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1 Introduction

Traditional economic analysis rests on two fundamental assumptions. First, economic agents

have a particular goal, e.g. utility or profit maximization. Second, economic agents behave

in such a way that these goals are achieved within the limits imposed by given constraints.

Simon (1976) refers to this kind of behavior as being substantively rational. Whenever the

assumptions with respect to utility or profit maximization and substantive rationality hold,

incorporating behavioral considerations in economic analysis is superfluous.

Economics became concerned with human cognitive processes originated in psychology when

uncertainty and expectations became an explicit part of the models. Cournot, for example,

showed that the notion of profit-maximization is ill-defined in an oligopoly market. The quanti-

ty that would be substantively rational for each firm depends on the choices made by the other

firms: no firm can choose without making assumptions about how others will choose. Thus, the

presence of uncertainty prevents them from acting substantively rational. However, as stated

by Simon (1976), being boundedly rational does not prevent the firms from being procedurally

rational. Procedural rationality means that behavior is the outcome of some process of appro-

priate reasoning given available knowledge and computational capabilities. See also Rubinstein

(1997).

In games players make choices based on an association between actions and consequences.

We consider a game theoretic model in which the players behave according to a very simple

procedure of deliberation. Facing a certain situation, i.e. given a pure strategy profile of the

opponents this procedure prescribes that each best response is played with equal probability. If

a player faces a mixed strategy profile of his opponents, he is confronted with uncertainty. In

those situations regret considerations may become important. A player ends up feeling regret in

case the chosen action was not a best response ex post. We focus on static, one-shot games where

a mixed strategy means that each player does choose a pure strategy, but this pure strategy

is drawn from the probability distribution over his strategy set induced by the player’s mixed

strategy. We assume that a player has beliefs about the mixed strategy profile of his opponents.

Thus, a player can determine the probability distribution over the pure strategy profiles of his

opponents from these beliefs. Each player assumes that the realized pure strategy profile of his

opponents is randomly drawn from this distribution. Given the procedure described above, he

would react to such a realization by playing each of his best responses with equal probability.

We now assume that he uses his beliefs to weigh each of these reactions accordingly. Thus,

the procedure together with the player’s beliefs about the mixed strategies of his opponents

determines the mixed strategy of the player. The equilibrium requirement of our concept is that

the beliefs of each player about the other players’ behavior are consistent with the other players’

behavior. Consequently, in equilibrium each player plays a pure strategy with a probability

equal to the probability that this strategy does not give rise to regret.
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The notion of Nash equilibrium and the equilibrium concept introduced by Osborne and

Rubinstein (1997) also require the beliefs to be consistent with the other players’ behavior.

However, they differ with respect to the way in which players construct beliefs about the conse-

quences of their actions. The notion of Nash equilibrium prescribes that each player constructs

probabilistic beliefs about the other players’ behavior. Furthermore, given these beliefs each

player associates a distribution of consequences to each action. In the equilibrium concept of

Osborne and Rubinstein each player constructs beliefs about the consequences of his actions by

sampling each action and associating a consequence with each action independently.

The concept of Osborne and Rubinstein (1997) aims at constructing a procedure in case

the players have limited knowledge of the economic environment. Contrary to both the Nash

equilibrium and our concept, they do not require players to know the relationship between

their own action, the other players’ actions, and the outcome. Their players only need to know

their own set of possible actions. However, Osborne and Rubinstein do assume players to be

able to compare outcomes resulting from different action profiles of the other players. This

is not necessary in our model where a very simple preference relation for each player suffices.

In particular, our players do not have to be able to compare lotteries over outcomes or even

outcomes resulting from different action profiles of the opponents. Furthermore, given the actions

of the opponents, we allow for the possibility that a player cannot compare some of his actions;

he only must be able to determine all best responses.

As mentioned before, regret considerations become important whenever people face uncer-

tain situations. In a decision theoretic set-up such situations are modelled by lotteries, see

Loomes and Sudgen (1982). Their aim was to give a simple explanation of the observations in

the experiments of Kahneman and Tversky (1979). Regret considerations in a dynamic game

theoretic setting are studied by Hart and Mas-Colell (1997).

The structure of the paper is as follows. In Section 2 we define terminology that is used

throughout the paper. The regret equilibrium notion is derived from the corresponding proce-

dure in Section 3. This section also includes the existence result and some results concerning

weakly and strictly dominated strategies. Section 4 concerns the structure and size of the set

of regret equilibria. In Section 5 we compare our concept with other solution concepts in non-

cooperative game theory. Section 6 applies the equilibrium concept to several classes of games,

including a Rock-Scissors-Paper game, a class of Hawk-Dove games, and two-person coordina-

tion games. We proceed by applying the regret equilibrium concept to extensive form games,

in particular the centipede game. It is shown that the equilibrium concept provides a potential

resolution of the paradoxical flavor of this game: The equilibrium conditions indicate that the

players understand the structure of the centipede game, but still want to continue at the early

stages of the game with a relatively large probability. Section 7 concludes.
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2 Preliminaries

This section defines some standard game theoretic notions which are used hereafter. A (strategic)

game is a tuple G = 〈N, (Si)i∈N , (�i)i∈N〉, where N = {1, . . . , n} is a finite set of players; each

player i ∈ N has a finite set Si of pure strategies and a binary relation�i over
∏
i∈N Si, reflecting

his preferences over the outcomes. The binary relation �i is assumed to be reflexive and its

asymmetric part �i, defined for all s, t ∈
∏
i∈N Si by

s �i t⇔ s �i t and not t �i s,

is assumed to be acyclic. In the following we also consider cases in which the preference

relations �i induce von Neumann-Morgenstern utility functions πi :
∏
i∈N Si → IR and de-

note the corresponding game by G = 〈N, (Si)i∈N , (πi)i∈N〉. For notational convenience we

write S =
∏
i∈N Si, S−i =

∏
j∈N\{i}Sj; for a strategy tuple s = (s1, . . . , sn) ∈ S we denote

s−i = (s1, . . . , si−1, si+1, . . . , sn) and, with a slight abuse of notation, s = (si, s−i). We denote

by

∆i := {σi : Si → IR | ∀si ∈ Si : σi(si) ≥ 0,
∑
si∈Si

σi(si) = 1}

the set of mixed strategies for player i; analogous to the pure strategy case, we use notations ∆,

∆−i, σ = (σi, σ−i). For a mixed strategy profile σ−i, we write σ−i(s−i) :=
∏
j∈N\{i} σj(sj), the

probability that the opponents of player i play the strategy profile s−i ∈ S−i.

Consider a game 〈N, (Si)i∈N , (�i)i∈N〉. Denote for each player i ∈ N and each profile

s−i ∈ S−i of pure strategies of his opponents the set of pure best replies, i.e., the pure strategies

that player i cannot improve upon, by Bi(s−i):

Bi(s−i) := {si ∈ Si |6 ∃s̃i ∈ Si : (s̃i, s−i) �i (si, s−i)}.

Of course, for games 〈N, (Si)i∈N , (πi)i∈N〉 with utility functions we have:

Bi(s−i) := {si ∈ Si | ∀s̃i ∈ Si : πi(si, s−i) ≥ πi(s̃i, s−i)}.

Since Si is finite and �i is acyclic, Bi(s−i) is nonempty. In a game 〈N, (Si)i∈N , (�i)i∈N〉, we

call a pure strategy si ∈ Si a never-best response if

{s−i ∈ S−i | si ∈ Bi(s−i)} = ∅.

For a game 〈N, (Si)i∈N , (πi)i∈N〉 we have that si ∈ Si is a never-best response if

πi(si, s−i) < max
s̃i∈Si

πi(s̃i, s−i)

for each s−i ∈ S−i. A pure strategy si ∈ Si is weakly dominated by a mixed strategy σi ∈ ∆i if

∀s−i ∈ S−i : πi(σi, s−i) ≥ πi(si, s−i)

with strict inequality for at least one s−i, and strictly dominated if all inequalities are strict. A

strictly dominated strategy is clearly a never-best response.
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3 Model

The players in our model base their mixed strategy on their beliefs about the strategy profile of

the opponents and on a very simple procedure. Each player i ∈ N has beliefs about the strategy

profile of his opponents, in the sense that he believes his opponents adopt a strategy profile

σ−i ∈ ∆−i. We focus on one-shot games, where a mixed strategy means that each player does

play a pure strategy, but this pure strategy is drawn from the probability distribution over his

strategy set induced by a player’s mixed strategy. Hence, the player is uncertain about the exact

pure strategy profile s−i ∈ S−i that will be chosen by his opponents. In the Nash equilibrium

context, players use their beliefs to calculate expected payoffs. In our model, players reason

differently. Since they are playing a one-shot game, they are sure that in the end they will face a

pure strategy profile of the opponents. If they do not play a best response to this pure strategy

profile they will feel regret. This consideration is due to the uncertainty of the situation that

is coming from the beliefs that the players have. We assume that each player i ∈ N adopts

a very simple procedure. Given a pure strategy profile s−i of his opponents, he will play each

best response to s−i with equal probability. Each player assumes that the realized pure strategy

profile of his opponents is drawn from the probability distribution over the pure strategy profiles

that is induced by his beliefs. Thus, using this procedure, a player would be able to react to each

realization ex post. However, ex ante the realized pure strategy profile is stochastic. Players

now use their beliefs about the profiles of the opponents to weigh their reactions accordingly.

Consequently, a player plays each of his pure strategies with a certain probability, that is an

outcome of the procedure together with his beliefs. The equilibrium requirement of our concept

is that the beliefs of each player about the other players’ behavior are consistent with the other

players’ behavior: we require correctness of beliefs.

We first give an example and then derive the equilibrium conditions in the general case.

Consider the two-player game in Figure 1, where ε ∈ (0, 1). Player 1 has two pure strategies,

A and B. Player 2 has three pure strategies, a, b, and c. We ignore the payoffs to player 2

a b c

A 1, 0 2, 0 3, 0
B 3 + ε, 0 1 + ε, 0 2 + ε, 0

Figure 1: Regret considerations

in this example and focus on the situation for player 1. Assume that player 1 believes that

his opponent will play each of his pure strategies with equal probability, i.e., that his opponent

plays σ2 = (1
3 ,

1
3 ,

1
3). Hence, player 1 considers each of the realizations a, b, and c to be equally

likely. If the observation is a, his unique best response is to play B, in the other cases he should

play his unique best response A. According to the procedure and the beliefs, the probability
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that player 1 will play A is then 2
3 , and that he will play B is 1

3 , which determines his mixed

strategy.

In general, what equilibrium conditions does the above imply? Consider a strategy profile

σ ∈ ∆ and a player i ∈ N . What is the probability that player i will choose to play a strategy

si ∈ Si if he follows the above procedure and believes that his opponents play according to σ−i?

Player i will not play si in response to a pure strategy profile s−i to which si is not a pure best

reply. Now suppose that si is indeed a pure best reply to s−i; the probability of event s−i, i.e.,

the probability that i’s opponents play s−i, equals σ−i(s−i). Given this event, he will play all

pure best replies to s−i with equal probability and consequently will play si with probability
1

|Bi(s−i)|
. Summarizing, given a profile σ−i of player i’s opponents, the probability that player i

decides to play si if he follows the procedure and believes that his opponents play according to

σ−i equals ∑
{s−i∈S−i|si∈Bi(s−i)}

1

|Bi(s−i)|
σ−i(s−i) =: ri(si, σ−i), (1)

where the empty sum is zero by definition. In equilibrium, every player’s beliefs must be correct,

so expression (1) should equal player i’s probability of playing si, σi(si).

The expression for ri(si, σ−i) in (1) can be interpreted as player i’s probability of not feeling

regret after playing si. Necessary for not feeling regret of si is that si is a best reply to the

played strategy. If there were more than one pure best reply, he feels regret for not being able

to play the other pure best replies. This last type of regret might seem strange, but it can be

compared to the regret of not choosing an equally pleasing destination for your vacation: you

are aware that some alternative destinations are just as good, but it is still unpleasant that you

cannot be in more places at the same time.

Notice that in Figure 1 the probability that player 1 feels no regret if he plays A equals 2
3 ; if

he plays B it equals 1
3 . Given beliefs σ2 = (1

3 ,
1
3 ,

1
3), the expected payoff of playing A is 2 and of

playing B, 2+ε. Hence an expected utility maximizing player 1 would select B with probability

one.

Summarizing, we define our equilibrium notion as follows:

Definition 3.1 Let G = 〈N, (Si)i∈N , (�i)i∈N〉 be a game. A mixed strategy profile σ ∈ ∆ is a

regret equilibrium if for every player i ∈ N and for every si ∈ Si:

σi(si) = ri(si, σ−i). (2)

The set of regret equilibria of a game G is denoted by RE(G).

The following proposition shows that regret equilibria exist for every game.

Proposition 3.2 Let G = 〈N, (Si)i∈N , (�i)i∈N〉 be a game. Then RE(G) 6= ∅.
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Proof. Let i ∈ N, σ ∈ ∆. Notice that∑
si∈Si

ri(si, σ−i) =
∑
si∈Si

∑
{s−i∈S−i|si∈Bi(s−i)}

1

|Bi(s−i)|
σ−i(s−i)

=
∑

s−i∈S−i

∑
si∈Bi(s−i)

1

|Bi(s−i)|
σ−i(s−i)

=
∑

s−i∈S−i

σ−i(s−i)

= 1.

Hence the mapping

r : ∆→ ∆

σ 7→ r(σ)

with r(σ)i(si) = ri(si, σ−i) is well-defined. In the definition (1) of the function ri neither the

index set in the summation sign nor the number |Bi(s−i)| of pure best responses depends on

the strategy combination σ. Hence, this mapping is obviously continuous. Application of the

Brouwer fix point theorem yields the existence of a strategy profile σ ∈ ∆ such that σ = r(σ),

which is a regret equilibrium. 2

Remark 3.3 It follows from the proof that
∑
si∈Si σi(si) = 1 =

∑
si∈Si ri(si, σ−i) for each

σ ∈ ∆, i ∈ N . As a consequence, one of the conditions σi(si) = ri(si, σ−i) of player i is

redundant.

A game H is said to be obtained by iterated elimination of never-best responses from a game

G = 〈N, (Si)i∈N , (�i)i∈N〉 if there exists a number k ∈ IN of elimination rounds and for each

player i ∈ N a collection of sets S0
i , S

1
i , . . . , S

k
i and a sequence �0

i ,�
1
i , . . . ,�

k
i of relations such

that:

1. For each player i ∈ N : Si = S0
i ⊇ S

1
i ⊇ · · · ⊇ S

k
i ;

2. For each player i ∈ N and each l = 0, 1, . . . , k: �li is the preference relation �i from the

game G restricted to
∏
j∈N S

l
j ;

3. For each l = 0, 1, . . . , k−1 there exists a player i ∈ N such that Sli \S
l+1
i is nonempty and

contains only never-best responses of player i in the game 〈N, (Sli)i∈N , (�
l
i)i∈N〉;

4. H is the game 〈N, (Ski )i∈N , (�
k
i )i∈N〉;

5. In the game H , no player i ∈ N has never-best responses.

The behavior of the regret equilibrium concept with respect to dominated strategies and elimi-

nation thereof is summarized in the next result.
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Proposition 3.4 The following results hold:

(i) In a regret equilibrium σ∗ of a game 〈N, (Si)i∈N , (�i)i∈N〉 never-best responses are played

with zero probability.

Moreover,

(ii) the set of regret equilibria of a game G = 〈N, (Si)i∈N , (�i)i∈N〉 equals — up to zero proba-

bility assigned to eliminated pure strategies — the set of regret equilibria of a game that is

obtained by iterated elimination of never-best responses.

Finally,

(iii) let G = 〈N, (Si)i∈N , (πi)i∈N〉 be a game with von Neumann-Morgenstern utility functions

and let σ∗ be a regret equilibrium of G. If player i’s pure strategy si is weakly dominated

by the mixed strategy σi, then:

for all si ∈ Si : if σi(si) > 0, then σ∗i (si) ≥ σ
∗
i (si).

Proof. The proof of (i) is easy: if si ∈ Si is a never-best response, then the set {s−i ∈ S−i |

si ∈ Bi(s−i)} is empty and hence according to (2): σ∗i (si) = ri(si, σ
∗
−i) = 0.

To prove (ii), it suffices to prove that the first round of eliminations does not change the

equilibrium set, since the proof can then be repeated for the additional rounds. Assume for

simplicity that in this first elimination round we eliminate all the never-best responses

NBi := {si ∈ Si | si is a never-best response of player i in G}

of each player i ∈ N , thus obtaining a smaller game G′. The equilibrium conditions in the game

G are that for each i ∈ N and each si ∈ Si:

σi(si) = ri(si, σ−i)

=
∑

{s−i∈S−i|si∈Bi(s−i)}

1

|Bi(s−i)|
σ−i(s−i)

=
∑

{s−i∈S−i|si∈Bi(s−i) and ∀j∈N\{i}:sj/∈NBj}

1

|Bi(s−i)|
σ−i(s−i)

+
∑

{s−i∈S−i|si∈Bi(s−i) and ∃j∈N\{i}:sj∈NBj}

1

|Bi(s−i)|
σ−i(s−i)

=
∑

{s−i∈
∏
j∈N\{i}

Sj\NBj |si∈Bi(s−i)}

1

|Bi(s−i)|
σ−i(s−i)

+
∑

{s−i∈S−i|si∈Bi(s−i) and ∃j∈N\{i}:sj∈NBj}

1

|Bi(s−i)|
σ−i(s−i)
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By (i), strategies sj ∈ NBj are played with zero probability in a regret equilibrium. Hence the

second sum in the last equality above equals zero. What remains, for each player i ∈ N and

each strategy si ∈ Si \NBi, are exactly the equilibrium conditions for the game G′.

To prove (iii), assume w.l.o.g. that si ∈ Bi(s−i). Since σi weakly dominates si and si ∈

Bi(s−i), for every si ∈ Si such that σi(si) > 0 we must have that si ∈ Bi(s−i):

{s−i ∈ S−i | si ∈ Bi(s−i)} ⊆ {s−i ∈ S−i | si ∈ Bi(s−i)},

which together with the definition of ri(·, σ
∗
−i) implies the result:

σi(si) > 0 ⇒ σ∗i (si) = ri(si, σ
∗
−i)

=
∑
{s−i∈S−i|si∈Bi(s−i)}

1
|Bi(s−i)|

σ∗−i(s−i)

≥
∑
{s−i∈S−i|si∈Bi(s−i)}

1
|Bi(s−i)|

σ∗−i(s−i)

= ri(si, σ
∗
−i)

= σ∗i (si).

2

Notice that the result above does not rule out that weakly dominated strategies are played with

positive, even quite large probability.

Example 3.5 Consider the game in Figure 2. T weakly dominates B and L strictly dominates

R. T is a best response against L, but player 1 will regret not playing the other best response B

against L, and T is a unique best response against R. Hence in equilibrium we have the condition

that

σ1(T ) =
1

2
σ2(L) + σ2(R).

The condition for σ1(B) is redundant, since the probabilities have to add up to one. Similarly,

for player 2 we see that L is a unique best response to both T and B, so that his equilibrium

condition becomes

σ2(L) = σ1(T ) + σ1(B).

Solving these equations and taking into acount that (σ1, σ2) ∈ ∆1×∆2 we find that the unique

regret equilibrium equals ((1
2 ,

1
2), (1, 0)). Observe that the weakly dominated strategy is not only

played with positive probability, but that there is not even an alternative strategy with a higher

probability.

L R
T 1, 1 1, 0
B 1, 1 0, 0

Figure 2: The game from Example 3.5
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4 The size and structure of the set of regret equilibria

The size of an equilibrium set can be seen as a measure of the cutting power of an equilibrium

concept. With respect to the size of the set of regret equilibria of a game 〈N, (Si)i∈N , (�i)i∈N〉,

remark that it is always a relatively small subset of ∆. A strategy tuple σ−i ∈ ∆−i completely

determines ri(·, σ−i) and hence in an n-player game it suffices to know only n− 1 components

of a regret equilibrium to compute the equilibrium strategy for the remaining n-th player. This

implies that RE(G) is always of lower dimension than ∆. In particular, it is impossible that

RE(G) = ∆.

The structure of the set of Nash equilibria has been studied by several authors, including

Winkels (1979) and Jansen (1981), who show that in two-person games the set of Nash equilibria

has a nice decomposition into a finite number of polytopes. Concerning the structure of the set

of regret equilibria, we see that if the game G has only two players, then RE(G) is a polytope,

since the set of regret equilibria is then determined by finitely many linear equations and linear

weak inequalities in the variables (σi(si))i∈N,si∈Si . If the game has at least three players, its

set of regret equilibria is determined by a set of polynomial equations over a Cartesian product

of simplices. This leads to the observations that — analogous to the set of Nash equilibria —

the set of regret equilibria may be curved or disconnected. The following two examples indicate

that both possibilities indeed occur.

Example 4.1 Consider the three player game in Figure 3. Here we denote by p, q, r ∈ [0, 1]

the probability with which player 1 chooses his first row, player 2 chooses his first column, and

player 3 chooses his first matrix, respectively.

q 1− q
p 1, 1, 1 1, 0, 0

1− p 0, 1, 1 0, 0, 0

r

q 1− q
p 1, 0, 0 0, 1, 1

1− p 0, 0, 0 1, 1, 1

1− r

Figure 3: A game with a curved set of regret equilibria

Considering Remark 3.3, it suffices to determine an equilibrium constraint only for p, q, and r,

since those for 1−p, 1−q, 1−r will follow immediately. The first strategy (the top row) of player

1 is a unique best response to three combinations of pure strategies of his opponents, namely to

those in which player 2 chooses either his first or his second column and player 3 chooses the

first matrix, which occurs with probability qr + (1− q)r, and to the strategy in which player 2

chooses his first column and player 3 chooses the second matrix, which occurs with probability

q(1− r). Together with the constraints for the other two players, we find that the conditions for
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a regret equilibrium are
p = qr + (1− q)r + q(1− r) = q + (1− q)r

q = pr+ (1− p)r = r

r = pq + (1− p)q = q

p, q, r ∈ [0, 1]

Consequently, the set of regret equilibria equals

{((p, 1− p), (q, 1− q), (r, 1− r)) | p = q(2− q), r = q, q ∈ [0, 1]},

which is a curved equilibrium set.

Example 4.2 Consider the three player game in Figure 4.

q 1− q
p 1, 1, 1 0, 0, 0

1− p 0, 0, 1 1, 1, 0

r

q 1− q
p 0, 0, 0 1, 1, 1

1− p 1, 1, 0 0, 0, 1

1− r

Figure 4: A game with a disconnected set of regret equilibria

The conditions for a regret equilibrium are
p = qr+ (1− q)(1− r) = 2qr − q − r + 1

q = pr+ (1− p)(1− r) = 2pr − p− r + 1

r = pq + (1− p)q = q

p, q, r ∈ [0, 1]

This is equivalent with (after substitution of r = q):
p = 2q2 − 2q + 1

q = 2pq − p− q + 1

r = q

p, q, r ∈ [0, 1]

Subtracting the first equality from the second, we find:
p = 2q2 − 2q + 1

pq = q2

r = q

p, q, r ∈ [0, 1]

Hence 
p = 2q2 − 2q + 1

q = 0

r = q

p, q, r ∈ [0, 1]

or


p = 2q2 − 2q + 1

p = q

r = q

p, q, r ∈ [0, 1]

10



Consequently, the set of regret equilibria equals

{((1, 0), (0, 1), (0, 1))}∪ {((
1

2
,

1

2
), (

1

2
,

1

2
), (

1

2
,
1

2
))} ∪ {((1, 0), (1, 0), (1, 0))},

consisting of three components.

5 Comparison with other solutions

Osborne and Rubinstein (1997) introduce a procedure in which a player samples all his pure

strategies once and chooses the one which yields — in that particular sample — the highest

payoff (breaking ties equi-probably). Comparing this to our procedure, we observe that in the

Osborne and Rubinstein procedure a player only needs to know his set of pure strategies, but

he must be able to compare all outcomes in S. In our procedure, the players must know more,

but need to be able to compare less than in their procedure. In particular,

• the players must know the possible outcomes S =
∏
i∈N Si,

• they are required only to be able to perform a very simple kind of comparative statics:

given a profile s−i ∈ S−i of pure strategies for his opponents, player i only needs to

determine whether or not a strategy si ∈ Si can be improved upon.

This very limited type of comparisons is similar to those made by a player in the notion of

pure Nash equilibrium. Notice that a very simple preference relation for a player suffices: It is

not necessary to compare lotteries over outcomes, not even outcomes that arise facing different

strategies of the opponents. This last point is particularly important: The players are not

required to compare outcomes arising from very ‘exotic’ what-if situations. Only responses to

the same environment, i.e., to the same combination of pure strategies of their opponents, are

compared. This allows the nature of the payoff (money, days of vacation, . . . ) to be different for

each combination of strategies of the opponents.

Moreover, even if the profile of pure strategies of the opponents is fixed, a player is not

required to be able to compare all his strategies, only to be able to determine all best responses.

Hence even the order on {(si, s−i) | si ∈ Si} need not be complete.

Chen, Friedman, and Thisse (1997), using a model in which players have subconscious utility

functions, consider socalled boundedly rational Nash equilibria with equilibrium requirements

similar to those in our model.

Despite the relatively prudent behavior with respect to (weakly) dominated strategies as

expressed in Proposition 3.4, the set of regret equilibria and Nash equilibria have no obvious

relation. In the game of Figure 5, for instance, the unique Nash equilibrium equals (( 1
3 ,

2
3), (2

3,
1
3)),

the unique RE equals (( 1
2 ,

1
2), (1

2,
1
2)). We can, however, indicate a relation with the notion

of strict equilibria introduced by Harsanyi (1973) as those strategy profiles σ satisfying the

11



L R
T 0, 2 2, 0
B 1, 0 0, 1

Figure 5: The Nash and regret equilibrium concept differ

condition that each player plays his unique best response to the strategies of the opponent:

∀i ∈ N : {σi} = {τi ∈ ∆i |6 ∃τ̃i : πi(τ̃i, σ−i) > πi(τi, σ−i)}.

It is clear that a strict Nash equilibrium is always a pure strategy Nash equilibrium and (con-

sequently) that strict Nash equilibria not always exist. However, if they exist, they are exactly

the pure strategy regret equilibria of the game.

Proposition 5.1 The set of strict Nash equilibria of a game 〈N, (Si)i∈N , (πi)i∈N〉 coincides with

the set of pure strategy regret equilibria.

The proof is straightforward and left to the reader.

The results with respect to the iterated elimination of never-best responses in Proposition 3.4

call to mind the notion of rationalizability introduced in Bernheim (1984) and Pearce (1984).

Without going into the formal definitions, it follows immediately from Proposition 3.4 and

Bernheim (1984, pp. 1015-1016) that every action that is played with positive probability in a

regret equilibrium is rationalizable. However, in a regret equilibrium σ, the mixed strategies σi

themselves need not be rationalizable.

6 Examples

In this section we apply the concept of a regret equilibrium to several classes of games, including

two-person coordination games and a class of Hawk-Dove games. Moreover, one can apply the

concept of a regret equilibrium to the reduced strategic form of extensive games. We present

one brief example and one more elaborate case, in which we solve a T -choice centipede game.

R, q1 S, q2 P, 1− q1 − q2

R, p1 0, 0 1,−1 −1, 1
S, p2 −1, 1 0, 0 1,−1

P, 1− p1 − p2 1,−1 −1, 1 0, 0

Figure 6: Rock, Scissors, Paper

Example 6.1 Consider the Rock, Scissors, Paper game in Figure 6, where R, S, P, have the

obvious meaning and the corresponding probabilities with which these strategies are played are

12



denoted by pi, qi. The conditions for a regret equilibrium are

p1 = q2

p2 = 1− q1 − q2

q1 = p2

q2 = 1− p1 − p2

p1, p2, q1, q2 ∈ [0, 1]

p1 + p2 ≤ 1

q1 + q2 ≤ 1

Simple calculus leads to the conclusion that the unique regret equilibrium equals the unique

Nash equilibrium in which both players choose each of their pure strategies with probability 1
3 .

Example 6.2 A two-player game is a coordination game if both players have the same set of

pure strategies and the unique best response to a pure strategy of the opponent is to play the

same strategy. An example of a coordination game is the Battle of the Sexes game given in

Figure 7. From the definition of a coordination game it is clear that a player does not regret

boxing ballet
boxing 3, 2 0, 0
ballet 0, 0 2, 3

Figure 7: Battle of the Sexes; a coordination game

playing a pure strategy if and only if his opponent plays the same strategy. As a consequence,

a profile of mixed strategies is a regret equilibrium if and only if both players play the same

mixed strategy. This illustrates an important difference with the Nash equilibrium concept: The

pure Nash equilibria of a coordination game are the combinations of pure strategies in which

the players indeed coordinate (choose the same pure strategy). Since these Nash equilibria are

strict, they are also regret equilibria. However, there may be mixed strategy Nash equilibria in

which the players do not coordinate exactly. In the example above, the mixed strategy Nash

equilibrium is (( 2
5 ,

3
5), (3

5,
2
5)). The regret equilibrium concept provides — in our opinion — a

much more intuitive solution.

Example 6.3 In this example we consider a class of Hawk-Dove games with the structure of

the payoff matrix given in Figure 8. Here V and W are real numbers satisfying the condition

W < V . We consider several cases.

q 1− q
p V, V 0, 2V

1− p 2V, 0 W,W

Figure 8: A class of Hawk-Dove games
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1. If W > 0, we have a Prisoner’s dilemma; both players have a strictly dominating strategy.

The unique regret equilibrium equals ((0, 1), (0, 1)).

2. If W = 0, the conditions for a regret equilibrium are
p = 1

2(1− q)

q = 1
2(1− p)

p, q ∈ [0, 1]

The regret equilibrium is ((1
3 ,

2
3), (1

3 ,
2
3)).

3. If W < 0 < V , we have a Chicken game. The conditions for a regret equilibrium are
p = 1− q

q = 1− p

p, q ∈ [0, 1]

The set of regret equilibria is {((p, 1− p), (1− p, p)) | p ∈ [0, 1]}.

4. If V = 0, the conditions for a regret equilibrium are
p = 1

2q + (1− q)

q = 1
2p+ (1− p)

p, q ∈ [0, 1]

The regret equilibrium is ((2
3 ,

1
3), (2

3 ,
1
3)).

5. If V < 0, the first strategy of both players strictly dominates the second, so the unique

regret equilibrium is ((1, 0), (1, 0)).

Example 6.4 Consider the extensive form game in Figure 9. In this game, player 1 is given

the choice to stop (S) or continue (C). If he continues, player 2 is given the same choice. The

game ends if either player decides to stop or both decide to continue.

1

S

C

a

2

S

C

b

c

Figure 9: An extensive form game

Assume that c �1 a and c �2 b. Consequently, we have that the outcome c is the unique

subgame perfect equilibrium of the game. Denote by p the probability that player 1 chooses
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to stop and by q the probability that player 2 chooses to stop. By Remark 3.3, it suffices to

determine the equilibrium conditions for p and q. Player 2’s choice to stop is not a best response

to player 1’s strategy to continue. If player 1 stops, it is of little concern what player 2 chooses:

either strategy is a best response. Hence the equilibrium condition for player 2 is:

q =
1

2
p, q ∈ [0, 1].

The equilibrium condition for player 1 is either p = q or p = 1
2q or p = 0, depending on

whether he finds a better than, equivalent to, or worse than outcome b. In the first two cases,

i.e., if a �1 b, there is a Nash equilibrium yielding outcome a which is never played in a regret

equilibrium. No matter what preferences player 1 has over a and b, the unique regret equilibrium

in all cases is that both players decide to continue with probability one.

Example 6.5 In the T -choice centipede game, introduced by Rosenthal (1981), players 1 and

2 alternately move. In any of the 2T periods, the player whose turn it is to move can decide to

stop the game (S) or to continue (C). Consequently, both players have T + 1 pure strategies:

stopping at any one of the T opportunities, or continue all the time. The game ends if one of

the players decides to stop or if neither player has decided to do so after each of them has had T

opportunities. For each player, the outcome when he stops the game in period t is better than

that in which the other player stops the game in period t + 1 (or the game ends), but worse

than any outcome that is reached if in period t+ 1 the other player passes the move to him. In

terms of regret:

Player 2 feels no regret of stopping at his k-th opportunity exactly in the following cases:

• player 1 stops immediately; then all of player 2’s T + 1 pure strategies are a pure best

response;

• k = T ; the unique best response to player 1’s choice to continue always is to stop at the

final stage;

• if player 1 decides to stop at opportunity k + 1.

Player 1 feels no regret of stopping at his k-th opportunity in exactly one case:

• if player 2 decides to stop in the next period, at his k-th opportunity.

An example of a 3-choice centipede game is given below.

Denote by pi(qi) the probability of player 1 (2) to stop at his i-th opportunity, once this

opportunity is reached (i = 1, . . . , T ). Thus, our computations are in behavioral, rather than in

mixed strategies. We show that for each number T ∈ IN of choices and each k ∈ {0, . . . , T − 1}:

pT−k = qT−k =
2

k + 3
. (3)
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1

S

C

1, 0

2

S

C

0, 2

1

S

C

3, 1

2

S

C

2, 4

1

S

C

5, 3

2

S

C

4, 6

6, 5

Figure 10: A 3-choice centipede game

In particular, if the number of choices T approaches infinity, the probability for each player

to stop at the first (and by the same argument at any finite) opportunity, converges to zero.

This provides a potential resolution of the paradoxical aspect of the centipede game. In the

unique Nash equilibrium both players stop immediately with probability one, in the regret

equilibrium concept they stop immediately with positive probability, but the solution in (3)

indicates that there is a strong urge to continue playing, thus providing the possibility to achieve

more preferable outcomes.

The description of the T -choice centipede game in terms of regret (emphasized above) im-

mediately gives rise to the following conditions for player 1:

p1 = q1 (I.1)

(1− p1)p2 = (1− q1)q2 (I.2)

· · ·

(1− p1)(1− p2) · · · (1− pT−1)pT = (1− q1)(1− q2) · · ·(1− qT−1)qT , (I.T)

and for player 2:

q1 =
p1

T + 1
+ (1− p1)p2 (II.1)

(1− q1)q2 =
p1

T + 1
+ (1− p1)(1− p2)p3 (II.2)

· · ·

(1− q1)(1− q2) · · · (1− qT−1)qT =
p1

T + 1
+ (1− p1)(1− p2) · · ·(1− pT ). (II.T)

The conditions that arise from always continuing are redundant (see Remark 3.3).

We prove first of all, that in the T -choice centipede game we have for each i = 1, . . . , T − 1:

pi = qi, pi /∈ {0, 1}. (4)

This is necessary to avoid division by zero when we solve the game. We know from condition (I.1)

that p1 = q1. Suppose p1 = 1. Substitution in (II.1) yields 1 = 1
T+1 , a contradiction. Suppose

p1 = 0. Then p2 = q2 by (I.2) and p2 = 0 by (II.1). Hence p3 = q3 by (I.3) and p3 = 0 by (II.2).
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Proceeding in this fashion yields that pk = qk = 0 for all k = 1, . . . , T , which contradicts (II.T).

Hence p1 = q1, p1 /∈ {0, 1}. Now assume that we have shown for some k ∈ {1, . . . , T − 2}

∀n ≤ k : pn = qn, pn /∈ {0, 1}.

We proceed to show that the same holds for k + 1. First of all, we have from (I.k+1) that

pk+1 = qk+1. Consider condition (II.k+1):

(1− q1)(1− q2) · · ·(1− qk)qk+1 =
p1

T + 1
+ (1− p1)(1− p2) · · · (1− pk+1)pk+2︸ ︷︷ ︸

≥0

.

If qk+1 = 0, then its left hand side equals zero, which would imply that p1 ≤ 0, whereas we know

from the above that p1 > 0. If pk+1 = 1, condition (II.k+2) reduces to

0 =
p1

T + 1
,

a contradiction. This finishes the proof. This part was necessary to avoid division by zero in

the following solution of the game.

Substitute the left-hand side of player 1’s conditions in the left-hand side of player 2’s con-

ditions. This yields

p1 =
p1

T + 1
+ (1− p1)p2

(1− p1)p2 =
p1

T + 1
+ (1− p1)(1− p2)p3

· · ·

(1− p1)(1− p2) · · · (1− pT−1)pT =
p1

T + 1
+ (1− p1)(1− p2) · · · (1− pT )

Obviously, the first equation is equivalent to

T

T + 1
p1 = (1− p1)p2.

Using this equality to replace the left-hand side of the second equation leads to

T

T + 1
p1 =

p1

T + 1
+ (1− p1)(1− p2)p3,

which is equivalent to
T − 1

T + 1
p1 = (1− p1)(1− p2)p3.

Use this equation, again, in order to replace the left-hand side of the third equation. This leads

to
T − 2

T + 1
p1 = (1− p1)(1− p2)(1− p3)p4.
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Continuing in this way, we get the following equivalent system of T equations:

T

T + 1
p1 = (1− p1)p2

T − 1

T + 1
p1 = (1− p1)(1− p2)p3

· · ·
2

T + 1
p1 = (1− p1)(1− p2) · · · (1− pT−1)pT

1

T + 1
p1 = (1− p1)(1− p2) · · · (1− pT−1)(1− pT ).

The final step is to roll it up backwards again. Add the last and the second last equation to get

3

T + 1
p1 = (1− p1)(1− p2) · · ·(1− pT−1). (5)

In combination with the second last equation and (4), which assures that we do not divide by

zero, this immediately leads to

pT =
2

3
.

Now start with equation (5) and first, add the third last equation, and second, divide in a similar

way. This yields first,
6

T + 1
p1 = (1− p1)(1− p2) · · ·(1− pT−2), (6)

and second,

pT−1 =
3

6
=

1

2
.

Now do this again with equation (6) in combination with the fourth last equation and get

10

T + 1
p1 = (1− p1)(1− p2) · · ·(1− pT−3),

and so

pT−2 =
4

10
=

2

5
.

This procedure stops when reaching the first equation, thereby generating the following sequence

of probabilities:
2

3
,

1

2
,
2

5
,
1

3
,
2

7
,
1

4
, · · ·

It is easy to see that

∀T ∈ IN, ∀k ∈ {0, . . . , T − 1} : pT−k = qT−k =
2

k + 3
.

In particular, if the number of choices T approaches infinity, the probability for each player

to stop at the first (and by the same argument at any finite) opportunity, converges to zero.

Osborne and Rubinstein (1997), in computing their equilibrium notion in the centipede game,

conclude that their equilibrium notion makes sense only if both players fail to understand the
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structure of the game. In our equilibrium notion, the equilibrium conditions form an almost

immediate translation of the structure of the game, where it is a unique best response to stop

exactly one period ahead of your opponent’s intent to do so. Still, we find a potential resolution

of the paradox posed by the centipede game: The players play the unique Nash equilibrium of

stopping immediately with positive probability, but there is a strong urge to continue playing.

7 Conclusion

In this paper we have investigated a solution concept based on a simple procedure. Each player

plays optimally against a profile of pure strategies of the opponents that is randomly drawn

from the distribution over the set of their pure strategies that is induced by his beliefs about

the mixed strategies of his opponents. The notion of regret equilibrium follows by imposing a

consistency requirement. Most of the analysis was done for a very general class of games. Only

very simple types of comparisons are required of the players, since a player does not have to

compare lotteries or even outcomes that arise facing different strategies of the opponents. It

is sufficient that for each profile of pure strategies of the opponent, a player is able to decide

whether or not his strategies are pure best responses. This makes the concept widely applicable.
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