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Abstract

Harsanyi and Selten (1988) have proposed a theory of equilibrium selection that selects

a unique Nash equilibrium for any non-cooperative N-person game. The heart of their

theory is given by the tracing procedure, a mathematical construction that adjusts arbi-

trary prior beliefs into equilibrium beliefs. The tracing procedure plays an important role

in the definition of risk-dominance for Nash equilibria. Although the term “procedure”

suggests a numerical approach, the tracing procedure itself is a non-constructive method.

In this paper we propose a homotopy algorithm that generates a path of strategies. By

employing lexicographic pivoting techniques it can be shown that for the entire class of

non-cooperative N-person games the path converges to an approximate Nash equilibrium,

even when the starting point or the game is degenerate. The outcome of the algorithm is

shown to be arbitrarily close to the beliefs proposed by the tracing procedure. Therefore,

the algorithm does not compute just any Nash equilibrium, but one with a sound game-

theoretic underpinning. Like other homotopy algorithms, it is easily implemented on a

computer. To show our results we apply methods from the theory of simplicial algorithms

and algebraic geometry.

JEL classification: C63, C72

Keywords: Computation of equilibria; Non-cooperative game theory; Tracing procedure



1 Introduction

During the past years, economics has greatly benefitted from the introduction of game

theoric tools. A further use of game theory is, however, hampered by at least two factors.

First of all, there may be many solutions to a game. This view is expressed as follows in

van Damme (1995): “In the last two decades, game theoretic methods have become more

and more important in economics and the other social sciences. Many scientific papers in

these areas have the following basic structure: A problem is modeled as a game, the game

is analyzed by computing its equilibria, and the properties of the latter are translated back

into insights relevant to the original problem. ... It has been found that the tools may not

be powerful enough... For example, many models admit a vast multiplicity of equilibrium

outcomes so that the predictive power of game theoretic analysis is limited. To increase

understanding, it may, hence, be necessary to perfect the tools.” A way out of this dilemma

has been suggested by the equilibrium selection theory as described in Harsanyi and Selten

(1988). The main ingredient of this equilibrium selection theory is constituted by the

linear tracing procedure. The linear tracing procedure plays also an important role in

making risk-dominance comparisons of Nash equilibria, see Harsanyi and Selten (1988).

The concept of risk-dominance is frequently used in evolutionary game theory.

A second problem is that it is usually far from obvious to derive any solution for a

given game. Moreover, considering the quotation of van Damme (1995), to find just a

solution is not good enough. What is really needed is a solution that has a good game

theoretic underpinning, for instance the solution provided by the linear tracing procedure.

In evolutionary game theory attention is often focussed on 2-player games where each

player has two strategies. An important reason to restrict oneself to these games is that

it is very hard to determine the risk-dominance relationships for Nash equilibria in more

complicated games. To do this one needs to apply the linear tracing procedure several

times to these games, which is in general not possible without a numerical algorithm.

This paper presents an algorithm that computates the Nash equilibrium selected by

the linear tracing procedure for N-person non-cooperative games in normal form. The

linear tracing procedure operates as follows. The players start with identical initial beliefs

concerning the play of the other players, so the beliefs concerning the play of a certain

player are equal among all players. First, the players optimize by playing best replies

against these initial beliefs. Next, they observe that their beliefs are not met and they

subsequently update their beliefs and react optimally there upon. This updating of beliefs

continues until equilibrium beliefs for the game have been found.

Mathematically, the linear tracing procedure can be modeled as tracing a path of zeroes

related to a homotopy. The homotopy transforms the initial problem of playing against

the prior beliefs into the equilibrium problem of the game. It has been shown by Harsanyi
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(1975) that for a generic game the linear tracing procedure yields a path of points and

selects a unique outcome. In this case the linear tracing procedure is said to be well

defined. For any game the linear tracing procedure yields a set of stategies that connects

a best reply to the prior beliefs to at least one Nash equilibrium of the game. If one wants

to select a unique Nash equilibrium even in the exceptional case where multiple Nash

equilibria are connected to the prior beliefs, one possibility is to resort to the logarithmic

tracing procedure. Whenever the linear tracing procedure is well defined, the logarithmic

tracing procedure will select the same outcome, see Schanuel, Simon, and Zame (1991).

The case with N = 2 players corresponds to the class of bimatrix games. The first

algorithm to solve for a Nash equilibrium of these games has been given by Lemke and

Howson (1964). A drawback of this method is that it has to be started at a vertex of

the strategy space. More flexible is the method proposed by van den Elzen and Talman

(1991). This method can be started from any strategy vector in the strategy space. In

van den Elzen and Talman (1995) it is shown that their algorithm generates a non-linear

transformation of the path of beliefs corresponding to the path as generated by the linear

tracing procedure. This non-linear transformation guarantees that the path generated by

the van den Elzen and Talman (1995) algorithm is piecewise linear for bimatrix games, and

is therefore easily implemented on a computer. This linear approach can also be extended

to polymatrix games, see van den Elzen (1996), but not beyond.

The general case with N > 2 is considerably more difficult. For this case the Nash equi-

librium equations are non-linear and in general impossible to solve analytically. Therefore

one has to use a numerical approach. The first procedures for finding an equilibrium for

N-person games are developed by Rosenmüller (1971) and Wilson (1971). Both methods

can be seen as different generalizations of the procedure of Lemke and Howson for 2-player

games. Although these methods are not directly suitable for computational purposes be-

cause they merely prove the existence of a non-linear path leading to an equilibrium, their

seminal work was a very important step towards an implementable algorithm as developed

by Garcia, Lemke and Lüthi (1973). A more efficient algorithm was developed in van der

Laan and Talman (1982) that operates directly on the strategy space and that can be

restarted at any point in the strategy space. The problem with these algorithms is that

they just calculate an approximation of a sample Nash equilibrium and do not bother with

respect to the game-theoretic properties of the equilibrium found.

In this paper we present a method that follows the set of strategies implicitly defined

by the linear tracing procedure arbitrarily close. In this way we make the linear tracing

procedure operational for N-player games. The entire path of strategy vectors generated

possesses a game-theoretic interpretation, see Harsanyi and Selten (1988). Unlike the

algorithm for the 2-player case of van den Elzen and Talman (1995), our algorithm works
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directly on the same strategy space and with the same payoff function as used in the linear

tracing procedure. The entire space is given by [0, 1]×S, with [0, 1] the interval from which

the homotopy parameter, t, is chosen and with S the Cartesian product of the N individual

strategy sets. By triangulating the set [0, 1] × S we will replace the original problem by

a piecewise linear one. The algorithm belongs to the class of homotopy algorithms, which

were first developed in Eaves (1972). The algorithm is constructed in such a way that any

triangulation can be used. Of course, in practice one would like to take a triangulation

that can be implemented easily on a computer.

A novelty of the algorithm is that the starting point is endogenously determined by

the payoffs of the game. We show that the algorithm selects in every game a unique

vertex of the strategy space that is related to Nash equilibrium play against the prior (this

latter property may be satisfied for many vertices). The starting point is chosen such that

the algorithm will not generate any other simplices in {0} × S. We prove that we can

approximate the entire path of a well defined linear tracing procedure arbitrarily close by

taking simplices with mesh size small enough. If the linear tracing procedure is not well

defined we will still stay arbitrarily close to the set of strategies generated by it, and we

will compute an approximation of a Nash equilibrium in this set. These features are new

as well, since unlike other simplicial algorithms we have to consider the convergence of a

sequence of paths and not only the convergence of a sequence of end points. Otherwise

we cannot guarantee that the Nash equilibrium selected by the linear tracing procedure is

also selected by the algorithm. For the 2-player case these problems do not occur, since

in that case it is possible to generate the path of the linear tracing procedure exactly. In

order to handle degeneracies we employ lexicographic pivoting techniques. Degeneracies

are important in game theory and are often the rule rather than the exception.

The paper has been organized as follows. In Section 2 we give some notation and the

definition of the linear tracing procedure. Next, in Section 3 we treat some preliminaries for

piecewise linear methods, and in Section 4 we explain the algorithm, which is illustrated in

Section 5 by means of an example. In Section 6 we prove the convergence of the algorithm

for any game. This implies that for every game we can compute an approximate Nash

equilibrium. In Section 7 we show that if the mesh size of the triangulation used goes to

zero, then the paths generated by the algorithm converge to the path of the linear tracing

procedure and the approximate Nash equilibria converge to the Nash equilibrium selected

by the linear tracing procedure.
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2 The Linear Tracing Procedure

For m ∈ IN, let IRm
+ be the non-negative orthant of the m-dimensional Euclidean space and

let Sm denote the (m−1)-dimensional unit simplex in IRm, i.e. Sm = {x ∈ IRm
+ |

∑m
j=1 xj =

1}. For j = 1, . . . ,m, we denote by em(j) the j-th m-dimensional unit vector. Furthermore,

0m and 1m denote the m-dimensional vectors of all zeroes and all ones, respectively. The

m-dimensional unit matrix is denoted by Im. The notation co is used to denote the convex

hull of a set.

AnN-person non-cooperative game in normal form is a tuple Γ = (Φ1, . . . ,ΦN , R1, . . . , RN),

with Φi and Ri :
∏
i∈N Φi → IR the set of pure strategies and the payoff function of player

i, and N = {1, . . . , N} the set of players. Player i has Mi pure strategies. The total

number of pure strategies is given by M =
∑
i∈NMi. We number the pure strategies of

player i. For k = 1, . . . ,Mi, pure strategy k of player i is denoted by (i, k). The union of

the pure strategies over all players is denoted by Φ∗ = ∪i∈NΦi. The set of pure strategy

combinations is given by Φ =
∏
i∈N Φi.

A mixed strategy of player i is a probability distribution on Φi. Since the strategies are

numbered, we can identify the set of all probability distributions on Φi with SMi, where

for si ∈ SMi the probability assigned to pure strategy (i, k) is given by sik. The strategy

space of the game is therefore equal to S =
∏
i∈N S

Mi. Observe that the dimension of S

equals M − N . Given a mixed strategy combination s ∈ S and a strategy si ∈ SMi, we

denote by s \ si the mixed strategy combination that results from replacing si by si. If a

mixed strategy combination s is played, then the probability s(φ) that the pure strategy

combination φ = ((1, k1), . . . , (N, kN )) occurs is given by

s(φ) =
∏
i∈N

siki

and the expected payoff of player i by

Ri(s) =
∑
φ∈Φ

s(φ)Ri(φ).

A mixed strategy combination s is said to be a Nash equilibrium of a game Γ if it is a best

reply against itself. The set of Nash equilibria of a game Γ is denoted by NE(Γ).

For the remainder of the paper an N-person non-cooperative game Γ is assumed to be

given. In the description of the linear tracing procedure a subjective probability distri-

bution p ∈ S, called prior, is given. The prior describes the initial beliefs of all players

about the strategies played by the other players. So, it is assumed that all players have the

same initial beliefs. The determination of the prior is one of the aspects of the equilibrium

selection theory of Harsanyi and Selten (1988). For the remainder of the paper a prior p

is assumed to be given.
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For every t ∈ [0, 1], the linear tracing procedure generates a Nash equilibrium of a game

Γt = (Φ1, . . . ,ΦN , H
t
1, . . . , H

t
N ), where the payoff function Ht

i : S → IR of player i is defined

by

Ht
i (s) = tRi(s) + (1− t)Ri(p \ si).

Together all the Nash equilibria generated by the linear tracing procedure yield a set of

strategies (usually a path of strategies) linking a Nash equilibrium of Γ0 to a Nash equi-

librium of Γ1. In a Nash equilibrium st of the game Γt every player i plays a best reply in

the game Γ against the probability distribution t[s] + (1− t)[p] on Φ, with [s] and [p] the

probability distributions on Φ generated by s and p, respectively. The probability distribu-

tion t[s]+ (1− t)[p] does in general not belong to S, since this probability distribution may

be correlated. The interpretation of the linear tracing procedure is that players gradually

adjust their beliefs about the behaviour of the other players, giving less and less weight to

the initial beliefs, the prior. In the game Γ0 for instance there is no strategic interaction

and players simply choose a best reply to the prior. In the game Γ1 there is no longer a

role for the prior and players choose a best reply against the choices of their opponents.

For more details on the tracing procedure the reader is referred to Harsanyi and Selten

(1988).

The marginal payoff function G : [0, 1]× S → IRM is defined by

Gik(t, s) = tRi(s \ (i, k)) + (1− t)Ri(p \ (i, k)), (i, k) ∈ Φ∗. (1)

Gik(t, s) is the payoff to player i when playing pure strategy (i, k) against the mixed

strategy combination s in game Γt or, alternatively, the payoff to player i when playing

pure strategy (i, k) against the probability distribution t[s]+ (1− t)[p] on Φ in the game Γ.

It is standard to derive the payoff functions Ht
1, . . . , H

t
N from the marginal payoff functions

G(t, ·) and to characterize a Nash equilibrium of the game Γt in terms of G(t, ·). Indeed,

s is a Nash equilibrium of Γt if and only if sik > 0 implies Gik(t, s) = max(i,l)∈Φi Gil(t, s).

Hence it makes sense to define for ε ≥ 0 an ε-Nash equilibrium of Γt as follows.

Definition 2.1 Let (Γ, p) be given. For ε ≥ 0, a mixed strategy combination s ∈ S is

called an ε-Nash equilibrium of Γt if sik > 0 implies Gik(t, s) ≥ max(i,l)∈ΦiGil(t, s)− ε.

A player can increase his payoff in an ε-Nash equilibrium of Γt at most by ε by choosing

a best reply.

The set of all Nash equilibria related to the games Γt, t ∈ [0, 1], is denoted by

L = {(t, s) ∈ [0, 1]× S | s ∈ NE(Γt)}.

The linear tracing procedure is said to be feasible if there exists a path in L connecting

a best reply against the prior to a Nash equilibrium of the game Γ, i.e. there exists a
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continuous function γ : [0, 1]→ L such that γ(0) ∈ L∩ ({0}×S) and γ(1) ∈ L∩ ({1}×S).

It is shown in Schanuel, Simon, and Zame (1991) that the linear tracing procedure is always

feasible. However, there may be many trajectories γ([0, 1]) that link a Nash equilibrium of

Γ0 to a Nash equilibrium of Γ1. If this trajectory is unique, then the linear tracing procedure

is said to be well defined. If the linear tracing procedure is well defined, then it selects a

unique Nash equilibrium of the game Γ. It is shown by Harsanyi (1975) that, given a prior,

the linear tracing procedure is well defined for almost all N-person non-cooperative games.

It is obvious that the set L0 = L ∩ ({0} × S) is connected. In fact, because of the

linearity of G(0, ·) it holds that L0 is a polytope, the set of best replies against p. We

denote the component, i.e. a maximally connected subset, of L that contains L0 by Lc.

Since L is a semi-algebraic set, see Schanuel, Simon, and Zame (1991), it holds that Lc is

path-connected. The linear tracing procedure is feasible if and only if Lc ∩ ({1} × S) 6= ∅.

An implication of well definedness of the linear tracing procedure is that both Lc∩({0}×S)

and Lc ∩ ({1} × S) consist of a single element.

If the number of players is equal to 2, then it is possible to compute the set Lc exactly.

However, even in that case there is a need for a systematic approach as given in van den

Elzen and Talman (1995). If the number of players is greater than or equal to 3, then

computing the set Lc corresponds to solving a higher order polynomial, which cannot be

done in general. In that case there is not only a need for a systematic approach, but also

for a numerical algorithm.

3 A Piecewise Linear Approach

The basic idea for the algorithm is relatively simple. We approximate the marginal payoff

function G as given in (1) by a function that is piecewise linear on [0, 1]× S. Then we can

solve for the set Lc corresponding to this piecewise linear approximation.

Let us discuss some preliminaries related to piecewise linear approximations. For given

m ∈ IN, an m-dimensional simplex or m-simplex σ in IRn is defined as the convex hull of

m+1 affinely independent points x1, . . . , xm+1 of IRn. We usually write σ = σ(x1, . . . , xm+1)

and call x1, . . . , xm+1 the vertices of σ. An (m − 1)-simplex being the convex hull of m

vertices of σ(x1, . . . , xm+1) is said to be a facet of σ.The facet τ (x1, . . . , xj−1, xj+1, . . . , xm+1)

is called the facet of σ opposite to the vertex xj. For a non-negative integer m′ less than

or equal to m, an m′-simplex being the convex hull of m′+ 1 vertices of σ is said to be an

m′-face or face of σ.

A finite collection Σ of m-simplices is a triangulation of an m-dimensional convex subset

T of IRn if

1. T is the union of all simplices in Σ;
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2. the intersection of any two simplices in Σ is either empty or a common face of both.

If Σ is a triangulation of T, and a facet τ of σ1 ∈ Σ is a subset of the relative boundary

of T, then there is no σ2 ∈ Σ such that σ2 6= σ1 and τ is a facet of σ2. If τ is not a subset

of the relative boundary of T, then there is exactly one σ2 ∈ Σ such that σ2 6= σ1 and

τ is also a facet of σ2. The mesh size of a triangulation Σ of T is defined by mesh(Σ) =

max{‖x− y‖∞ | x, y ∈ σ, σ ∈ Σ}.

It is well-known that full-dimensional affine parts of the relative boundary of a set are

triangulated by the facets of the simplices in a triangulation. More precisely, let Σ be a

triangulation of a convex m-dimensional subset T of IRn, and let the (m− 1)-dimensional

subset T of the relative boundary of T be such that T is equal to the affine hull of T

intersected with T. Then the collection Σ given by Σ = {τ ∈ T | ∃σ ∈ Σ, τ is a facet of

σ} is a triangulation of T, see Todd (1976a), Theorem 2.3, page 27. For instance, the set

{0} × S is triangulated by the facets of the simplices in a triangulation of [0, 1]× S.

An example of a triangulation of [0, 1] × S has been introduced in Doup and Talman

(1987) and uses earlier ideas of Eaves and Saigal (1972), Todd (1976b) and van der Laan and

Talman (1980). It is illustrated in Figure 1 for the case we have two players each having

two pure strategies. Although any triangulation of [0, 1] × S will do for the purposes

of the algorithm, this triangulation has several nice properties. First of all, it is easily

implemented on a computer. Moreover, it has several nice symmetry properties. For

example, it enables us to choose points t0, . . . , tk with t0 = 0 and tk = 1 (and a natural

choice would be tj = j/k, j = 0, . . . , k) such that every slice {tj} × S is triangulated

in an identical way by the facets of the simplices in the triangulation. Any simplex in

this triangulation is contained in [ j−1
k
, j
k
]× S for some j. So, [ j−1

k
, j
k
] × S is filled up with

simplices in a consistent way. All 3-simplices in co(x3, x5, x6, x12, x14, x15) are depicted in

Figure 1. The mesh size of this triangulation can be made arbitrarily small.

For later purposes we give all 3-simplices in the triangulation of Figure 1 in Table 2. In

Table 2 only the 3-simplices in [0, 1
2
]× S are given. The ones in [ 1

2
, 1]× S follow by means

of a translation. The position in the table is related to the position of a simplex in the

triangulation.

A functionG : [0, 1]×S → IRM is called a piecewise linear approximation of the marginal

payoff function G with respect to Σ if for each vertex xj of any σ(x1, . . . , xM−N+2) ∈ Σ,

G(xj) = G(xj) and G is affine on each simplex of Σ. Hence, if x ∈ σ(x1, . . . , xM−N+2),

so x =
∑M−N+2
j=1 λjx

j, λj ≥ 0, j = 1, . . . ,M − N + 2,
∑M−N+2
j=1 λj = 1, then G(x) =∑M−N+2

j=1 λjG(xj).

Definition 3.1 Let (Γ, p,Σ) be given. A mixed strategy combination s ∈ S is called an

approximate Nash equilibrium of Γt if sik > 0 implies Gik(t, s) = max(i,l)∈ΦiGil(t, s).
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x1 x2 x3

x4 x5 x6

x7 x8 x9

x10 x11 x12

x13 x14 x15

x16 x17 x18

x19 x20 x21

x22 x23 x24

x25 x26 x27

t = 0

t = 1
2

t = 1

Figure 1. A triangulation of [0, 1]× S. The vertex x1 = (0, (1, 0), (1, 0)) refers to the

strategy vector at which both players play their first pure strategy. Similarly, x3, x7, and

x9 correspond to (0, (0, 1), (1, 0)), (0, (1, 0), (0, 1)), and (0, (0, 1), (0, 1)), respectively.

The algorithm will yield a path of approximate Nash equilibria going from an approximate

Nash equilibrium of Γ0 to an approximate Nash equilibrium of Γ1. An approximate Nash

equilibrium of Γt is not necessarily a Nash equilibrium of Γt (although it is possible to show

that an approximate Nash equilibrium of Γ0 is a Nash equilibrium of Γ0). Nevertheless,

the following result shows that it is an ε-Nash equilibrium of Γt with ε > 0 related to the

mesh size of the triangulation.

Theorem 3.2 Let (Γ, p,Σ) be given. For every ε > 0 we can choose δ > 0 such that

x̂, x̃ ∈ [0, 1]×S, ‖x̂− x̃‖∞ ≤ δ, implies ‖G(x̂)−G(x̃)‖∞ ≤ 1
2
ε. If the mesh size of Σ is less

co({x4, x7, x5, x14}) co({x8, x7, x5, x14}) co({x8, x9, x5, x14}) co({x6, x9, x5, x14})

co({x4, x7, x16, x14}) co({x8, x7, x16, x14}) co({x8, x9, x18, x14}) co({x6, x9, x18, x14})

co({x4, x13, x16, x14}) co({x8, x17, x16, x14}) co({x8, x17, x18, x14}) co({x6, x15, x18, x14})

co({x4, x1, x5, x14}) co({x2, x1, x5, x14}) co({x2, x3, x5, x14}) co({x6, x3, x5, x14})

co({x4, x1, x10, x14}) co({x2, x1, x10, x14}) co({x2, x3, x12, x14}) co({x6, x3, x12, x14})

co({x4, x13, x10, x14}) co({x2, x11, x10, x14}) co({x2, x11, x12, x14}) co({x6, x15, x12, x14})

Table 2. All full-dimensional simplices in [0, 1
2
]× S.
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than δ and s is an approximate Nash equilibrium of Γt, then s is an ε-Nash equilibrium of

Γt.

Proof

Let ε > 0 be given. Since G is a continuous function with domain a compact set, we can

choose δ > 0 as in the theorem. Let the mesh size of Σ be less than δ and let s be an

approximate Nash equilibrium of Γt. Let σ ∈ Σ be such that x = (t, s) ∈ σ. Then there

exists λ ∈ IRM−N+2 such that
∑M−N+2
j=1 λj = 1 and x =

∑M−N+2
j=1 λjx

j, with xj the vertices

of σ. Then

‖G(x)−G(x)‖∞ = ‖
M−N+2∑
j=1

λj(G(xj)−G(x))‖∞ ≤
1

2
ε,

so, for every (i, k) ∈ Φ∗,

Gik(x)−
1

2
ε ≤ Gik(x) ≤ Gik(x) +

1

2
ε.

Now, sik > 0 implies

Gik(t, s) = Gik(x) ≥ Gik(x)−
1

2
ε = max

(i,l)∈Φi
Gil(x)−

1

2
ε ≥ max

(i,l)∈Φi
Gil(x)−ε = max

(i,l)∈Φi
Gil(t, s)−ε.

Q.E.D.

By Theorem 3.2 we will be able to show that the algorithm generates a path of ε-Nash

equilibria of games Γt, t ∈ [0, 1], with ε going to zero if the mesh size δ of the triangulation

Σ goes to zero. The result makes clear that it is possible to give an upper bound for δ in

terms of ε, the payoffs of the game, Ri, and the prior, p.

4 The Algorithm

Let a subset B∗ of Φ∗ be given with the property that for every player i there is at least one

pure strategy (i, k) in B∗. Such a set B∗ is called admissible. Let Bi denote the set of all

pure strategies of player i in B∗. The set Bi is related to all best replies of player i against

a certain strategy combination. The set S(B∗) denotes all mixed strategy combinations

that give positive weight only to pure strategies in B∗, so

S(B∗) =
{
s ∈ S

∣∣∣ ∑
(i,k)∈Bi

sik = 1, i ∈ N
}
.

Let a triangulation Σ of [0, 1]×S be given. For an admissible subset B∗ of Φ∗ we denote

by Σ(B∗) the collection of m-faces of simplices in Σ, where m = |B∗| + 1 − N, that are

contained in [0, 1]× S(B∗), so

Σ(B∗) = {τ ⊂ [0, 1]× S(B∗) | ∃σ ∈ Σ, τ is a (|B∗|+ 1−N)-face of σ}.

9



Here |B∗| denotes the cardinality of B∗. By repeated application of the result that claims

that the relative boundary of a set is triangulated by the facets of a triangulation, it follows

that Σ(B∗) is a triangulation of [0, 1]× S(B∗). Notice that Σ(Φ∗) = Σ.

Let an admissible B∗ ⊂ Φ∗ and a simplex σ(x1, . . . , xm+1) ∈ Σ(B∗) be given. Consider

solutions ξ = ((λj)j=1,...,m+1, (µik)(i,k)∈Φ∗\B∗, (βi)i∈N ) ∈ IRM+2 of the following system of

equations: ∑m+1
j=1 λj = 1,∑m+1
j=1 λjGi(xj) +

∑
(i,k)∈Φi\Bi µike

Mi(k)− βi1Mi = 0Mi, i ∈ N .
(2)

If λj ≥ 0, j = 1, . . . ,m + 1, and µik ≥ 0, (i, k) ∈ Φi \ Bi, then ξ is called an admissible

solution to (2). An admissible solution ξ corresponds to an approximate Nash equilibrium

s of Γt. Indeed, (t, s) =
∑m+1
j=1 λjx

j, strategies in B∗ are best replies given the marginal

payoff function G, µik is the payoff gap between strategy (i, k) ∈ Φi \ Bi and a best reply

for player i, and βi is the expected payoff for player i. Since σ ⊂ [0, 1]× S(B∗), strategies

that are not a best reply are played with probability zero. An admissible solution to (2)

is said to be degenerate if at least two of the variables λj , j = 1, . . . ,m + 1, and µik,

(i, k) ∈ Φ∗ \B∗, are equal to zero.

In the remainder of this section an algorithm will be introduced that generates by

means of lexicographic pivoting techniques a piecewise linear path of approximate Nash

equilibria in [0, 1] × S joining {0} × S to {1} × S. The path is such that every (t, s)

on it corresponds to an admissible B∗ ⊂ Φ∗, a simplex σ ∈ Σ(B∗), and an admissible

solution ξ as described above. The algorithm will specify in a unique way how to move

from one simplex to another. For given (B∗, σ), (2) corresponds to a linear system with

M + 1 equations and M + 2 variables. If we rule out degeneracies, then a non-empty

solution set is a 1-dimensional compact line segment. The end points of the line segment

are either approximate Nash equilibria for Γ0 or Γ1, or yield solutions for a new (B∗, σ).

Indeed, degeneracies ruled out, at an end-point either λj = 0 for exactly one j, or µik = 0

for exactly one (i, k) ∈ Φi \Bi. In the first case, the end-point belongs to the facet τ of σ

opposite to the vertex xj. If τ belongs to the relative interior of [0, 1]×S(B∗), then there is a

unique simplex σ ∈ Σ(B∗) such that σ 6= σ, and τ is a facet of σ. The algorithm continues

by generating a line-segment of solutions in σ. If τ belongs to the relative boundary of

[0, 1]× S(B∗), then the end-point is either an approximate Nash equilibrium for Γ0, or an

approximate Nash equilibrium for Γ1, or τ ∈ Σ(B∗), with B∗ a uniquely determined subset

of B∗ having one element less, and the algorithm continues with a line-segment of solutions

in τ. If µik = 0, then also strategy (i, k) is a best reply. The algorithm continues with a

line-segment of solutions in σ, where σ is the unique simplex in Σ(B∗ ∪ {(i, k)}) having σ

as a facet.

In game theory degeneracy is not always a non-generic phenomenon. For instance, for a

10



normal form representation of a game in extensive form, degeneracy is the rule rather than

the exception, even if the payoffs in the extensive form game are randomly chosen. But

also in other normal form games, representing certain economic situations, degeneracy can

easily occur, simply because payoffs are not randomly chosen but reflect some structure that

is present in the economic model. We will deal with degeneracy by exploiting lexicographic

pivoting techniques. In this paper we extend the techniques as used in Eaves (1971), Todd

(1976a), Wright (1981), and Herings, Talman, and Yang (1996).

Let us take a closer look at the system (2). For an admissible B∗ ⊂ Φ∗ and a facet

τ (x1, . . . , xm) of a simplex in Σ(B∗), the (M + 1)× (M + 1)-matrix AB∗,τ is defined by

AB∗,τ =


1 · · · 1 0 · · · · · · · · · · · · 0

E1 0 −1M1 0

G(x1) · · · G(xm) 0
. . . 0 0

. . . 0

0 0 EN 0 0 −1MN

 ,

where, for i ∈ N , Ei = [eMi(k)](i,k)∈Φi\Bi. The matrix AB∗,τ corresponds to the coefficients

in (2) when a facet τ of a simplex σ is considered. Suppose A−1
B∗,τ exists. From AB∗,τA

−1
B∗,τ =

IM+1 it follows that the first column of A−1
B∗,τ corresponds to an admissible solution to (2)

for any σ ∈ Σ(B∗) being the convex hull of τ and some vertex xm+1 ∈ [0, 1] × S(B∗),

whenever the first M +1−N components of this column are non-negative. No restrictions

are imposed on the last N rows of A−1
B∗,τ . In a non-degenerate solution the first M +1−N

components are all positive, since λm+1 = 0 extends the solution for the facet τ to the

simplex σ.

A row vector x ∈ IRM+1 is lexicographically positive if x 6= 0M+1> and its first non-zero

entry is positive. The matrix AB∗,τ is said to be semi-lexicopositive if each of the first

M + 1−N rows is lexicographically positive.

Definition 4.1 Let (Γ, p,Σ) be given and let B∗ be an admissible subset of Φ∗. A facet τ

of a simplex in Σ(B∗) is B∗-complete if A−1
B∗,τ exists and is semi-lexicopositive.

By restricting attention to complete facets, we will be able to take care of degeneracy

problems. Given a linear system of equations as in (2), determined by a B∗-complete facet

τ, we will pivot in a new column, either of the type (1, G(xm+1)) or of the type (0, eM(k)).

By making semi-lexicographic pivot steps, this determines in a unique way a column out

of the first M + 1−N to be replaced. A semi-lexicographic pivot step replaces the unique

column out of the first M+1−N ones, that makes the inverse of the resulting matrix AB∗,τ

semi-lexicopositive. Such a pivot step is not more difficult to carry out than a normal one

and coincides with it if there is no degeneracy.

The consideration ofB∗-complete facets will also provide us with a unique, endogenously
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determined, starting point for the algorithm. The admissible subset B0
∗ of Φ∗ is defined

by B0
i = {(i, ki)}, i ∈ N , where ki is the largest integer such that (i, ki) is a best reply to

p for player i. Notice that |B0
∗ | = N. The facet (vertex) τ = {0} × S(B0

∗) is B0
∗-complete,

see Lemma 6.1 for a proof. It will be shown that there is no other B∗-complete facet τ

in {0} × S. Even in degenerate cases, the semi-lexicographic rules single out the unique

B0
∗-complete facet {0} × S(B0

∗), which will serve as a unique, endogenously determined

starting point of the algorithm.

The steps of the algorithm are as follows.

Algorithm 4.2 Let (Γ, p,Σ) be given.

Step 0. Let m = 1 and n = 1. Let B∗ = B0
∗ , τ

1 = {0} × S(B∗), and let x2 be the unique

vertex of the 1-simplex of Σ(B∗) containing τ 1 as the facet opposite to it.

Step 1. Let σ be equal to the convex hull of τn and {xm+1}. Make a semi-lexicographic

pivot step with (1, G(xm+1)) into the system of equations (2) corresponding to AB∗,τn,

yielding a unique column j′ of AB∗,τn which has to be replaced. If j′ ∈ {m+1, . . . ,M+

1−N}, then go to Step 3 with (i′, k′) the pure strategy corresponding to column j′.

Otherwise, go to Step 2.

Step 2. Increase the value of n by 1 and let τn be the facet of σ opposite xj
′
. If τn ⊂ {1}×S,

then the algorithm terminates with an approximate Nash equilibrium s∗ of Γ1 induced

by the solution of (2) corresponding to AB∗,τn. If τn ∈ Σ(B∗) for some admissible

B∗ ⊂ Φ∗, then go to Step 4. Otherwise, there is exactly one m-simplex σ of Σ(B∗)

such that σ 6= σ and τn is a facet of σ. Go to Step 1 with xm+1 as the unique vertex

of σ opposite τn.

Step 3. Let the admissible B∗ ⊂ Φ∗ be defined by B∗ = B∗ ∪ {(i′, k′)}. There is a unique

simplex σ of Σ(B∗) having σ as a facet. Increase the value of both m and n by 1 and

go to Step 1 with xm+1 as the unique vertex of σ opposite σ, B∗ = B∗, and τn = σ.

Step 4. Let σ be equal to τn. Make a semi-lexicographic pivot step with

(0, eM(
∑i−1
i=1 Mi+k)) into the system of equations (2) corresponding to AB∗,τn, where

(i, k) is such that B∗ ∪ {(i, k)} = B∗. This yields a unique column j′ of AB∗,τn which

has to be replaced. If j′ ∈ {m+1, . . . ,M+1−N}, then decrease the value of both m

and n by 1 and go to Step 3 with (i′, k′) the pure strategy corresponding to column

j′ and B∗ = B∗. Otherwise, decrease the value of m by 1 and go to Step 2 with

B∗ = B∗.

In Section 6 it is shown that every step in the algorithm is feasible and that every semi-

lexicographic pivot step is unique. Furthermore, the algorithm is shown to terminate after
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a finite number of steps, after having generated a B∗-complete facet τ being a subset of

{1} × S(B∗).

Consider all different pairs (B1
∗ , τ

1), . . . , (B k̂
∗ , τ

k̂) successively generated by Algorith-

m 4.2. For k = 1, . . . , k̂, τ k = τ k(x1, . . . , xm
k
) with mk = |Bk

∗ | + 1 − N. Define x̃k =

(t̃k, s̃k) ∈ τ k by x̃k =
∑mk

j=1 λjx
j with λj following from the admissible solution of sys-

tem (2) corresponding to ABk∗ ,τk
. So s̃k is an approximate Nash equilibrium of Γt̃

k
. For

r ∈ IR, define brc as the greatest integer which is less than or equal to r. Finally, define

the piecewise linear, continuous function π : [0, 1]→ [0, 1]× S by

π(r) = (1− (k̂ − 1)r + b(k̂ − 1)rc)x̃1+b(k̂−1)rc + ((k̂ − 1)r − b(k̂ − 1)rc)x̃2+b(k̂−1)rc.

Consider some r ∈ [0, 1]. Then π(r) = (t, s) is a convex combination of two points x̃k and

x̃k+1. It is easily verified, because of the linearity of the system, that π(r) gives rise to an

admissible solution for (2) with B∗ equal to Bk
∗ ∩B

k+1
∗ and σ equal to the convex hull of τ k

and τ k+1. So, s is an approximate Nash equilibrium of Γt. The function π : [0, 1]→ [0, 1]×S

is called the path generated by the algorithm. When the mesh size of the triangulation

used goes to zero, the path generated by the algorithm converges to the linear tracing

procedure, for a proof and a precise statement see Section 7.

5 An Example

To illustrate Algorithm 4.2, we consider the game of Figure 2. The unique Nash equi-

librium of this game is ((2
3
, 1

3
), (3

4
, 1

4
)). We write Φ1 = {(1, 1), (1, 2)}, Φ2 = {(2, 1), (2, 2)},

R1((1, 1), (2, 1)) = 2, etc. Consider a prior p = ((1
2
, 1

2
), (3

4
, 1

4
)). It follows that

Ht
1(s) = tR1(s) + (1− t)[ 7

4
s11 + 7

4
s12],

Ht
2(s) = tR2(s) + (1− t)[3s21 + 2s22],

and
G11(t, s) = t(2s21 + s22) + (1− t)7

4
,

G12(t, s) = t(s21 + 4s22) + (1− t)7
4
,

G21(t, s) = t(2s11 + 4s12) + (1− t)3,

G22(t, s) = t(4s11) + (1− t)2.

We take the triangulation Σ depicted in Figure 1.

First we have to determineB0
∗ . It is given byB0

∗ = {(1, 2), (2, 1)}. Against the prior both

pure strategies give player 1 a payoff of 7
4
, G11(0, ((

1
2
, 1

2
), (3

4
, 1

4
))) = G12(0, ((

1
2
, 1

2
), (3

4
, 1

4
))) =

7
4
. The tie-breaking rule introduced to determine B0

∗ , requires that the second pure strategy

of player 1 is selected. It is obvious that s0 = ((0, 1), (1, 0)) is a Nash equilibrium of Γ0.

The simplex τ 1 is equal to {0} × {((0, 1), (1, 0))} and is denoted in Figure 1 by x3. The
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L R

T 2,2 1,4

B 1,4 4,0

Figure 2. A 2-person game.

unique simplex of Σ({(1, 2), (2, 1)}) containing τ 1 as a facet is given by σ = co({x3, x12}),

and the unique vertex of it not in τ 1 is x12. This terminates Step 0. It holds that

AB0
∗,τ1 =



1 0 0 0 0
7
4

1 0 −1 0
7
4

0 0 −1 0

3 0 0 0 −1

2 0 1 0 −1


and (AB0

∗,τ1)−1 =



1 0 0 0 0

0 1 −1 0 0

1 0 0 −1 1
7
4

0 −1 0 0

3 0 0 −1 0


.

It is easily verified that (AB0
∗,τ1)−1 is semi-lexicopositive. The first column of (AB0

∗,τ1)−1,

given by the vector (1, 0, 1, 7
4
, 3), corresponds to an admissible solution of (2). Here, λ1 = 1,

the weight attached to vertex x3, µ11 = 0, µ22 = 1, the losses in payoff for player 1 using

his first strategy and for player 2 using his second strategy, and β1 = 7
4
, β2 = 3, the

expected payoffs of players 1 and 2. Now we have to make a semi-lexicographic pivot

step with (1, G(x12)) = (1, (15
8
, 11

8
, 7

2
, 1)) into the system of equations (2) corresponding

to AB0
∗,τ1. This yields column 2 to be replaced, which corresponds to pure strategy (1, 1).

Since 2 ∈ {2, 3}, we go to Step 3 and we increase the dimension of the simplices generated

by 1.

Step 3 takes B∗ = B∗ ∪{(1, 1)} = {(1, 1), (1, 2), (2, 1)}. The unique simplex σ of Σ(B∗)

having co({x3, x12}) as a facet is co({x2, x3, x12}). Next, m and n are set equal to 2, and

Step 1 is carried out with x3 = x2, B∗ = {(1, 1), (1, 2), (2, 1)}, and τ 2 = co({x3, x12}), etc.

The algorithm reaches {1}×S after generating the 13 facets that are denoted by τ 1, . . . , τ 13

in Figure 3.

It can be verified that τ 1 = {x3}, τ 2 = co({x3, x12}), τ 3 = co({x2, x12}), τ 4 =

co({x2, x11}), τ 5 = co({x2, x10}), τ 6 = co({x1, x10}), τ 7 = co({x4, x10}), τ 8 =

co({x4, x10, x13}), τ 9 = co({x10, x13, x14}), τ 10 = co({x10, x14, x23}), τ 11 = co({x10, x11, x23}),

τ 12 = co({x11, x19, x23}), and τ 13 = co({x19, x20, x23}). An interesting situation occurs at

τ 6. In Step 2 we reach the case where τ 6 belongs to the Cartesian product of [0, 1] and the
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τ1

τ2τ3τ4τ5τ6

τ7

τ8

τ9

τ10

τ11

τ12

τ13

t = 0

t = 1
2

t = 1

Figure 3. The algorithm in action.

boundary of S(B∗), τ 6 ∈ Σ({(1, 1), (2, 1)}). We have to go to Step 4 in order to decrease

the dimension by 1. In Step 4 we pivot in the vector (0, e4(2)) since B∗ = B∗ ∪ {(1, 2)}.

This yields column 3 to be replaced, which corresponds to pure strategy 2 of player 2.

Since 3 ∈ {3}, we go to Step 3 to increase the dimension. It holds that τ 6 is both

{(1, 1), (1, 2), (2, 1)}-complete and {(1, 1), (2, 1), (2, 2)}-complete, yielding two different ad-

missible solutions to the system of equations (2).

The importance of the semi-lexicographic pivot steps becomes clear when reaching

τ 10. When x23 is pivoted in, ordinary pivot steps cannot determine whether x13 or x14

should be pivoted out. Let us denote the facet obtained by pivoting out x14 by τ 10, so

τ 10 = co({x10, x13, x23}). In both cases B∗ = Φ∗. It holds that

AΦ∗,τ10 =



1 1 1 0 0
13
8

15
8

3
2
−1 0

17
8

11
8

5
2
−1 0

3 5
2

3 0 −1

2 3 2 0 −1


and (AΦ∗,τ10)−1 =



0 2 −2 2 −2
2
3

0 0 −2
3

2
3

1
3
−2 2 −4

3
4
3

7
4
−3

4
−1

4
0 0

8
3

0 0 −2
3
−1

3


,
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and

AΦ∗,τ10 =



1 1 1 0 0
3
2

15
8

13
8
−1 0

5
2

11
8

17
8
−1 0

3 5
2

5
2

0 −1

2 3 3 0 −1


and (AΦ∗,τ10)−1 =



1
3

0 0 2
3
−2

3
2
3

1 −1 1
3
−1

3

0 −1 1 −1 1
7
4
−3

4
−1

4
0 0

8
3

0 0 −2
3
−1

3


.

It is easily verified that (AΦ∗,τ10)−1 is not semi-lexicopositive, since the third row is not

lexicographically positive. So τ 10 will not be generated by the semi-lexicographic pivot

steps, but instead τ 10 is the uniquely determined facet. Since τ 13 ⊂ {1}×S, the algorithm

will terminate there as is dictated by Step 2.

The path generated by the algorithm in the example is illustrated in Figure 3 by the

heavily drawn line going from τ 1 to τ 13. It is given by the points

00

1

1

0




,



01
2
1
2

1

0




,



01

0

1

0




,



1
31

0

1

0




,



1
31

0

5
6
1
6




,



1
31

0

2
3
1
3




,



1
25
6
1
6

3
4
1
4




,



2
35
6
1
6

5
6
1
6




,



8
92
3
1
3

7
9
2
9




,



12
3
1
3

3
4
1
4




,

and all convex combinations of two successive points. The end point is exactly equal to

the unique Nash equilibrium of the game Γ.

Because the game of Figure 2 is so simple, it is possible to determine the set L exactly.

This set is depicted in Figure 3 by the dotted line. It is easily seen that L consists of only

one component and L = Lc. It is given by the points

00

1

1

0




,



01

0

1

0




,



1
31

0

1

0




,



1
31

0

3
4
1
4




,

all convex combinations of two successive points, and, in addition, the points

t1+3t
6t

3t−1
6t

3
4
1
4




, t ∈ (

1

3
, 1].

It is clear from the figure that even though the mesh size of the triangulation is pretty large,

the set L is approximated very well by Algorithm 4.2. The approximate Nash equilibrium

computed, x̃13 = (1, ((2
3
, 1

3
), (3

4
, 1

4
))), is an exact Nash equilibrium.
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6 Convergence to an ε-Nash Equilibrium of Γ

We show that every step in Algorithm 4.2 is unique and feasible, and that the algorithm

generates a piecewise linear path in a sequence of adjacent simplices. The path consists

of approximate Nash equilibria of Γt, t ∈ [0, 1]. First we show that τ = {0} × S(B0
∗) is

B0
∗-complete and that there is no other 0-simplex in the slice {0} × S that is B∗-complete

for some B∗. We consider the case |B∗| = N first.

Lemma 6.1 Let (Γ, p,Σ) be given. The facet τ = {0} × S(B0
∗) is B0

∗ -complete. There is

no other B∗-complete facet τ in {0} × S with |B∗| = N.

Proof

Let t = 0 and |B∗| = N. If τ ⊂ {0}×S is B∗-complete, then, for i ∈ N , Bi = {(i, ki)} with

(i, ki) a best reply for player i against the p. It is straightforward that

AB∗,τ =



1 0 . . . 0 0 . . . 0

R1(p \ (1, 1))
... E1 0 0 −1M1 0 0

R1(p \ (1,M1))
... 0

. . . 0 0
. . . 0

RN (p \ (N, 1))
... 0 0 EN 0 0 −1MN

RN (p \ (N,MN ))


,

where Ei is the Mi ×Mi unit matrix with column eMi(ki) deleted. Inverting AB∗,τ we find

that

A−1
B∗,τ =



1 0 · · · 0

R̃1 Ẽ1 0 0
... 0

. . . 0

R̃N 0 0 ẼN

R1(p \ (1, k1))... −eN×M1(1, k1) · · · −eN×MN (N, kN )
RN (p \ (N, kN ))


,

where R̃i ∈ IRMi−1
+ is the column vector given by R̃il = Ri(p \ (i, ki)) − Ri(p \ (i, l)),

(i, l) ∈ Φi \ {(i, ki)}, and where Ẽi is the (Mi − 1) ×Mi-matrix given by

Ẽi =
[
eMi−1(1) · · · eMi−1(ki − 1) −1Mi−1 eMi−1(ki) · · · eMi−1(Mi − 1)

]
and eN×Mi(i, ki) is the (N ×Mi)-matrix filled with zeroes, except in row i column ki where

a 1 occurs. If ki = 1, then the first column of Ẽi is given by −1Mi−1, and if ki = Mi, then

the last column of Ẽi is given by −1Mi−1. By computing AB∗,τA
−1
B∗,τ it is easily verified that

A−1
B∗,τ is indeed given by the expression above. Now A−1

B∗,τ is semi-lexicopositive if and only
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if ki is the largest integer such that (i, ki) is a best reply to p for player i. Q.E.D.

The next lemma shows that there are no B∗-complete facets τ in {0} × S where the

cardinality of B∗ exceeds N.

Lemma 6.2 Let (Γ, p,Σ) be given. Then there is no B∗-complete facet τ in {0} × S with

|B∗| > N.

Proof

Consider any |B∗| > N and any facet τ ((0, s1), . . . , (0, sm)) ⊂ {0} × S(B∗) of a simplex in

Σ(B∗). Then

AB∗,τ =


1 · · · 1 0 · · · · · · · · · · · · 0

E1 0 −1M1 0

G(0, s1) · · · G(0, sm) 0
. . . 0 0

. . . 0

0 0 EN 0 0 −1MN

 .

Observe that Gik(0, sj) = Ri(p \ (i, k)), (i, k) ∈ Φi. So, G(0, sj) is independent of j and

AB∗,τ is not invertible. Therefore, τ is certainly not B∗-complete. Q.E.D.

Lemma 6.1 selects for each player a unique pure strategy such that the resulting pure

strategy combination, denoted by s0, is a Nash equilibrium for the game Γ0. Lemma 6.2

shows that there are no other Nash equilibria for the game Γ0 that satisfy our criterion of

completeness. The resulting point (0, s0) is linked in Step 0 of Algorithm 4.2 to a point

(t, s1) that is the other vertex of the unique simplex in Σ(B0
∗) having {0} × S(B0

∗) as a

facet.

The following lemma is well-known in linear programming theory, see for example Murty

(1983). It can be used to link several complete facets to each other. Moreover, it gives us

an easy way to perform a semi-lexicographic pivot step.

Lemma 6.3 Let an invertible n× n matrix A, a vector z of IRn, and some j ∈ {1, . . . , n}

be given. The n×n matrix A is defined by A = (A·1 . . . A·j−1 z A·j+1 . . . A·n). Then either
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(A−1z)j = 0 and A is singular, or (A−1z)j 6= 0 and

A−1 =



(A−1)1· −
(A−1z)1
(A−1z)j

(A−1)j·
...

(A−1)j−1· −
(A−1z)j−1

(A−1z)j
(A−1)j·

1
(A−1z)j

(A−1)j·

(A−1)j+1· −
(A−1z)j+1

(A−1z)j
(A−1)j·

...

(A−1)n· −
(A−1z)n
(A−1z)j

(A−1)j·


.

Lemma 6.3 is easily shown by calculating A−1A. The structure of the remainder of the

convergence proof is closely related to the one of Wright (1981) and Herings, Talman

and Yang (1996), although we have to deal of course with the specifics of our algorithm.

For the proofs of Lemma 6.4 and 6.5 we use the concept of a lexicographic ordering. A

vector x ∈ IRn is said to be lexicographically greater than a vector x ∈ IRn if x − x is

lexicographically positive. In this way the lexicographic ordering is obtained, a complete

ordering on IRn.

Lemma 6.4 describes all possible cases that may occur if a B∗-complete facet τ is given

and a semi-lexicographic pivot step with a vector (1, G(xm+1)) is made, where xm+1 is a

vertex of a simplex having τ as a facet opposite to it.

Lemma 6.4 Let (Γ, p,Σ) be given. Consider a B∗-complete facet τ of a simplex σ ∈ Σ(B∗).

Then exactly one of the following cases holds:

1. σ has exactly one other B∗-complete facet τ ,

2. σ is B∗-complete for precisely one admissible B∗ ⊂ Φ∗.

Proof

Let xm+1 be the vertex of σ not contained in τ and let y ∈ IRM+1 be given by

y = A−1
B∗,τ

 1

G(xm+1)

 .
Since (AB∗,τ)1· = (1m

>
, 0M+1−m>), it holds that

∑m
j=1(A

−1
B∗,τ )j1 = 1 and

∑m
j=1(A

−1
B∗,τ)jl = 0,

l = 2, . . . ,M+1. Suppose that the first M+1−N components of y are non-positive. Then

we obtain a contradiction since

0 ≥ (1m
>
, 0M+1−m>)y = (1m

>
, 0M+1−m>)A−1

B∗,τ

 1

G(xm+1)

 = (1, 0M
>
)

 1

G(xm+1)

 = 1,
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where the first inequality uses that m ≤ M + 1 − N. Consequently, yj > 0 for some

j ∈ {1, . . . ,M + 1−N}. Let j′ ∈ {1, . . . ,M + 1−N} be such that 1
yj′

(A−1
B∗,τ )j′· is minimal

according to the lexicographic ordering over all row vectors 1
yj

(A−1
B∗,τ)j· for which yj > 0

and j ∈ {1, . . . ,M + 1 − N}. The row j′ is uniquely determined because otherwise there

would be two rows that are linearly dependent and A−1
B∗,τ would not be invertible. It holds

that either j′ ∈ {1, . . . ,m} or j′ ∈ {m+ 1, . . . ,M + 1−N}.

In the first case let τ be the facet of σ opposite xj
′
. By Lemma 6.3 and the choice of j′

it follows that A−1
B∗,τ exists and is semi-lexicopositive. So τ is B∗-complete.

In the second case it holds that column j′ of AB∗,τ corresponds to pure strategy k of

player i. Let B∗ ⊂ Φ∗ be defined by B∗ = B∗ ∪ {(i, k)}. Obviously, B∗ is admissible and σ

is a facet of a simplex of Σ(B∗). By Lemma 6.3 and the choice of j′ it follows that A−1
B∗,σ

exists and is semi-lexicopositive. So, σ is B∗-complete.

Lemma 6.3 guarantees that replacement of another column of AB∗,τ would give a new

matrix that does not have a semi-lexicopositive inverse. This implies that the two cases

considered above are mutually exclusive, and that the facet τ and the set B∗ are uniquely

determined. Q.E.D.

The operation used in the proof of Lemma 6.4, where a column of AB∗,τ is determined in a

unique way and is replaced by the vector (1, G(xm+1)), is called a semi-lexicographic pivot

step in Step 1 of Algorithm 4.2. Case 1 occurs in the algorithm if one goes from Step 1 to

Step 2, and Case 2 if one goes from Step 1 to Step 3.

Consider a B∗-complete facet τ that is also a simplex belonging to Σ(B∗) for some

admissible B∗ ⊂ Φ∗. Then there is a unique strategy (i, k) such that B∗ = B∗ ∪ {(i, k)}.

Lemma 6.5 describes all possible cases that may occur if a semi-lexicographic pivot step

with a vector (0, eM(l)) is made, where l =
∑i−1
i=1Mi + k.

Lemma 6.5 Let (Γ, p,Σ) be given. Consider a B∗-complete facet τ that belongs to Σ(B∗)

for some admissible B∗ ⊂ Φ∗. Then exactly one of the following cases holds:

1. τ is B̂∗-complete for precisely one admissible B̂∗ ⊂ Φ∗ with B̂∗ 6= B∗,

2. precisely one facet υ of τ is B∗-complete.

Proof

There is a unique strategy (i, k) such that B∗ = B∗ ∪ {(i, k)}. Define l =
∑i−1
i=1Mi + k. Let

y ∈ IRM+1 be given by

y = A−1
B∗,τ

 0

eM(l)

 .
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Since (AB∗,τ)1· = (1m
>
, 0M+1−m>), it holds that

∑m
j=1(A

−1
B∗,τ )j1 = 1 and

∑m
j=1(A

−1
B∗,τ)jl = 0,

l = 2, . . . ,M+1. Suppose that the first M+1−N components of y are non-positive. Then

(1m
>
, 0M+1−m>)y = (1m

>
, 0M+1−m>)A−1

B∗,τ

 0

eM(l)

 = (1, 0M
>
)

 0

eM(l)

 = 0,

so the first m components of y are zero. Now it holds that

1 =
M+1∑
j=1

(AB∗,τ )l+1,jyj =
M+1∑
j=m+1

(AB∗,τ )l+1,jyj = −yM+1−N+i.

So, yM+1−N+i = −1 and a solution to AB∗,τy =

 0

eM(l)

 can only exist if (i, k) /∈ Bi for

every k 6= k. Since B∗ = B∗ ∪{(i, k)}, it follows that B∗ is not admissible, a contradiction.

Consequently, yj > 0 for some j ∈ {1, . . . ,M+1−N}. Let j′ ∈ {1, . . . ,M+1−N} be such

that 1
yj′

(A−1
B∗,τ

)j′· is minimal according to the lexicographic ordering over all row vectors
1
yj

(A−1
B∗,τ)j· for which yj > 0 and j ∈ {1, . . . ,M + 1 − N}. The row j′ has to be unique

because otherwise A−1
B∗,τ

would not be invertible. It holds that either j′ ∈ {1, . . . ,m} or

j′ ∈ {m+ 1, . . . ,M + 1−N}.

If j′ ∈ {m + 1, . . . ,M + 1 − N}, then let (i′, k′) be the strategy that corresponds to

column j′. Let an admissible B̂∗ ⊂ Φ∗ be defined by B̂∗ = B∗∪{(i′, k′)}, and consider A
B̂∗,τ

.

By Lemma 6.3 the choice of j′ guarantees that A−1

B̂∗,τ
is semi-lexicopositive and therefore τ

is B̂∗-complete.

If j′ ∈ {1, . . . ,m}, then let υ be the facet of τ opposite xj
′
. Using Lemma 6.3 the choice

of j′ implies that A−1
B∗,υ

is semi-lexicopositive and hence υ is B∗-complete.

Again, Lemma 6.3 guarantees that replacement of another column of AB∗,τ would give

a new matrix that does not have a semi-lexicopositive inverse. This implies that the two

cases considered above are mutually exclusive, and that the facet υ and the set B̂∗ are

uniquely determined. Q.E.D.

The operation used in the proof of Lemma 6.5, where a column of AB∗,τ is determined

in a unique way and is replaced by the vector (0, eM(
∑i−1
i=1 Mi + k)>)> is called a semi-

lexicographic pivot step in Step 4 of Algorithm 4.2. Case 1 of Lemma 6.5 happens if one

goes from Step 4 of Algorithm 4.2 to Step 3, and Case 2 if one goes from Step 4 to Step 2.

It has already been indicated that Algorithm 4.2 generates a sequence of adjacent complete

facets with varying dimension. The idea of adjacent is made precise in Definition 6.6.

Definition 6.6 (Adjacent complete facets) Let (Γ, p,Σ) be given. The complete facets

τ and τ̂ are adjacent if τ and τ̂ are both B∗-complete facets of the same simplex of Σ(B∗),
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or if τ is a B∗-complete facet of the B̂∗-complete simplex τ̂ of Σ(B∗), or if τ̂ is a B̂∗-complete

facet of the B∗-complete simplex τ of Σ(B̂∗).

Theorem 6.7 Let (Γ, p,Σ) be given. Consider a B∗-complete facet τ. If τ = {0} × S(B0
∗)

or τ ⊂ {1} × S, then τ has one adjacent complete facet. Otherwise, τ has two adjacent

complete facets.

Proof

Let τ = {0}×S(B0
∗). Since {0}×S(B0

∗) is a subset of the relative boundary of [0, 1]×S(B0
∗),

there is a unique 1-simplex σ ∈ Σ(B0
∗) such that τ is a facet of σ. By Lemma 6.4 it holds

that either σ has exactly one other B0
∗ -complete facet τ , or the 1-simplex σ is B∗-complete

for precisely one admissible B∗ ⊂ Φ∗. So there exists exactly one adjacent complete facet

to {0} × S(B0
∗).

Let τ ⊂ {1} × S be B∗-complete. Clearly, there is no admissible B∗ ⊂ Φ∗ such that

τ ∈ Σ(B∗), since a simplex in Σ(B∗) has always vertices outside {1}×S. Since τ is a subset

of the relative boundary of [0, 1] × S, there is a unique 1-simplex σ ∈ Σ(B∗) such that τ

is a facet of σ. It follows again by Lemma 6.4 that there is exactly one adjacent complete

facet to τ.

For all other adjacent complete facets τ it holds either that τ belongs to the relative

boundary of [0, 1]× S or to the relative interior of [0, 1]× S.

In the first case there is a unique σ ∈ Σ(B∗) having τ as a facet. By Lemma 6.4

it holds that either σ has exactly one other B∗-complete facet τ , or σ is B∗-complete for

precisely one admissible B∗ ⊂ Φ∗. This gives us one adjacent complete facet to τ. Moreover,

τ ∈ Σ(B∗) for precisely one admissible B∗ ⊂ Φ∗, since τ lies in the relative boundary of

Σ(B∗), τ 6= {0} × S(B0
∗) by assumption, and τ is not a subset of {1} × S by assumption,

and τ /∈ {0} × S by Lemma 6.2. By Lemma 6.5 it holds that either τ is B̂∗-complete for

precisely one admissible B̂∗ ⊂ Φ∗ with B̂∗ 6= B∗, or precisely one facet υ of τ is B∗-complete.

In the latter case we are done. In the first case, since τ belongs to the relative boundary of

Σ(B̂∗), there is exactly one σ̂ ∈ Σ(B̂∗) having τ as a facet, and applying Lemma 6.4 again

gives the second adjacent complete facet to τ. There can be no other adjacent complete

facets to τ.

When τ belongs to the relative interior of Σ(B∗), we apply Lemma 6.4 twice to get

exactly two adjacent complete facets. Q.E.D.

The implications of Theorem 6.7 are striking. The B0
∗-complete facet {0} × S(B0

∗) has

exactly one adjacent complete facet. That facet either belongs to the boundary of {1}×S

and we have found an approximate Nash equilibrium1, or has exactly one adjacent com-

1It will usually not be the case that the boundary {1} × S is reached in one step. For this to occur it

is required that the triangulation Σ has a very large mesh size.
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plete facet not being equal to {0} × S(B0
∗). In this way a sequence of adjacent complete

facets is generated in a unique way, starting from {0} × S(B0
∗). The systematic steps of

how to generate this sequence are given in Algorithm 4.2. Theorem 6.8 shows that the

algorithm always reaches in a finite number of steps a complete facet in {1}×S. As stated

in Theorem 6.9, this implies that the algorithm converges to an ε-Nash equilibrium in a

finite number of steps.

Theorem 6.8 (Convergence of Algorithm 4.2) Let (Γ, p,Σ) be given. Then there

exists a unique finite sequence of complete facets τ 1, . . . , τ n̂ such that τ 1 = {0} × S(B0
∗),

τ k̂ ⊂ {1} × S, and any two successive facets in the finite sequence are adjacent complete

facets.

Proof

Let τ 1 = {0} × S(B0
∗). Let τ 2 be the unique adjacent complete facet that exists according

to Theorem 6.7. Whenever τ k for some k > 1 is not equal to {0}×S(B0
∗) and not a subset

of {1} × S, there exists by Theorem 6.7 a unique adjacent complete facet τ k+1 not equal

to τ k−1. Now it follows from the door-in door-out principle of Lemke and Howson (1964)

that all simplices generated in the sequence above are different. Moreover, the collection

of all facets of simplices in Σ(B∗) is finite for any admissible B∗ ⊂ Φ∗. So, after a finite

number of steps, say k̂, a facet in {1} × S must be reached. Q.E.D.

By connecting the solutions found in each of the complete facets generated by the algo-

rithm, we find the path generated by the algorithm, π : [0, 1] → [0, 1] × S, as constructed

in Section 4.

Theorem 6.9 Let (Γ, p,Σ) be given with mesh(Σ) ≤ δ, where δ satisfies ‖x̂ − x̃‖∞ ≤ δ

implies ‖G(x̂) − G(x̃)‖∞ ≤
1
2
ε, x̂, x̃ ∈ [0, 1] × S. Then π(r) = (t, s) implies that s is an

ε-Nash equilibrium of Γt. Moreover, π(0) = (0, s) with siki = 1 for all (i, ki) ∈ B0
∗ , and

π(1) = (1, s∗) with s∗ an ε-Nash equilibrium of Γ.

Proof

This follows straightforwardly from Theorem 3.2, Theorem 6.8, and the definition of Algo-

rithm 4.2. Q.E.D.

Theorem 6.9 shows that any (t, s) in the image set of π corresponds to an ε-Nash equilibri-

um of Γt. Since we have shown that the algorithm reaches a complete facet in {1}×S in a

finite number of steps, we know that the algorithm converges to an ε-Nash equilibrium in a

finite number of steps. Notice that this result is true for any game and any prior, irrespec-

tive of possible degeneracies. It is clear that the inaccuracy of the final solution generated,

ε, depends on the mesh size of the triangulation. If the mesh size of the triangulation goes
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to zero, then also the inaccuracy ε goes to zero. From a practical perspective, there is a

clear trade-off between rapid convergence and getting very accurate solutions.

7 Convergence to the Linear Tracing Procedure

It has been shown that Algorithm 4.2 converges to some ε-Nash equilibrium, given any game

and prior. It remains to be shown that this ε-Nash equilibrium is indeed an approximation

of the Nash equilibrium selected by the linear tracing procedure. To verify this, we need a

distance function to measure the discrepancy between the set Lc generated by the linear

tracing procedure, and points π(r) which are generated by Algorithm 4.2.

Let S denote the collection of all non-empty compact subsets of [0, 1] × S. We define

the distance function d : [0, 1]× S × S → IR by

d(x, T ) = min
y∈T
‖x− y‖∞, x ∈ [0, 1]× S, T ∈ S.

Theorem 7.1 Let (Γ, p) be given. Then, for every ε > 0, there exists δ > 0, such that for

every triangulation Σ of [0, 1]×S satisfying mesh(Σ) < δ it holds that maxr∈[0,1] d(π(r),Lc) ≤

ε.

Proof

Suppose the theorem is not true. Then there exists ε > 0 such that for every n ∈ IN there

exists a triangulation Σn of [0, 1]× S such that mesh(Σn) < 1
n
, and there exists rn ∈ [0, 1]

such that d(πn(rn),Lc) > ε. Here πn : [0, 1] → [0, 1] × S denotes the path generated by

the algorithm when the triangulation Σn is used. By Hildenbrand (1974), Proposition 1,

page 16, the sequence {πn([0, 1])}n∈IN has a convergent subsequence. By Theorem 3.2 and

by continuity of the function G, it follows that the closed limit of a converging subsequence

of {πn([0, 1])}n∈IN belongs to L. Moreover, since πn([0, 1]) is connected for every n ∈ IN, the

closed limit is connected by Mas-Colell (1985), Theorem A.5.1(ii), page 10. But then the

closed limit should be a subset of Lc since it contains points in L0. Take any accumulation

point x of the sequence {πn(rn)}n∈IN. Then

0 = d(x,Lc) ≥ inf{d(πn(rn),Lc) | n ∈ IN} ≥ ε,

a contradiction. Q.E.D.

Theorem 7.1 shows that for all games the algorithm stays arbitrarily close to the strategies

defined by the linear tracing procedure. This even holds true if the linear tracing proce-

dure is not well defined and does not select a unique Nash equilibrium. In that case the

ε-Nash equilibrium generated by the algorithm is still an approximation of one of the Nash
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equilibria in Lc. Theorem 7.1 does not only claim that π(1) is close to a Nash equilibrium

selected by the linear tracing procedure. It makes clear that the entire path π does not get

further than ε away from Lc.

Theorem 7.2 Let (Γ, p) be given. If the linear tracing procedure is well defined, then, for

every ε > 0 there exists δ > 0 such that for every triangulation Σ of [0, 1] × S satisfying

mesh(Σ) < δ it holds that max(t,s)∈Lc d((t, s), π([0, 1])) ≤ ε. Moreover, if (0, s0) ∈ Lc, then

d((0, s0), {π(0)}) ≤ ε, and if (1, s∗) ∈ Lc, then d((1, s∗), {π(1)}) ≤ ε.

Proof

Suppose the theorem is not true. Then there exists ε > 0 such that for every n ∈ IN

there is a triangulation Σn of [0, 1] × S with mesh(Σn) < 1
n
, and there is (tn, sn) ∈ Lc

such that d((tn, sn), πn([0, 1])) > ε. Without loss of generality the sequence {(tn, sn)}n∈IN

is convergent, say to (t, s), and by Hildenbrand (1974), Proposition 1, page 16, the se-

quence {(πn([0, 1]))}n∈IN is convergent, say to the set Π. By Theorem 7.1 it follows that

Π ⊂ Lc. Obviously, (t, s) /∈ Π. Since the set L0 is a polytope, well definedness of the

linear tracing procedure implies that L0 contains a single point, say (0, s0). Similarly, well

definedness yields that there is only one (t, s) ∈ Lc such that t = 1, say (1, s1). It follows

that πn(0)→ (0, s0) and πn(1)→ (1, s1). The results of Schanuel, Simon, and Zame (1991)

imply that Lc is path-connected. Then it is easily seen that the linear tracing procedure is

well defined if and only if there is a homeomorphism h : [0, 1]→ Lc with h(0) = (0, s0) and

h(1) = (1, s1). Moreover, there is r ∈ (0, 1) such that (t, s) = h(r). By Mas-Colell (1985),

Theorem A.5.1.(ii), page 10, Π is connected. However, Π ⊂ h([0, 1] \ {r}), h(0) ∈ Π,

h(1) ∈ Π, and h is a homeomorphism, so Π is not connected, a contradiction. Q.E.D.

Theorem 7.2 claims that the path generated by the algorithm approximates every strategy

of the linear tracing procedure if the linear tracing procedure is well defined. Obviously, if

for instance the set Lc has a branch point, then it cannot be expected that all points in Lc

are approximated by the path π generated by Algorithm 4.2. In this case the algorithm

will track one of the branches that leads to an approximate Nash equilibrium.

Corollary 7.3 Let (Γ, p) be given. Let (Σn)n∈IN be a sequence of triangulations of [0, 1]×S

with mesh size converging to zero. If the linear tracing procedure is well defined, then

πn([0, 1]) converges to Lc in the Hausdorff topology on S.

If the linear tracing procedure is well defined, then every strategy generated by it is approx-

imated by Algorithm 4.2, see Theorem 7.2, and every strategy generated by Algorithm 4.2

approximates a strategy corresponding to the linear tracing procedure according to The-

orem 7.1. Since the linear tracing procedure is well defined for almost every game, see

25



Harsanyi (1975), this implies that the algorithm converges to the linear tracing procedure

in the Hausdorff sense for almost all games.
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