsible for the
corresponding cost.

In order to adapt Dutta and Ray’s algorithm, we need a few definitions. Let T
be atrunk. Suppose we make the following changesto G. First remove al vertices
in T together with the source r, and all arcsin E that are incident to at least one
player in T'. Instead, create a new source rr and new arcs (i, ) for al agents
i € N\T for which e; is an outgoing arc of 7" in G. The rest of the tree remains
unchanged. Asaresult of these steps of cutting the trunk, discarding it and bundling
the remaining branchestogether, we get anew (contracted) tree Gr. A cost function
cr on the set of the corresponding set of arcs Er is defined as follows. An arc
e € EnN Erisascostly as before, cr(e) = c¢(e), while the cost of an arc of type
(i,r7) isgiven by cr((i, 7)) = c(e;). Then the contraction of G by 7" is defined
by thetriple Gr = (Gr, cr, N\T'). Note that though G fails standardness, in the
sense that in general there is more than one arc connected with the source, it has
all other characteristics of a maintenance problem . But this assumption will not
be of importance for our results; we remind the reader of the fact that concavity of
the game (V, cg,.) can be achieved without it. This follows from the possibility of
decomposing the game asis pointed out in the footnote in Section 2.

Define for w € W(G) the weight of a codlition S C N aswg := Y ;cqw;. The
weighted average cost under G (with respect to w) of a nonempty coalition S is
defined to be

Yies clei) :
_ = - f
0 (S) :{ s If wg >0
o0 if wg = 0.

Definition Let w € W(G). Then, the w-constrained egalitarian solution is defined
as the allocation obtained at the end of the following algorithm.

Algorithm 4.1

STtEPO
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Initialize by letting & = 0 and §° = G.

STEP1
Let k = k+ 1. Define pu, = min{aw(T) | T isatrunk of G’H} to be the
minimum weighted average cost under G*~! (w.r.tw). Let Ty (w) € N*1 bethe
unique maximal trunk of G*~* (with respect to inclusion) of minimum weighted
average cost?. Define &;(w) = wiuy, for al i € Ty (w).

STEP 2
If U, Ti(w) = NU{r}, thenterminate. Otherwise, defineby G* = (G*, ¥, N*)
the contraction of G*~! by T},(w) and repeat Step 1.

Obvioudy, this process must end after at most m < n stages. Taking into account
the special structure of the maintenance problem , the above agorithm yields the
constrained egalitarian solution of Duttaand Ray in case of w; = 1, for all i € N.
Let 7 (w) = (T1(w), ..., T,(w)) define the partition of the player set induced by the
algorithm. Then

&i(w) = wia,(T)(w)) fordl i € T)(w) andfordl I =1,...,p 9)

k

Y W= Y de) (10)
=1 ieT)(w) icUi<xTi(w)
ii_‘”)ﬁﬂi—‘”) fordl i € Ti(w), j € Ty(w) and I <s. (11)

Example4.2 Let G = (G, ¢, N) be the maintenance problem of Example 3.5 and
w € W(G) such that w; = 1 for dl ¢ € N. Then, the constrained egalitarian
alocation for that problemis {(w) = (2,2,2,4,3,3,4,4,6,3). Inthefirst step
we determine p; = 2,73 (w) = {1,2,3} and &;(w) = 2 foral i € Ty(w). The
next figures show the following steps,

8 9 10
R % > R % 2 = 3, To(w) = {5,6,10},

4 3 6 &(w) =3 foral i€ Th(w)

4Observe that the existence of T} (w) followsfrom the concavity of the cost game.
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}\ % M3 = 47 Tg((ﬂ) = {47 778}7
4v9 &i(w) =4forali € Ty(w)
6 6

pa = 6,Ty(w) = {9},
Z &(w) = 6 forall i € Ty(w)

Observe that 7 (w) can be refined obtaining a partition of G into subtrees in such
a way that the restriction of £(w) to each subtree turns out to be the egalitarian
allocation for therestricted problem. For thisexample, such a partitioninto subtrees
isthat one described in Example 3.5.

Now we give an algorithm for calculating any w-constrained egalitarian aloca
tion by means of taking a dynamic approach. Consider a maintenance problem
G = (G, ¢, N). Interpret the vertices as the villages of the different players and the
arcs as the roads to the capital city of the region (source). The cost of aroad is
expressed as the number of daysit takes (for one person) to paint the stripes on the
road. The constrained egalitarian solution is determined as the time that each of the
residents are painting provided that (i) every worker keeps working as long as the
road from the capital to his residence has not been completed, (ii) every worker does
his job on an unfinished segment between the capital and hishomevillage, (iii) each
worker starts painting at the same moment and (iv) all workers paint equally fast.®
For any vector of admissible weights w, the w-constrained egalitarian solution is
obtained by just prescribing different speedsto the workers, w; for player 7. Instead
of the individual time expenses, the cost share now is determined by the distance
that an agent coversuntil hispath isentirely painted. Inthisway, once playersget to
work in somegroup at one and the sameroad, each of themischarged for thefraction
of theincurred cost corresponding to painting the unfinished part that is proportional
to hisweight. Due to the way of distributing costs we will interpret the weights as
contribution rates. We will see that this dynamic approach amounts to calculating
the individual cost shares in afinite number of stages; each of the different stages

50ur approach resembles the painting story as in Maschler et al.(1995), which resulted in an
algorithm for calculating the nucleolus corresponding to a standard fixed tree game. Only, in our
setting we can do without the social obligation condition.
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corresponds to the actual status of the work procedings at the very moments that
stripes on a specific road are realized. First we formally describe the algorithm and
we prove its validity for calculating weighted constrained egalitarian allocations.
Then we show that for any given fixed tree connection problem G = (G, ¢, N),
the set of all w-constrained egalitarian allocations {(w) when w varies over W(G)
equals the core of the associated cost game (1V, ¢g). Once established this equiva-
lence, wewill study the propertiesof themap £9 : W(G) — core(cg), which assigns
to each vector of contribution ratesw the home-down allocation £(w) associated toit.

For acoalition S and admissibleweight w itstotal weight isdefined by ws = >,c g wi.
Letxz(e, k) € [0, c(e)] bethepart of the cost of arc e which ispaid beforestage k. Let
E), C E bethesubset of arcswhose costiscovered at stagek andlet E (k) = U< E;
be the subset of arcs which have been paid before stage k. Let e(i, k) be the arc
to which player i contributesin stage k and let S(e, k) = {i € N |e(i, k) = e} be
the set of players contributing to arc e in stage k. Let K (i) denote thefirst stagein
which i stops contributing.

Definition Let z(w) be the alocation obtained at the end of the algorithm. We will
refer to it as the home-down allocation associated to w.

Algorithm 4.3

STEPO:
Initialize by defining:
k=1
z(e,1)=0fordlec FE
E(1)=0

e(i,1) =e;foradli e N
S(e;, 1) ={i}foralie N

StEP1:
Given the contribution rates of the players contributing to an unfinished arc
. . — k) . .
e € E\ E(k) instage k, it would take t(e, k) = cle) = zle,k) units of time to

Ws(e,k)
finish paying for thearc e. Then, the shortest time needed to finish paying for an

unfinished arc is considered to determine which fraction of each unfinished arc
is congtructed. That is, let (k) = min{t(e, k) [e € B\ E(k)}, then wg i t(k)
is the fraction of an unfinished arc e € £\ E(k) which is constructed at stage
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k. Thus, the part of the cost of arc e which is paid before stage k£ + 1 is given
by z(e,k+ 1) = z(e, k) + wgert(k) fordl e € E\ E(k). Then, each player
whose path has not been covered yet is charged according to his’her contribution
rate. Let £, = {e € E'\ E(k)|t(e, k) = t(k)} bethe subset of arcs whose cost
iscovered at stage k. Let E(k + 1) = E(k) U E) be the subset of arcs which
have been paid before stage k& + 1.

STEP 2 : Stop criterium.

If E(k+ 1) = E, then terminate. Let K (i) = k be the finishing time for all
playersin S(e, k), for dl e € E;. Then, the home-down allocation associated
to wisz;(w) = Z,ﬁi(? w;t(k) for al i € N. Otherwise, let e € Ej be an arc
whose cost hasbeen paid at stage k. If ¢’ € E(k+ 1) fordl ¢’ < e, thenthefinal
alocation for aplayer i who has made a contributionto arc e at stage k is z; (w).
Then, let K (i) = k bethefinishing timefor all playersin S(e, k) .

If thereisan arc ¢/ < e whose cost has not been paid yet, then all playersin
S(e, k) start contributing to the arc ¢’ ¢ E(k + 1) preceding arc e which is
closest to e. Then, calculate the set of players that start paying for e at stage
k+1,S(e,k+1). Let k = k+ 1 and repest Step 1.

Clearly, the agorithm is well defined, i.e. it stops after a most K < n stages.
Let 2(w) be the home-down alocation associated to w € W(G), then the following
properties are satisfied.

(C1) If e; < ej, then K(i) < K(j), that is, players closer to the source stop
contributing earlier.
z;(w) < wi
zj(w) T w
(C3) Let Ay(w) ={ie N | K(i) =k}. Then, Uj<xA,;(w) U {r} isatrunk of G
fordl k=1,... K.
(Ag(w))

(C4) zi(w) = wj———=foral i € Ap(w).
WA (w)

(C2) Foranyi,j € N,K(i) < K(j)if and only if

Observe that some sets in the ordered tuple (A;(w),..., Ax(w)) can be emp-
ty if no player has stopped paying at that stage. In the sequel we will refer to
(A1(w), ..., Ax(w)) asthe partition defined by the finishing time induced by z(w).
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Example 4.4 The next example shows how thealgorithmworks. Let G = (G, ¢, N)
be the maintenance problem defined in Example 3.5. Then, the home-down
alocation associated to w with w; = 1 for all 7« € N, is calculated as follows.
Atstagek =1, z(e;, 1) =0, S(e;, 1) = {i} and t(e;, 1) = c(e;) foral i € N.
Then, t(l) =1 , FE| = {62, 63} and E(Q) =F,. Letk =2, then

z(e;,2) | S(ei,2) | t(es,2)
1 {123 ] 1

{4}
{5}
{6}
{7}
{8}
{19}
{10}

ThUS, t(2) = 1, Es = {61,610} and E(3) = {61,62,63,610}. Therefore, K(l) =
K(2) = K(3) = 2. Let k — 3, then

OO N O U1 W N

N e e e e e e
R g N N w| N o

=
o

8
—~

D
s

w
=

NINNDNNNDN PP A

S(Gi, 3) t(@i, 3)

{4}
{5}
{6,10}
{7}
{8}
{9}

OO N[O O D W N
A RR PR A

=
o

Thus, t(3) =1, FE3 = {65,66,67,68} and E(4) = {61,62,63,65,66,67,68,610}.
Therefore, K (5) = K(6) = K(10) = 3. Let k = 4, then
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i | x(e;,4) | S(e;,4) | tlei,4)
1 4

2 1

3 1

41 3 |[{478] 1
5 3

6 4

7 3

8 3

9 3 {9} 3
10 2

Thus, t(4) =1, E, = {64} and E(5) = {61,62,63,64,65,66,67,68,610}. There-
fore, K(4) = 4. Let k = 5, then t(5) = 2, E5 = {eo} and E(6) = E. Thus,
K(9) = 5and z(w) = (2,2,2,4,3,3,4,4,6,3).

Proposition 4.5Letw € W(G), then the home-down allocation x(w) coincideswith
the w-constrained egalitarian allocation.

Proof Takew € W(G) and let T (w) = (T1(w),...,T,(w)) be the ordered par-
tition of the player set associated to £(w), where {(w) is the w-constrained egali-
tarian allocation. Then, we claim that 7 (w) coincides with the ordered partition
(A1(w), ..., Ak(w)) defined by the finishing times induced by the home-down al-
location z(w).

The first nonempty set in (4;(w), ..., Ax(w)), A1(w), equals the maximum trunk
of G which isconstructed fastest. Then, taking into account that the time needed to
construct any trunk 7' of G is given by a.,(T') = &34 it holds that T (w) = A (w)
and therefore z;(w) = &;(w) forall i € Th(w) = A;(w). Then contract G by T3 (w).
But (4;;1(w), ..., Ax(w)) is, respectively, the ordered partition of the player set
induced by both allocations for the contracted problem. Thus, repeated application
of the previous reasoning to each contracted problem yields the claim. 0

We stress that different vectors of contribution rates may yield the same weighted
constrained egalitarian solution. Tekew € W(G) and let A = (4 (w), ..., Ax(w))
be the partition of the player set induced by £(w). For ' € W(G) the home-down
alocation z(w’) coincides with (w) precisely when the two following conditions
are satisfied: 1) the partition of the player set induced by z(w') isequa to .A and
2) within each of the components of A, the players must have the same relative
weight. The latter condition isreflected by the statement that for each A € A there
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isapositive number A4 withw/y = Aawa.

So if for @l £ € N we define I(k) as the number such that & € A (w), then
a sufficient condition (though not necessary) for ' in order to have the equality
z(w') =&(w) isthatforall i,7 € N

SE\

ﬂg‘

" whenever A[(i)(w) = AI(J') (w)
j :

&

Remark Notice that the above algorithm provides a way of calculating weighted
constrained egditarian solutionsin polynomial time; its complexity is O(| N |?).

We now are finished with al preparationsfor the main result in this section.

Theorem 4.6 The core of the game ¢g equals the set of all weighted constrained
egalitarian allocations of G, E(W(G)).

Proof According to Algorithm 4.3 and Proposition 3.3 we have {(W(G)) C
core(cg). Conversely, let = be a core element. Then we have to show that there
existsw € W(G) for which {(w) = z. Let S = (G, ..., GP) be the partition into
subtrees induced by x (Proposition 3.4), then two cases are possible:

Case (i) : If Sisthetrivid partitionS = (G), definew; = z; for each playeri € N.
In such acase,

N
pr =min{ o, (7) | T isatrunk of G} = a,(N) = &

WN

Therefore, &;(w) = wia,(N) = z; forali € N.

Case(ii): If S = (GY,...,GP),whereG* = (S,U{r:}, Ex)foreachk =1,...,p,
isanontrivial partition, then consider the precedencerelation < over (i, .. ., Sp)

defined asfollows,
S1 =Sy & Jie S suchthat S, C F(i).

Then, define w; = agx; for each player i € S;, foral [ = 1,...,p, with
a = (o,...,q,) beingastrictly positivevector («; > 0 for al [) which satisfies
that o; > o, for all [, ¢ such that S; < S;. Then, we will show that {(w) = .
Because our choice of « it holds that if S; precedes S;, then the cost of S
(Xies, c(es)) is covered by the playersin S; before the cost of S; (Yics, c(ei))
is covered by the playersin S;. Thus, i, & (w) = Yies, clei) = Yies, @i for
all=1,...,p. Supposenext that {(w) # z. Since Y, g, &i(w) = Y, o4 foOr
all=1,...,p, theremust exists S; and i, j € S; such that

&(w) < x; and §j(w) > ;. (12)
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)

W) wj

By condition (C2) satisfied by {(w) = z(w), player i stops paying before player
j a the home-down allocation {(w), i.e, K(i) < K(j). Let Fy(j) = {r €
Si|7 = r}, i.e, theset of followersof j in S;. It followsfrom condition (C'1)
that ¢ ¢ Fi(j). Moreover, since it must be K (j) < K(r) foral r € Fi(j), then
& (w) >z, foradl r € Fi(j). Let now j* be the nearest player to the root on the
path P(j) who stops paying at the same stage as player j. Then

Sincew, = oyz, for each r € S, then

, , & (w) _ mye
K )=K(j) = < —. (13)
=R =) T,
Since ¢;(w) > z;, then it follows from (13) that £;«(w) > x;-. Then, following
the same argument as before,

& (w) >z, foreach r € Fi(5%). (14)

Let S; bethe union of al setsin (Si,...,S,) which strictly precede S, then
Sy, S; U Sy areautonomoustrunksat &(w). Leti* = w(j*), i.e. the predecessor
of player 5%, then i* is not the root because i ¢ F;(j*) and G is a standard tree
and, since nobody in F;(j*) contributes to any arc on the path P(:*) # () at the
alocation £(w), then S, U (S; \ Fi(5%)) is an autonomous trunk at &(w) too.
Therefore,

Z &i(w) = Z c(e;).

i€S\F(5*) 1€SE\F1(5*)
Thus, it follows from (12) and (14) that

Yoom< ) LGlw) = D ce).

i€F(5%) i€F(5%) i€ F; (5*)
Then,
Noxm> > e
1€S\Fe (%) 1€S\Fe (%)
Hence,
x4+ D, x> Y cle)+ D> cle).
€S, €S\ Fi(5*) €S, €S\ Fi(5*)

violating the core constraint corresponding to the trunk S; U (S; \ Fi(5%)). O

Remark Aadland and Kolpin (1997) have introduced a solution concept for fixed
tree problems when the treeis achain, therestricted average cost share rule, which
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turns out to be the constrained egalitarian solution of Dutta and Ray (1989).

Remark The parametric class of solutions for standard fixed tree problems in-
troduced by van Gellekom and Potters (1997) contains the constrained egalitarian
solution as an extreme.

5 Theconstrained egalitarian solution as a cost shar-
ing mechanism

In this section we consider the class of maintenance problems corresponding to a
fixed set of agents N and a fixed tree network G = (V, E). The class of all cost
functionsc : F — R, isdenoted by C. A cost sharing mechanism is a mapping
¢ : C — RY, relating each cost function ¢ € C to avector of cost sharesé(c) € RY.
The constrained egalitarian rule is defined to be the cost sharing mechanism &£°
which assigns to each ¢ € C the constrained egalitarian solution £¢(G, ¢, N) for
G = (G,¢, N). Analogoudy, for w € W(G) the w-constrained egalitarian mecha-
nismis defined to be the cost sharing mechanism £ which assignsto each ¢ € C the
corresponding w-constrained egalitarian solution for G = (G, ¢, N). But we will
focus only on the constrained egalitarian cost sharing mechanism; atreatment of the
generadized class of all weighted constrained egalitarian cost sharing mechanisms
is postponed to the Appendix.

Suppose that, given the cost function ¢ € C, the arcs in E get (weakly) more
expensive. Then, consistently, a reasonable cost sharing mechanism will increase
(weakly) al the individua cost shares. Nobody should benefit from an increase of
cost of the entire network. When a cost sharing mechanism ¢ is consistent with this
idea, then it is called cost monotonic. More formally, £ is cost monotonic iff for al
e, €C,d > cimplies{(c) > &(c). Furthermore, if acost sharing mechanism &
generates only stable outcomesin the sense that £(c) € core(cg) for G = (G, ¢, N)
and al c € C, thenitissaid to satisfy the core property. Itisclear from the dynamic
approach described in the previous section that the (weighted) constrained egalitar-
ian rule satisfies both above properties.

Let (T3,...,T,) be the partition of the player set N associated to £¢(c) induced

by Algorithm 4.1. Let ¢(7) be the number such that i € T}(;). Then conditions (9),
(10) and (11) can be rewritten asfollows:
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& (c) = &) & (i) < 1)) (15)
ZZ&?(C): Z cle;) fordl k=1,...,p (16)

I=1 €Ty i€T (k)
where T'(k) isthetrunk of G defined as U}, T;.

Theorem 5.1 The constrained egalitarian cost share rule is the unique cost share
rule which minimizes the range of the cost shares among those rules satisfying
cost monotonicity and core property.

Proof 1) The constrained egalitarian rule minimizesthe range of cost shares among
the rules verifying cost monotonicity and the core property. Certainly, let ¢ be any
cost share mechanism satisfying those properties, then we will show that for all
¢ € C thefollowing inequalities are satisfied:

max{ ¢;(c)[i € N} > max{&(c)|i € N'} (17)
min{ p;(c)|i € N} <min{&(c)|i e N} (18)
where £¢(c) is the constrained egalitarian solution of G = (G, ¢, N).
On the contrary, suppose that inequality (17) is not satisfied. Then condition (15)
implies
max{ ¢;(c)|j €T, } <& (c)fordlie T,
Therefore, it followsfrom efficiency and condition (16) that

Y. oce)= > &< X ¢ (19)
€T (p—1) €T (p—1) €T (p—1)
where T'(p — 1) is the trunk U?~'T;, contradicting the core property. Then (17)
holds. A similar reasoning gives inequality (18).

2) We next establish uniqueness. Let ¢ be any cost alocation rule satisfying
cost monotonicity and core property such that range(¢(c)) = range(&¢(c)) for al
c € C. Wewill prove that ¢;(c) = £ (c) fordl i € T, andforall k =1,...,pby
backward induction on the index k.

If range(¢(c)) = range(&¢(G,c, N)), thenin view of inequalities (17) and (18) it
has to be max{ p;(c)|i € N} = max{(c)|i € N }. Therefore, p;(c) < &(c)
for all i € T,,. Now, suppose that ;(c) < & (c) for somei € T,,. Then

Yoocle) < D o), (20)

€T (p—1) €T (p—1)
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which contradicts the core property. Thus, ¢;(c) = £5(c) for al i € T,,. Suppose
that ;(c) = &(c) fordli e T, fordl I =k, ..., p.
Let (T3, ...,T,) bethe partition of the player set N associated to £°(c¢) induced by
Algorithm 4.1. Suppose that for any & € {1,...,p — 1}, we lower the cost of an
arcse; forieTyandl >k +1b
€ 1= €Ty C(ei) o ZiETk C(ei)
T3] | T|

The costs of other arcsremain the same. Let ¢* : E — IR be the function that gives
for each arc the remaining cost. We claim that (G, c*, N) defines a maintenance
problem, suchthat (TF,..., TF) with T} = T, foral I < k — 1 and T} = Ui T
defines the partition of the player set N induced by £¢(c*) and in addition

(k) =¢(e) foral i €Ty and 1 <k

, A 21

§§(ck):z”€’+ﬁez)forallz’eﬂ and [ >k+ 1. (21)

k

This clam is verified as follows. Let ¢ be the cost allocation defined by the right-
hand side in the above expression (21). Then we have to show that ¢ = £°(c*).
First, we will show that ¢ isacore element of (IV, cgr). First of al notethat ¢; > 0
foradl : € N anditisefficient asfollowsfrom

S ) = X cle) + | Uy TG
ieEN iET(k) ’Tk’
k
- Zzgf(c)‘i‘zzwzz Z(’Oz
I=11€T; I>kieT) ieN

where the second equality follows from condition (16). Then, according to Propo-
sition 3.1 it isenough to prove that ;e i < Sier c®(e;) for al trunks T Let T
be any trunk of G, then we are left two cases,

Case (i) : T C Ui, then Ticr @i = Yier £ (c) < Yier c(es) = Xier ().
Case (7i) : TN (UsiT)) #0,thenT =T'UT", where T’ = T N (U< T;) and
T =T\ T, and
1" Zz % Cl€;
> =T = (€:) (22)

S | T
Also
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Z le)) = Dierncled) Z]T”HTA 13

T ish
= Z C(ez‘) _Z’T//ﬂTl’ . M-F ’T”’ . M
€T I~k ’7’” ’Tk’
= Z Z 58 ’T” M
€T T ’Tk’
(23)
Furthermoreit holds that
D ieT, C(ei)
= 2 G+ T =T 24
2.9 = 2 ST || (24)

i€l T’

Thus, combining expressions (22), (23) and (24) and taking into account the fact
that £¢(c) isacore element of (V, ¢g), it holds

dopi = D&+ Y &)+ Y Fle) = Y cle)

i€T i€T ieT” ieT” ieT”
< Nele)+ Y Fle) = D cle)
i€T ieT” ieT”
= Ciercle) + Tierr F(es)
= Yierc*(e).

Now we will show that the partition generated by Algorithm 4.1 for calculat-
ing the constrained egalitarian solution of G* coincides with the ordered partition
(TF, ..., TF) defined above. Let T beatrunk of G, then

INACHIED NI 2jet; ¢ ):’T,.M.

€T €T €T ’T ’ ’Tl,

wherethefirstinequality followsfromthefact of ¢ being acoreelement of (INV, cgr).
Therefore, the average cost (with respect to c¥) of 73 = 7% is minimum. Now re-
peated application of the previous reasoning to each contracted problem yields the
claim (observethat o' = (¢;)icn\7, IS@core element for the contracted problem as
it was shown in the proof of Proposition 3.4). So this proves our claim.

So for ¢~ as defined above, it is verified that
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(i) 1 <e
(i) &(c) = &(cF Y foral i e Ty andal I <k —1

(2

(i) @i(cFt) =¢&(F ) fordli e Tiforal I >k — 1.

Observe that condition (iii) follows from the fact that (77*,..., 7F7!) with
Ti~ = Use1Ti is the partition of the player set associated to £¢(c*~1) gener-
ated by Algorithm 4.1 (see the above claim) and the application of the previous
reasoning. Thus we derive

DD wildT) =3 &) =

1>k i€T, 1>k i€T,
k—1 k-1 k-1
Yod e =23 =D &0 (25)
1=1 €T} =1 ieT] =1 €T,

The induction hypothesis gives

DD i) =23 &0

1>k €T 1>k €T
So it holds that
Yo owil= > &lo). (26)
€T (k—1) €T (k—1)

Therefore, together with expressions (25) and (26), cost monotonicity implies
pi(c) = @i(cF1) for al i € T'(k — 1). But then the above conditions (i) and
() imply @;(c) = & (c) forall ¢ € Tj_. 0
Suppose that getting connected is equally valued by the different agents. Then the
constrained egalitarian cost share mechanism minimizes the range of cost shares
among the class of cost monotonic mechanisms sharing the core property, ssimul-
taneoudly it maximizes Rawlsian welfare, that is measured by the opposite of the
highest cost share. In fact, it is the only cost monotonic mechanism under this
welfare consideration.

Theorem 5.2 The constrained egalitarian cost share mechanismisthe unique cost
share mechanismthat maximizes Rawl sian welfare among those mechanismsthat
satisfy cost monotonicity and which satisfy the core property.

Proof The proof resembles that of Theorem 5.1 up to a high degree. Firdt, the
constrained egalitarian cost share mechanism selects the Lorenz maximal element
in the core of amaintenance problem (Duttaand Ray (1989)), which implies Rawl-
sian maximality. Suppose ¢ satisfies also cost monotonicity and the core property
therebye maximizing Rawlsian welfare. Then of course by assumption for any
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¢ € C,max{p;(c)|i € N} = max{&(c)|i € N}. Now proceed along the same
lines asin the proof of Theorem 5.1 after ‘2)’ in order to seethat ¢ equals&c. O

In fact, the characterization results of the constrained egalitarian cost sharing mech-
anism for trees are similar to those for the restrictive average rule for chains as
in Aadland and Kolpin (1997). Besides the fact that our results hold for a more
genera setting, Aadland and Kolpin needed an additional characterizing property
whichissatisfied by the constrained egalitarian cost share mechanism. The property
in question is ranking, which requires that an agent with higher stand a one costs,
should contribute (weakly) more.

One can trace easily the following independencies between the properties that we
used above. Splitting the total costs equally between the players gives a cost
monotonic mechanism that minimizes both the range of the weighted cost shares
and the maximal weighted cost share. But the alocation need not be a core el-
ement. Furthermore there are mechanisms £ that minimize the range of the cost
shares subject to the core property but are not cost monotonic. A legitimate can-
didate would be the mechanism ¢ that coincides with the constrained egalitari-
an solution for al problems except for the following 4-player problem in which
1<2=<3=<4,c0=10=c3=2,c4 =3and(c) isgivenby (1,13,23,3). The
mechanism that relates each cost function ¢ € C to the corresponding Shapley value
for cg withG = (G, ¢, N), defines acost monotonic mechanism for which the core
property is satisfied, however it does not aways minimize the range of cost shares
or minimize the maximal cost share.

6 Weighted Shapley values and the core

In Section 4 we explained that each weighted constrained egalitarian allocation is a
home-down allocation. Suppose that we systematically reverse the assignment rule
in each step of the above allocation procedure and that in each step we first assign
each of the disconnected players to the furthest unfinished arc on his path, which
is the one that is closest to the source. Next, like before, each arc that becomes
selected in this way is constructed by the agents assigned to it, and each agent
pays part of the incurred cost proportional to his weight w;. Repeat these steps
until al players have the desired connections. As a result we get a vector of cost
shares by this bottom-up procedure, which will be called the down-home allocation
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corresponding to the vector of weights w.

For instance, consider Example 3.5 with equally weighted players. Thenin order to
determine the corresponding down-homeallocation, wefirst assign al playerstoe;.
Then this arc is constructed and the corresponding costs are shared proportionally
to the weights of the agents, which corresponds to the equal shares of C|(]f,1|) = - for
each agent. At the second step theagentsin {2, 4,5, 7,8} and {3, 6,9, 10} resp. are
assigned to e, and ez resp. Agent 1 reached hishome in thisfirst step and does not
contribute anymore. Next the procedure requires that agents in {3,6,9, 10} each
pay ; and agentsin {2,4,5,7,8} pay +. Now the agents 2 and 3 are satisfied and
their final cost shares are 7 + £ and - + 1 respectively. At the beginning of the
following step the players go on constructing, player 5 is Situated at es, players 4,7
and 8 at e, and players 3,6,9 and 10 stick to e3. This boils down to the additional
payments of 3 for player 5, 2 for each of the players 4, 7,8 and § for each player
in {6,9,10}. Now agents 4,5, 6 are connected having contributed in total 2, 3%
and 122 respectively. The last step consists of letting each agent ¢ € {7,8,9,10}
construct it's own indispensible arc e; at the cost of an additional payment c(e;).
Then thisresultsin thefinal payments 5, 55, 723 and 333 for agent 7, 8,9 and 10
respectively. Itiswidely known that the resulting allocation is nothing else than the
Shapley value of the corresponding game cg.

In general, for any maintenance problem G = (G, ¢, N), if we determine indi-
vidual payments according to the above procedure with respect to an admissible
vector of weights w, we get as a result the weighted Shapley value for cg, that
corresponds to the weight system (@, (N\T,T)) where T' = {i € N|w; > 0}
and @ € ]Rf+ is such that Wy = wr and o\ is arbitrarily chosen. For a more
detailed discussion of weighted Shapley values we refer the reader to Kalai and
Samet (1992). It isnot difficult to see that by varying over all admissible weights,
the corresponding set of weighted Shapley values does in fact not exhaust the core
of thegame c¢g. Below we describe how in anatural way the admissibility condition
on weights can be relaxed, yielding down-home allocations each corresponding to
some weighted Shapley value. Then with Monderer et al. (1992) in mind, it turns
out that this extended class of allocations equals the core of ¢g.

Take a weight vector w € ]Rf ,w # 0. Without admissibility condition on w,
we can actually take the same steps as in the above algorithm as long as arcs be-
come selected that are used by at least one user ¢ with strictly positive weight w;.
Suppose that w is not admissible for G. Then by consequetively constructing arcs
in each branch with at least one user with non-zero weight and doing nothing in all
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other branches, we end up with disconnected branches with all players of weight
0. Suppose the latter is the case, and let IV; be the union of all players that are
still disconnected after these operations. If we have additional exogeneoudly given
information, that consists of aweight vector w! € R\ {0}, prescribing therelative
impact of aplayer i € N; compared to the othersin /Ny, then consistently we could
proceed by applying the above techniques to the subproblems induced by each of
the branches with the individual weights as in w!. Again the process terminates
prematurely when the restriction of w! to one of these branches is not admissible
for one the problems induced by it. Then define IV, as the set of those playersin
N, that are still not connected. Then we could proceed for those agents if only we
have the disposal of another weight vector w? € R1*\{0}, which isto summarize
the relative impact of the remaining playersin N,. Again proceed with w? for the
remaining disconnected branches. In this way, by having sufficiently many weight
vectors containing information about the relative impact of players, we end up with
the whole constructed tree and an allocation of the corresponding total cost. Note
that between two terminations of the procedure, we construct connected partsin the
graph each determining a subtree of GG; the cost for constructing arcsin such atree
are distributed among the players located here. If the set of players T' of one such
subtree is connected during phase ¢, i.e. the phase in which w! was used as aweight
vector, then the restriction to 7', wk,, is admissible for the restricted connection
problem induced by the subtree correspondingto 7, G = (T' U {rr}, Er). Sothe
final alocation for the grand coalition N is determined by down-home allocations
for different subproblems, which form apartition of G into subtrees. Thisgivesrise
to the following extension of the notion of down-home alocations.

Let (S1,...,S5,) be a partition of the player set N that induces a partition
S = (GY,...,GP) of G into subtrees, such that for each k € {1,...p}, G* is
the tree corresponding to S* and G it’s restricted maintenance problem . Then a
weight vector w € ]Rf iscalled admissible for the partition (S, ..., S,) if for each
k=1,...,p,wehavewg: € W(G*). Such aweight represents the idea that agents
in S; have impact 0 compared to those in S; whenever i < j. For each such a
weight w we define the down-home all ocation as the combination of the down-home
allocations for each of the problems G* corresponding to wgx.

It is tedious but not very hard to show that each such a down-home allocation
isrelated in a natural way with a weighted Shapley value of ¢g. By extending the
class of down-home allocations by enlargening the set of admissible weights we get
all weighted Shapley values of cg. Then following the result of Monderer et al.
(1992), stating that the core equals the set of weighted Shapley values it must be
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that it also equals the set of all down-home allocations.

7  Appendix

Throughout this section, fix atree network G = (V, E') and the set of players NV of a
maintenance problem G. Denote by C the class of al cost functionsc: £ — R,.
Also, let there be given a (positive) weight system, i.e. amappingw : C — ]Rf
which relates each cost function ¢ to a (positive) vector of admissible weights for
G = (G,¢, N). Then, the w-constrained egalitarian mechanismis the cost sharing
mechanism & which relates each maintenance problem G = (G, ¢, N) with its
w(c)-constrained egalitarian allocation £ (c).

Theorem 7.1 Suppose w is positive. Then w-constrained egalitarian mechanism
minimizes the range of the weighted cost shares

max {fj((?) i € N} — min {fj((?) i € N}

among those cost mechanisms which are cost monotonic and have the core
property.

Theorem 7.2 The w-constrained egalitarian cost share mechanism minimizes the
weighted maximal cost share max { £ |i € N} among those mechanisms
which are cost monotonic and have the core property.

The above two theorems are proved as straightforward adaptation of part 1) of the
proof of Theorem 5.1.

If w is not a positive weight system then the maximum and the minimum is taken
over the subset of playerswith strictly positive weight and the class of cost sharing
mechanisms has to be reduced to those mechanisms which have the core property
and verify that &;(c) = 0 for all ¢ € N such that w;(c) = 0 for al maintenance
problems G = (G,c,N). In order to obtain a characterization result which
generalizes the result stated in Theorem 5.1 and Theorem 5.2 we have to restrict
ourselves to homogeneous positive weight systems, i.e. weight systems w that do
not depend on the cost function, or w(c) = w(c) foral ¢, € C.
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Theorem 7.3 Let w be a positive homogeneous weight system. Then the w-
constrained egalitarian rule is the unique cost sharing mechanism which mini-
mizes the weighted range of the cost shares among those mechanisms satisfying
cost monotonicity and the core property.

Theorem 7.4 Let w be a positive homogeneous weight system. Then the w-
constrained egalitarian rule is the unique cost sharing mechanism which mini-
mizes

max { i((?) li € N,w;(c) > o}

among those mechanisms satisfying cost monotonicity and the core property.
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