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Characterizations of a Multi-Choice Value1
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2
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Department of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,

The Netherlands.
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Abstract: A multi-choice game is a generalization of a cooperative game in which each
player has several activity levels. This note provides several characterizations of the
extended Shapley value as proposed by Derks and Peters (1993). Three characterizations
are based on balanced contributions properties, inspired by Myerson (1980).
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1 Introduction

Multi-choice games were introduced by Hsiao and Raghavan (1993). A multi-choice game
is a cooperative game in which each player has a certain number of activity levels at which
he can choose to play. The reward that a group of players can obtain depends on the
efforts of the cooperating players.

Hsiao and Raghavan (1993) considered games in which all players have the same
number of activity levels. We allow for different numbers of activity levels for different
players. Several concepts from TU-games can be extended to the setting of multi-choice
games in a straightforward manner. For instance, straightforward extensions of convexity
and the core solution have been studied by van den Nouweland et al. (1995). For the
Shapley value (see Shapley (1953)), however, there exist several more or less natural
extensions to the setting of multi-choice games. Here we study the extended Shapley
value as proposed by Derks and Peters (1993) and give several characterizations of it.

The work is organized as follows. Section 2 deals with notation, definitions, and the
formal description of our model. In section 3 we discuss several extensions of the Shapley
value to multi-choice games. In section 4 we present the characterizations of the extended
Shapley value as proposed by Derks and Peters (1993).

1We thank Stef Tijs for his comments and suggestions.
2Corresponding author. E-mail: F.Klijn@kub.nl.
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2 The model

Let N = {1, . . . , n} be a set of players. Suppose each player i ∈ N has mi levels at
which he can actively participate. Let m = (m1, . . . ,mn) be the vector that describes
the number of activity levels for every player. We set Mi := {0, . . . ,mi} as the action
space of player i ∈ N , where the action 0 means not participating. Let M :=

∏
i∈NMi be

the product set of the action spaces. A characteristic function is a function v : M → IR
which assigns to each coalition s = (s1, . . . , sn) the worth that the players can obtain
when each player i plays at activity level si ∈ Mi with v(0) = 0. A multi-choice game is
given by a triple (N,m, v). If no confusion can arise a game (N,m, v) will be denoted by
its characteristic function v. Let us denote the class of multi-choice games with player set
N and activity level vector m by MCN,m, and the class of all multi-choice games by MC.
Clearly, the class of ordinary TU-games is a subclass of the class of multi-choice games,
because a TU-game can be viewed as a multi-choice game in which every player has two
activity levels, participate and not participate.

3 Multi-choice values

We will now discuss several solutions on MC that are extensions of the Shapley val-
ue. For i ∈ N , let M+

i := Mi\{0}. Further, let M+ := ∪i∈N ({i} ×M+
i ). A solution

on MC is a map Ψ assigning to each multi-choice game (N,m, v) ∈ MC an element

Ψ(N,m, v) ∈ IRM+

. As is pointed out in van den Nouweland (1993) there exists more
than one reasonable extension of the definition of the Shapley value for TU-games to
multi-choice games. The first extension of the Shapley value was introduced by Hsiao
and Raghavan (1993). They restricted themselves to multi-choice games where all play-
ers have the same number of activity levels and defined Shapley values using weights on
the actions, thereby extending ideas of weighted Shapley values (cf. Kalai and Samet
(1988)). Another extension of the Shapley value was introduced by van den Nouweland et
al. (1995). They define the extended Shapley value as the average of all marginal vectors
that correspond to admissible orders for the multi-choice game. Calvo and Santos (1997)
study this value and focus on total payoff instead of payoff per level. Here we will consider
a third extension, the value as proposed by Derks and Peters (1993). For this, let us start
with some additional notation.

The analogue of unanimity games for multi-choice games are minimal effort games
(N,m, us) ∈ MCN,m, where s ∈

∏
i∈NMi, defined by

us(t) :=

{
1 if ti ≥ si for all i ∈ N ;
0 otherwise

for all t ∈
∏
i∈NMi. One can prove that the minimal effort games form a basis of the space

MCN,m, and that for a multi-choice game (N,m, v) it holds that

v =
∑

s∈
∏
i∈N

Mi

∆v(s)us,

2



where the ∆v(s) are the extended dividends defined by

∆v(0) := 0 and

∆v(s) := v(s)−
∑

t≤s,t 6=s

∆v(t) for s 6= 0.

Now we can go on to the extension of the Shapley value of Derks and Peters (1993).
For a multi-choice game (N,m, v) ∈MCN,m the value Θ(N,m, v) of Derks and Peters

(1993) is given by

Θij(N,m, v) :=
∑

s∈
∏
k∈N

Mk:si≥j

∆v(s)∑
k∈N sk

(1)

for all (i, j) ∈M+. So, the dividend ∆v(s) is divided equally among the necessary levels.
In fact, this value can be seen as the vector of marginal contributions of the pairs

(i, j) ∈ M+. Let us point this out formally. For this, we may suppose that M+ 6= ∅. An
order for a multi-choice game (N,m, v) is a bijection σ : M+ → {1, . . . ,

∑
i∈N mi}. The

subset σ−1({1, . . . , k}) of M+, which is present after k steps according to σ, is denoted

by Sσ,k. The marginal vector wσ ∈ IRM+

corresponding to σ is defined by

wσij := v
(
ρ(Sσ,σ(i,j))

)
− v

(
ρ(Sσ,σ(i,j)−1)

)
(2)

for all (i, j) ∈M+. Here ρ is the map that assigns to every subset S ⊆M+ the maximal
feasible coalition ρ(S) that is a ‘subset’ of S. Formally, for S ⊆M+,

ρ(S) := (t1, . . . , tn),

where

ti =

{
max{k ∈M+

i : (i, 1), . . . , (i, k) ∈ S} if (i, 1) ∈ S;
0 otherwise.

Now, define

Λij(N,m, v) :=
1

(
∑
k∈N mk)!

∑
σ

wσij (3)

for all (i, j) ∈ M+. The number Λij(N,m, v) is the marginal contribution of the pair
(i, j) ∈ M+ to the maximal feasible coalition. In fact, the number Λij(N,m, v) is e-
qual to the Shapley payoff of player (i, j) in the ordinary TU-game (M+, v̄), where the
characteristic function v̄ is defined by

v̄(T ) := v(ρ(T )) for all T ⊆M+.

One can prove that a multi-choice game (N,m, v) is convex3 if and only if the TU-game
(M+, v̄) is convex.

3A multi-choice game (N,m, v) is said to be convex if v(s ∨ t) + v(s ∧ t) ≥ v(s) + v(t) for all s, t ∈∏
k∈NMk, where (s ∧ t)i := min{si, ti} and (s ∨ t)i := max{si, ti} for all i ∈ N . For ordinary TU-games

this definition is equivalent to the usual one.
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It is not difficult to see that for a minimal effort game (N,m, us) we have

Θij(N,m, us) = Λij(N,m, us) =

{ 1∑
k∈N

sk
if j ≤ si;

0 otherwise
(4)

for all (i, j) ∈M+. From this and the linearity of both Λ and Θ it follows that Λ = Θ.
The following example shows that in some situations the extension of the Shapley

value by Derks and Peters (1993) seems to be more appropriate than the extension of the
Shapley value by van den Nouweland et al. (1995). Further, it illustrates why the players
may be interested in the payoff for each level, not solely the sum of their levels, which is
the case in Calvo and Santos (1997).

Example 3.1 Consider the following cost allocation problem related to airlines. Suppose
there is an airline with several divisions, where each division has available a finite number
of sizes of planes. Suppose further that each division has to perform a flight schedule, and
therefore has to decide which sizes of planes it will use. Then the airline builds the smallest
runway that suffices for the largest planes chosen by the divisions. The costs depend on
the length of the runway. The question now arises how to allocate the forthcoming costs
among the divisions.

For example, consider the situation of an airline with two divisions, a passenger division
(division 1) and a cargo division (division 2). Suppose further that the company possesses
small planes and large planes. The small planes need a runway of length 1 and are suitable
for passengers as well as for cargo. The large planes need a runway of length 2 and can
only carry cargo. Suppose also that the costs of a runway of length l (l = 1, 2) are l.
To solve the problem, we model this situation as a multi-choice game and consider the
multi-choice values.

We model this situation as a multi-choice game as follows. Let N = {1, 2} be the set
of players, i.e. the divisions. Let m = (1, 2) be the activity levels from which the players
can choose, i.e. the sizes of the available planes. Now, the game (N,m, c), where c is the
cost function defined by c := u(0,1) + u(1,0)− u(1,1) + u(0,2), models the situation above.

The value of Derks and Peters (1993) gives Θ1,1(N,m, c) = 1
2
, Θ2,1(N,m, c) = 1,

and Θ2,2(N,m, us) = 1
2
, while the value Γ of van den Nouweland et al. (1995) gives

Γ1,1(N,m, c) = 1
3
,Γ2,1(N,m, c) = 2

3
, and Γ2,2(N,m, c) = 1.

Now suppose that instead of modeling that division 1 has no possibility to use larger
planes, we model the situation by allowing it to use 0 large planes. So, if they use all their
large planes there will be no effect on the costs. Formally, the cost function c remains
unchanged, but the vector of activity levels changes tom′ = (2, 2). Some calculations yield
Θ1,1(N,m′, c) = Γ1,1(N,m′, c) = 1

2
,Θ1,2(N,m′, c) = Γ1,2(N,m′, c) = 0,Θ2,1(N,m′, c) =

Γ2,1(N,m′, c) = 1, and Θ2,2(N,m′, c) = Γ2,2(N,m′, c) = 1
2
. We see that the value of van

den Nouweland et al. (1995) has a serious drawback in this example, since division 1 has
to pay for being allowed to choose larger planes, although it does not use these planes.

Finally, note that the determination of costs per plane size can be an aid in cost
allocation within the divisions. �
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4 Characterizations

In this section we recall one characterization of the extended Shapley value by Derks and
Peters (1993), and provide four other characterizations. Therefore, consider the following
properties of solutions on MC. A solution Ψ on MC satifies

• efficiency (EFF) if for all games (N,m, v) ∈ MC:

∑
i∈N

mi∑
j=1

Ψij(N,m, v) = v(m).

• strong monotonicity (SMON) if for all games (N,m, v) and (N,m,w) ∈MC, when-
ever (i, j) ∈M+ is such that for all s ∈

∏
k∈N Mk with si = j

v(s)− v(t) ≥ w(s) −w(t),

where t ∈
∏
k∈NMk is such that tk = sk if k 6= i and ti = si − 1, then

Ψij(N,m, v) ≥ Ψij(N,m,w).

• the veto property (VETO) if for all games (N,m, v) ∈ MC, and all i1, i2 ∈ N ,
whenever j1 ∈M

+
i1 , and j2 ∈M

+
i2 are veto levels, then

Ψi1j1(N,m, v) = Ψi2j2(N,m, v).

Here, j ∈M+
i is a veto level if v(s) = 0 for all s ∈

∏
k∈NMk with si < j.

Property (SMON) says that if for two games (N,m, v) and (N,m,w) ∈MC and a player
i ∈ N it holds that the marginal contribution of level j ∈ M+

i in the game (N,m, v)
is not smaller than the marginal contribution in the game (N,m,w), then the payoff to
level j ∈M+

i in the game (N,m, v) is not smaller than the payoff in the game (N,m,w).
Property (VETO) says that for a game (N,m, v) ∈ MC the payoffs to all players i ∈ N
and levels j ∈ M+

i that have veto power (i.e. a level of player i less than j yields worth
0, independent of the levels of the other players) should be equal. The following theorem
can be found in van den Nouweland (1993).

Theorem 4.1 A solution Ψ satisfies (EFF), (SMON), and (VETO) if and only if Ψ = Θ.

Inspired by theorem 4.1 we will provide a characterization of Θ using the following
properties. A solution Ψ on MC satifies

• additivity (ADD) if for all games (N,m, v), (N,m,w) ∈MC:

Ψ(N,m, v + w) = Ψ(N,m, v) + Ψ(N,m,w).
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• the dummy property (DUM) if for all games (N,m, v) ∈MC, and all i ∈ N , when-
ever j ∈M+

i is a dummy level, then

Ψij(N,m, v) = 0.

Here, j ∈ M+
i is a dummy level if v(s−i, j − 1) = v(s−i, l) for all s−i ∈

∏
k∈N\{i}Mk

and all j ≤ l ≤ mi.

Next, we prove that by replacing the property (SMON) in theorem 4.1 with (ADD) and
(DUM) we get another characterization. It is readily verified that (SMON) does not imply
(ADD) nor (DUM), and that (ADD) and (DUM) do not imply (SMON).

Theorem 4.2 A solution Ψ satisfies (EFF), (ADD), (VETO), and (DUM) if and only
if Ψ = Θ.

Proof. First we prove that Θ satisfies the properties. Note that (EFF) and (VETO)
follow from theorem 4.1. Property (ADD) follows readily from (1). Finally, Θ satisfies
(DUM) as is easily seen with formulas (2) and (3).

To prove uniqueness, we note that, by additivity, it is sufficient to show that Ψ and Θ
coincide on the class of minimal effort games. Let (N,m, us) be a minimal effort game.
Let i ∈ N . Every level ki ∈M

+
i with ki > si is a dummy level, and therefore, by (DUM),

we have Ψiki(N,m, us) = 0. All other levels ki ∈ M
+
i are veto levels. Then, by (VETO),

we have
Ψiki(N,m, us) = c ∀(i, ki) ∈M

+, ki ≤ si

for some constant c ∈ IR. By (EFF), c = 1∑
k∈N

sk
. Now formula (4) gives Ψij(N,m, us) =

Θij(N,m, us) for all (i, j) ∈M+, which proves the theorem. 2

In the next theorem we present the first of our series of three axiomatic characteri-
zations of the extended Shapley value based on balanced contributions properties. For
i ∈ N , let ei be the i-th unit vector in IRn. A solution Ψ on MC satifies4

• the equal loss property (EL) if for all games (N,m, v) ∈MC, all (i, k) ∈M+, k 6= mi:

Ψik(N,m, v)−Ψik(N,m− e
i, v) = Ψimi(N,m, v).

• the upper balanced contributions property (UBC) if for all games (N,m, v) ∈ MC,
and all (i,mi), (j,mj) ∈M+, i 6= j:

Ψimi(N,m, v)−Ψimi(N,m− e
j, v) = Ψjmj(N,m, v)−Ψjmj (N,m− e

i, v).

4With a slight abuse of notation we write (N,m′, v) for the restriction of the game (N,m, v) to the
activity levels m′ ∈M .
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The equal loss property and the upper balanced contributions property are inspired by the
balanced contributions property of Myerson (1980). Property (EL) says that whenever a
player gets available a higher activity level the payoff for all original levels changes with
an amount equal to the payoff for the highest level in the new situation. Property (UBC)
says that for every pair i, j of different players the change in payoff for the highest level
of player i when player j gets available a higher activity level is equal to the change in
payoff for the highest level of player j when player i gets available a higher activity level.

Theorem 4.3 A solution Ψ satisfies (EFF), (EL), and (UBC) if and only if Ψ = Θ.

Proof. First we prove that Θ satisfies the properties. By linearity of Θ and theorem
4.1 it is sufficient to prove that all minimal effort games satisfy (EL) and (UBC). Let
(N,m, us) be a minimal effort game.
(EL) Let (i, k) ∈M+. Then

Θik(N,m, us) =

{ 1∑
l∈N

sl
if k ≤ si;

0 if k > si, and

Θik(N,m− e
i, us) =

{ 1∑
l∈N

sl
if k ≤ si < mi;

0 if mi = si or si < k.

Now one easily verifies that Θ indeed satisfies the equalities of (EL).
(UBC) Let (i,mi), (j,mj) ∈M+, i 6= j. Then

Θimi(N,m, us) =

{ 1∑
l∈N

sl
if mi = si;

0 if mi > si, and

Θimi(N,m− e
j, us) =

{ 1∑
l∈N

sl
if mj > sj;

0 if mj = sj.

Similar expressions hold when we interchange i and j. Again, one can check that Θ
satisfies the equalities of (UBC).

To prove uniqueness, suppose there are two solutions, denoted Φ and Ψ, that satisfy
(EFF), (EL), and (UBC). We will prove that Φ = Ψ. The proof is with induction on the
total number of levels

∑
k∈N mk. It is clear that for all multi-choice games (N,m, v) with∑

k∈N mk = 0 we have Φ(N,m, v) = Ψ(N,m, v). Assume that for some p ∈ IR and for all
multi-choice games (N,m, v) with

∑
k∈N mk = p−1 it holds that Φ(N,m, v) = Ψ(N,m, v).

We will prove that Φ and Ψ coincide on the class of multi-choice games (N,m, v) with∑
k∈N mk = p. Let (N,m, v) be a multi-choice game with

∑
k∈N mk = p. Then, by (EL)

and the induction hypothesis, we have for all (i, k) ∈M+, k 6= mi that

Φik(N,m, v)− Φimi(N,m, v) = Φik(N,m− ei, v) =

= Ψik(N,m− ei, v) = Ψik(N,m, v)−Ψimi(N,m, v).
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So,

Φik(N,m, v)−Ψik(N,m, v) = Φimi(N,m, v)−Ψimi(N,m, v) ∀(i, k) ∈M+. (5)

Furthermore, by (UBC) and the induction hypothesis, we have for all (i,mi), (j,mj) ∈
M+, i 6= j that

Φimi(N,m, v)− Φjmj (N,m, v) = Φimi(N,m− e
j, v)− Φjmj (N,m− e

i, v) =

= Ψimi(N,m− e
j, v)−Ψjmj (N,m− e

i, v) =

= Ψimi(N,m, v)−Ψjmj(N,m, v).

So,

Φimi(N,m, v)−Ψimi(N,m, v) = Φjmj (N,m, v)−Ψjmj (N,m, v) ∀(i,mi), (j,mj) ∈M
+. (6)

Combining (5) and (6) yields

Φik(N,m, v)−Ψik(N,m, v) = c ∀(i, k) ∈M+,

for some constant c ∈ IR. Finally, (EFF) gives c = 0, implying that Φ(N,m, v) =
Ψ(N,m, v). 2

We say that a solution Ψ on MC satifies

• the lower balanced contributions property (LBC) if for all games (N,m, v) ∈ MC,
and all (i, 1), (j, 1) ∈ M+, i 6= j:

Ψi1(N,m, v)−Ψi1(N,m−mje
j, v) = Ψj1(N,m, v)−Ψj1(N,m−mie

i, v).

One can characterize the Shapley value by replacing property (UBC) with (LBC) in
theorem 4.3. The proof of the characterization using (LBC) is similar to that of the
characterization using (UBC), and is therefore omitted.

Theorem 4.4 A solution Ψ satisfies (EFF), (EL), and (LBC) if and only if Ψ = Θ.

Consider the following two properties for a solution Ψ on MC.

• the general balanced contributions property (GBC): for all games (N,m, v) ∈ MC,
and all (i, ki), (j, kj) ∈M+, i 6= j:

Ψiki(N,m, v)−Ψiki(N,m− (mj − kj + 1)ej, v) =

Ψjkj (N,m, v)−Ψjkj (N,m− (mi − ki + 1)ei, v).

• the zero game property (ZGP): for all games (N,m, v) ∈ MC with v(s) = 0 for all
s ∈

∏
i∈NMi, and (i, k) ∈M+:

Ψik(N,m, v) = 0.

8



Property (GBC) is a generalization of (UBC) and (LBC): if we take ki = mi and kj = mj

in (GBC) we get (UBC), if we take ki = kj = 1 in (GBC) we get (LBC). Property (ZGP)
is a natural and very weak axiom.

In the next theorem we provide a third balanced contribution characterization of the
extended Shapley value by replacing (EL) and (LBC) with (ZGP) and (GBC) in theorem
4.4. For this, we restrict ourselves to solutions on the subclass of multi-choice games
(N,m, v) for which it holds that whenever v(s) 6= 0, there are two players i, j ∈ N, i 6= j
with si, sj > 0. Let us denote this subclass by MC∗. Note that for a TU-game (N, v)
the condition above boils down to (N, v) being 0-normalized, i.e. v(i) = 0 for all players
i ∈ N .

Theorem 4.5 A solution Ψ on MC∗ satisfies the properties5 (EFF), (ZGP), and (GBC)
if and only if Ψ coincides with Θ on MC∗.

Proof. First we prove that Θ satisfies (GBC). By linearity of Θ it is sufficient to prove
that all minimal effort games satisfy (GBC). Let (N,m, us) be a minimal effort game. Let
(i, ki), (j, kj) ∈M+, i 6= j. Then

Θiki(N,m, us) =

{ 1∑
l∈N

sl
if ki ≤ si;

0 if ki > si, and

Θiki(N,m− (mj − kj + 1)ej, us) =

{ 1∑
l∈N

sl
if ki ≤ si and kj > sj;

0 otherwise.

Similar expressions hold when we interchange i and j. From this it follows that Θ indeed
satisfies (GBC). Further, one easily verifies that if v(s) = 0 for all s ∈

∏
i∈NMi, then

∆v(s) = 0 for all s ∈
∏
i∈NMi. Then, by definition of Θ, Θik(N,m, v) = 0 for all

(i, k) ∈ M+. Hence, Θ satisfies (ZGP). From theorem 4.1 it follows that Θ satisfies
(EFF). Hence, Θ satisfies the properties.

To prove uniqueness, suppose that there are two solutions, denoted Φ and Ψ, that
satisfy (EFF), (ZGP), and (GBC). We will prove that Φ = Ψ. The proof is with induc-
tion on the total number of levels

∑
k∈N mk. It is clear that for all multi-choice games

(N,m, v) ∈ MC∗ with
∑
k∈N mk = 0 we have Φ(N,m, v) = Ψ(N,m, v). Assume that for

some p ≥ 1 and all multi-choice games (N,m, v) ∈ MC∗ with
∑
k∈N mk ≤ p− 1 it holds

that Φ(N,m, v) = Ψ(N,m, v). We will prove that Φ and Psi also coincide on the class
of multi-choice games (N,m, v) ∈ MC∗ with

∑
k∈N mk = p. Let (N,m, v) ∈ MC∗ be a

multi-choice game with
∑
k∈N mk = p. By (GBC) and the induction hypothesis, we have

for all (i, ki), (j, kj) ∈M+, i 6= j that

Φiki(N,m, v)−Φjkj (N,m, v) =

= Φiki(N,m− (mj − kj + 1)ej, v)− Φjkj (N,m− (mi − ki + 1)ei, v) =

= Ψiki(N,m− (mj − kj + 1)ej , v)−Ψjkj(N,m − (mi − ki + 1)ei, v) =

= Ψiki(N,m, v)−Ψjkj (N,m, v),

5Of course, here we also restrict the properties to the subclass MC∗.
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So,
Φiki(N,m, v)−Ψiki(N,m, v) = Φjkj (N,m, v)−Ψjkj (N,m, v)

∀(i, ki), (j, kj) ∈M+, i 6= j
(7)

Let (i,mi) ∈ M+. If there is an agent j 6= i with (j,mj) ∈ M+, then it follows from (7)
that for all k, l ∈M+

i

Φik(N,m, v)−Ψik(N,m, v) = Φj1(N,m, v)−Ψj1(N,m, v) =

= Φil(N,m, v)−Ψil(N,m, v).

If there is not an agent j 6= i with (j,mj) ∈M+, then it follows from (ZGP) and the fact
that (N,m, v) ∈MC∗ that for all k ∈M+

i

Φik(N,m, v) = 0 = Ψik(N,m, v).

Hence, in both cases we have that for all k, l ∈M+
i

Φik(N,m, v)−Ψik(N,m, v) = Φil(N,m, v)−Ψil(N,m, v).

Together with (7) this gives

Φik(N,m, v)−Ψik(N,m, v) = c ∀(i, k) ∈M+,

for some constant c ∈ IR. Finally, (EFF) gives c = 0, implying that Φ(N,m, v) =
Ψ(N,m, v). 2
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