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Abstract

In this paper we study the formation of cooperation structures in superadditive

cooperative TU-games. Cooperation structures are represented by hypergraphs.

The formation process is modelled as a game in strategic form, where the payoffs

are determined according to a weighted (extended) Myerson value. This class of

solution concepts turns out to be the unique class resulting in weighted potential

games. The argmax set of the weighted potential predicts the formation of the

complete structure and structures payoff-equivalent to the complete structure. As

by-products we obtain a representation theorem of weighted potential games in

terms of weighted Shapley values and a characterization of the weighted (extended)

Myerson values.
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1 Introduction

Several recent papers have modelled the distribution of payoffs in a cooperative game

as a two-stage procedure. In the first stage, players decide on the extent and nature of

cooperation with other players. During this period, players cannot enter into binding

agreements of any kind, either on the nature of cooperation or on the subsequent division

of payoffs. In the second period, the payoffs are given by an exogenously given allocation

rule.

Perhaps, the first paper in this area was Hart and Kurz (1983). They analyze a

situation where the first stage consists of a game where strategies of the players are

announcements of players with whom a particular player wants to form a coalition.

Dutta, Nouweland and Tijs (1996) and Qin (1996) focus attention on Myerson’s (1977)

cooperation structures rather than coalition structures. A cooperation structure is a

graph whose vertices are identified with the players. A link between two players means

that the players can carry on meaningful and direct negotiations with each other. These

authors use a strategic game suggested by Myerson (1991), where each player announces

the set of players with whom he or she wants to form a link. Then a link is formed

between players i and j if and only if both i and j want to form a link with each other.

Dutta et al. (1996) show that for a large class of allocation rules, the complete graph is

the unique (up to payoff equivalence) undominated Nash equilibrium or coalition-proof

Nash equilibrium.1

In this paper, we consider the related problem of formation of hypergraphs. In a hyper-

graph the vertices are identified with the players and each edge represents a conference,

that is a subset of players. Direct negotiations between players can only take place with-

in conferences.2 Note that since a graph can be viewed as a special hypergraph in which

each conference is a pair of players, the model in the present paper is a generalization of

the model of Myerson (1991). Our primary focus of interest is to see which hypergraphs

1Aumann and Myerson (1988) consider an alternative formulation where in the first stage, coopera-
tion structures form through a sequential process.

2See Myerson (1980) who proposed the use of hypergraphs to model cooperation possibilities between
players.
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turn out to result from potential maximizing strategies.3 We show that the complete

hypergraph results from a potential maximizing strategy. Conversely, every potential

maximizing strategy results in a cooperation structure which is payoff-equivalent to the

complete hypergraph.

In the process of proving the main result, we also show that under an efficiency

requirement, the only allocation rule which results in a conference formation game being

a weighted potential game is the weighted (extended) Myerson value. We also find a

representation theorem of weighted potential games in terms of weighted Shapley values

and a characterization of the class of weighted (extended) Myerson values.

The plan of this paper is as follows. In section 2 we will show that a non-cooperative

game is a weighted potential game if and only if its payoff function coincides with weight-

ed Shapley values of particular cooperative games indexed by the set of strategy profiles.

Section 3 deals with hypergraph communication situations and provides an axiomatic

characterization of the class of weighted (extended) Myerson values using w-fairness and

component efficiency. Conference formation games are discussed in section 4 and it is

shown that the only solution concepts resulting in a weighted potential game are the

weighted (extended) Myerson values. In section 5 we show that the argmax set of the

weighted potential corresponds to the full cooperation structure and payoff-equivalent

structures. We conclude in section 6.

2 Potential games

In Ui (1996) a representation theorem for potential games is given in terms of the Shapley

value. In this section we will extend the result of Ui (1996) and provide a representation

theorem for weighted potential games in terms of weighted Shapley values. We will first

give some definitions.

A game in strategic form will be denoted by Γ = (N ; (Si)i∈N ; (πi)i∈N), where N =

{1, . . . , n} denotes the player set, Si the strategy space of player i ∈ N , and π = (πi)i∈N

the payoff function which assigns to every strategy-tuple s = (si)i∈N ∈
∏
i∈N Si = S a

3See Monderer and Shapley (1996) who prove various properties of the class of weighted potential
games. See also Rosenthal (1982).
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vector in IRN . For notational convenience we write s−i = (sj)j∈N\{i} and sR = (si)i∈R.

Monderer and Shapley (1996) formally defined the class of weighted potential games.

Let w = (wi)i∈N ∈ IRN
++ be a vector of positive weights. A function Qw :

∏
i∈N Si → IR is

called a w-potential for Γ if for every i ∈ N , every s ∈ S, and every ti ∈ Si it holds that

πi(si, s−i)− πi(ti, s−i) = wi
(
Qw(si, s−i)−Q

w(ti, s−i)
)
. (1)

The game Γ is called a w-potential game if it admits a w-potential. Γ is called a weighted

potential game if Γ is a w-potential game for some weights w ∈ IRN
++.

Monderer and Shapley (1996) point out that the argmax set of a weighted potential

game does not depend on a particular choice of a weighted potential, and hence can be

used as an equilibrium refinement. They also remark that this refinement is supported

by some experimental results.4

The representation theorem in this section is in terms of cooperative games and

weighted Shapley values. A cooperative game is an ordered pair (N, v), where N =

{1, . . . , n} is the set of players, and v is a real-valued function on the family 2N of all

subsets of N with v(∅) = 0. Denote the set of all cooperative games with player set N

by TUN .

Weighted Shapley values can easily be defined using unanimity games. For every

R ⊆ N the unanimity game (N, uR) is defined by5

uR(T ) =

 1 , if R ⊆ T

0 , otherwise
. (2)

Unanimity games were introduced by Shapley (1953). He showed that every cooperative

game can be written as a linear combination of unanimity games in a unique way, v =∑
R⊆N αRuR, where (αR)R⊆N are called the unanimity coordinates of (N, v).

Let w = (wi)i∈N ∈ IRN
++ be a vector of positive weights. For all R ⊆ N define

wR :=
∑
i∈Rwi. The weighted Shapley value Φw of a cooperative game (N, v) ∈ TUN

with unanimity coordinates (αR)R⊆N is then defined by

Φw
i (N, v) =

∑
R⊆N,i∈R

wi
wR

αR. (3)

4Monderer and Shapley (1996) point out that this may be a mere coincidence. See also Van Huyck
et al. (1990) and Crawford (1991).

5R ⊆ T denotes that R is a subset of T , R ⊂ T denotes that R is a strict subset of T .
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To represent weighted potential games in terms of weighted Shapley values we need the

following interaction between cooperative and non-cooperative games.6

Consider a player set N = {1, . . . , n} and strategy space S =
∏
i∈N Si. Assume that

once the players have chosen a strategy profile s ∈ S they face the cooperative game

(N, vs). Furthermore, assume that the players have made a pre-play agreement on the

allocation rule that determines their payoffs for any chosen cooperative game. If the

players have agreed on allocation rule γ this implies that player i obtains γi(N, vs) if

strategy profile s ∈ S is played.

We will restrict ourselves to collections of cooperative games where the value of a

coalition does not depend on the strategies of the players outside this coalition, vs(R) only

depends on sR. This means that we restrict ourselves to the following set of collections

of cooperative games:

GN,S :=
{
{(N, vs)}s∈S ∈ (TUN)S | vs(R) = vt(R) if sR = tR for all s, t ∈ S, R ⊆ N

}
.

(4)

Denote the unanimity coordinates of the game vs by (αsR)R⊆N . It can be shown that the

condition in definition (4) can be rewritten in terms of these unanimity coordinates,

GN,S =
{
{(N, vs)}s∈S ∈ (TUN )S | αsR = αtR if sR = tR for all s, t ∈ S, R ⊆ N

}
. (5)

We can now state the main result of this section, which states that the class of

weighted potential games can be represented in terms of weighted Shapley values.7

Theorem 2.1 Let Γ = (N ; (Si)i∈N ; (πi)i∈N) be a game in strategic form and w ∈ IRN
++.

Γ is a w-potential game if and only if there exists {(N, vs)}s∈S ∈ GN,S such that

πi(s) = Φw
i (vs), for all i ∈ N and all s ∈ S. (6)

Proof: First we will prove the if-part of the theorem. Assume there exists {(N, vs)}s∈S ∈

GN,S with πi(s) = Φw
i (vs), for all i ∈ N and s ∈ S. Define

Qw(s) :=
∑

R⊆N,R 6=∅

αsR
wR

. (7)

6Note that we consider weighted potentials for non-cooperative games, as opposed to Hart and Mas-
Colell (1989) who characterize weighted Shapley values using weighted potentials for cooperative games.

7If there is no ambiguity about the underlying player set we will simply write Φw(v) instead of
Φw(N, v).
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We will show that Qw is a w-potential of Γ. Let i ∈ N , s ∈ S, and ti ∈ Si, then

πi(s)− πi(ti, s−i) = Φw
i (vs)− Φw

i (v(ti,s−i))

= wi
∑

R⊆N,i∈R

αsR
wR
− wi

∑
R⊆N,i∈R

α
(ti,s−i)
R

wR

= wi
∑

R⊆N,R 6=∅

αsR
wR
−wi

∑
R⊆N,R 6=∅

α
(ti,s−i)
R

wR

= wi
(
Qw(s)−Qw(ti, s−i)

)
,

where the third equality follows from (5).

To prove the only-if-part assume Γ is a w-potential game, with potential Qw. Define

for all s ∈ S and all R ⊆ N

αsR =


wR
{∑

i∈N

(
πi(s)
wi

)
− (n− 1)Qw(s)

}
, if R = N

wR
{
− πi(s)

wi
+Qw(s)

}
, if R = N\{i}, i ∈ N

0 , otherwise

, (8)

which determine vs =
∑
R⊆N α

s
RuR for all s ∈ S.

We will show that {(N, vs)}s∈S ∈ GN,S. Let R ⊆ N , s, t ∈ S with sR = tR. For R = N

or R with |R| ≤ n− 2 we immediately find that αsR = αtR. It remains to consider R with

|R| = n− 1. Let i ∈ N and R = N\{i} then πi(s)− πi(t) = wi(Qw(s)−Qw(t)) so

αsR = wR
{
−
πi(s)

wi
+Qw(s)

}
= wR

{
−
πi(t)

wi
+Qw(t)

}
= αtR.

So, {(N, vs)}s∈S ∈ GN,S.

Finally, we will show that for all i ∈ N and s ∈ S it holds that Φw
i (vs) = πi(s).

Therefore, let i ∈ N and s ∈ S. Then

Φw
i (vs) = wi

∑
R⊆N,i∈R

αsR
wR

= wi
{ ∑
j∈N

(
πj(s)

wj

)
− (n− 1)Qw(s) +

∑
j∈N,j 6=i

(
−
πj(s)

wj
+Qw(s)

)}

= wi
{πi(s)
wi

}
= πi(s).

This completes the proof. 2
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Note that if Γ is a w-potential game then an associated potential is given by

Qw(s) =
∑
R⊆N,R 6=∅

αsR
wR

for all s ∈ S, where (αsR)R⊆N,s∈S are the unanimity coordinates

of {(N, vs)}s∈S ∈ GN,S for which πi(s) = Φw
i (vs) for all i ∈ N and all s ∈ S.8

3 Networks

In this section we will first introduce hypergraphs. After that we will discuss hypergraph

communication situations and characterize a class of allocation rules for these situations.

A hypergraph is a pair (N,H) with N the player set and H a family of subsets of

N . An element H ∈ H is called a conference. The interpretation of a hypergraph is as

follows: communication between players in a hypergraph can only take place within a

conference. Furthermore, communication via this conference cannot take place between

a proper subset of this conference, i.e. all players of the conference have to participate

in the communication. Note that a hypergraph is a generalization of a graph, which

consists only of conferences with exactly two players.

Next we consider hypergraph communication situations, first introduced by Myerson

(1980). Formally, a hypergraph communication situation is a triple (N, v,H), where

(N, v) is a cooperative game and (N,H) a hypergraph. By assuming that every player can

communicate with himself we can restrict our attention to hypergraphs (N,H) with H ⊆

{H ∈ 2N | |H| ≥ 2}. We will denote the class of all these hypergraph communication

situations with player set N by HCSN .

In a hypergraph communication situation a coalition S ⊆ N can effect communication

in conferences in H(S) := {H ∈ H | H ⊆ S}. Further we define interaction sets of

(S,H(S)):

1. every {i} ⊆ S is an interaction set.

2. every H ∈ H(S) is an interaction set.

3. if T1 and T2 are interaction sets with T1∩T2 6= ∅, then T1∪T2 is an interaction set.

8It holds that Qw(s) = Pw(N, vs), where Pw denotes the weighted potential for cooperative games
as used in the characterization of the weighted Shapley values by Hart and Mas-Colell (1989).
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We call a set T ⊆ S an interaction component of S if T is an interaction set of (S,H(S))

and there exists no interaction set T ′ of (S,H(S)) with T ⊂ T ′. We will denote the

resulting partition of S in interaction components by S/H.

Conform this partition we define the value of coalition S ⊆ N in (N, v,H) by

vH(S) :=
∑

C∈S/H

v(C).

We call (N, vH) the hypergraph-restricted game. An allocation rule γ is a function

that assigns to every (N, v,H) ∈ HCSN an element of IRN . If there is no ambiguity

about the game (N, v) we will write γ(H) instead of γ(N, v,H). For a positive weight-

vector w = (wi)i∈N ∈ IRN
++ the weighted (extended) Myerson value, µw, is the allocation

rule which assigns to every (N, v,H) the w-weighted Shapley value of the hypergraph-

restricted game (N, vH),

µw(N, v,H) := Φw(N, vH).

We will characterize the w-weighted (extended) Myerson value by two properties, com-

ponent efficiency and w-fairness. Consider for an allocation rule γ these two properties:

Component efficiency: For all hypergraph communication situations (N, v,H) ∈

HCSN it holds for all C ∈ N/H:

∑
i∈C

γi(H) = v(C).

w-Fairness: For all (N, v,H) ∈ HCSN , all H ⊆ N and all i, j ∈ H

1

wi

(
γi(H) − γi(H\{H})

)
=

1

wj

(
γj(H) − γj(H\{H})

)
.

Component efficiency states that the players in an interaction component divide the

value v(C) amongst themselves. The property w-fairness is an extension of the fairness

property of Myerson (1980), who characterized the (extended) Myerson value by the

properties component efficiency and fairness.

The following lemma shows that the w-weighted (extended) Myerson value satisfies

the two properties component efficiency and w-fairness. In the proof we use some results

of Kalai and Samet (1988). They showed that the w-weighted Shapley value satisfies the
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dummy property, additivity, and partnership consistency. The dummy property states

that Φw
i (N, v) = v({i}) for all (N, v) with v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N\{i}.

Additivity states that Φw(N, v + z) = Φw(N, v) + Φw(N, z) for all cooperative games

(N, v) and (N, z). To describe partnership consistency we need the notion of partnership.

A coalition S ⊆ N is a partnership in (N, v) if for all T ⊂ S and all R ⊆ N\S,

v(R ∪ T ) = v(R). Partnership consistency of Φw states that for every partnership S in

(N, v) it holds that

Φw
i (v) = Φw

i (Φw
S (v) uS) , for every i ∈ S,

where Φw
S (v) =

∑
j∈S Φw

j (v).

Lemma 3.1 The w-weighted (extended) Myerson value, µw, satisfies component effi-

ciency and w-fairness.

Proof: First we will show that µw satisfies component efficiency. Let (N, v,H) ∈ HCSN

and C an interaction component of (N,H). We define two games (N, vC) and (N, vN\C).

For all T ⊆ N let

vC(T ) := vH(T ∩ C),

vN\C(T ) := vH(T\C).

Since C is an interaction component of (N,H) it holds that vH = vC + vN\C. Since all

i ∈ C are dummy players in the game (N, vN\C), we conclude from the dummy player

property of the w-weighted Shapley value, that Φw
i (vN\C) = 0 for all i ∈ C. In the same

way we find for all i ∈ N\C that Φw
i (vC) = 0. Using this and the additivity of the

w-weighted Shapley values we find

∑
i∈C

Φw
i (vH) =

∑
i∈C

Φw
i (vC) +

∑
i∈C

Φw
i (vN\C)

=
∑
i∈C

Φw
i (vC) =

∑
i∈N

Φw
i (vC) = vC(N) = vH(C) = v(C),

where the fourth equality follows from the efficiency of the w-weighted Shapley value.

Secondly, we will show that the w-weighted (extended) Myerson value satisfies w-

fairness. Let (N, v,H) ∈ HCSN and H ∈ H. Define H′ := H\{H} and v′ := vH − vH
′
.
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For all T ⊆ N with H 6⊆ T we then have

v′(T ) =
∑

R∈T/H

v(R)−
∑

R∈T/H′
v(R) = 0

since T/H = T/H′. This means that H is a partnership in v′. From partnership

consistency of Φw, it follows for all i ∈ H that

Φw
i (v′) = Φw

i

( ∑
j∈H

Φw
j (v′)

)
uH

 =
wi∑
j∈H wj

∑
j∈H

Φw
j (v′)


So, for all i, j ∈ H

Φw
i (v′)

wi
=

Φw
j (v′)

wj
.

From this we find

µwi (H) − µwi (H′)

wi
=

Φw
i (v′)

wi
=

Φw
j (v′)

wj
=
µwj (H)− µwj (H′)

wj
,

where the first and third equalities follow from the definition of the game (N, v′) and the

additivity of the w-weighted Shapley values. Hence, µw satisfies w-fairness. 2

The following theorem shows that the w-weighted (extended) Myerson value is the

unique rule that is component efficient and w-fair.

Theorem 3.1 The w-weighted (extended) Myerson value µw is the unique rule that

satisfies component efficiency and w-fairness.

Proof: From lemma 3.1 we know that µw satisfies component efficiency and w-fairness.

We only need to show here that µw is the unique solution concept which satisfies these

properties.

Suppose there are two rules γ1 and γ2 which satisfy component efficiency and w-

fairness. Let (N, v,H) be a communication situation with a minimum number of con-

ferences such that γ1(H) 6= γ2(H). By component efficiency it follows that H 6= ∅. Let

H ∈ H and {i, j} ⊆ H. From w-fairness of γ1 we then find

1

wi

(
γ1
i (H)− γ1

i (H\{H})
)

=
1

wj

(
γ1
j (H)− γ1

j (H\{H})
)
.
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Using this, the minimality of H, and the w-fairness of γ2 respectively, we find

wjγ
1
i (H) −wiγ

1
j (H) = wjγ

1
i (H\{H}) − wiγ

1
j (H\{H})

= wjγ
2
i (H\{H}) − wiγ

2
j (H\{H})

= wjγ
2
i (H) − wiγ

2
j (H).

So
γ1
i (H)− γ2

i (H)

wi
=
γ1
j (H)− γ2

j (H)

wj
.

This expression is valid for all pairs {i, j} for which there exists an H ∈ H with {i, j} ⊆

H. Hence, it is also valid for all pairs {s, t} that are in the same interaction component.

Let C ∈ N/H and i ∈ C. For all j ∈ C we now have

1

wj

(
γ1
j (H) − γ2

j (H)
)

=
1

wi

(
γ1
i (H)− γ2

i (H)
)
.

Let d := 1
wi

(γ1
i (H)− γ2

i (H)). Then for all j ∈ C : γ1
j (H) − γ2

j (H) = wjd. Component

efficiency of γ1 and γ2 gives us

∑
j∈C

γ1
j (H) =

∑
j∈C

γ2
j (H) = v(C).

Thus,

0 =
∑
j∈C

(
γ1
j (H) − γ2

j (H)
)

=
∑
j∈C

wjd.

Since w ∈ IRN
++ it follows that d = 0. Since C was chosen arbitrarily, we conclude that

γ1(H) = γ2(H). 2

4 Network formation

In this section we will model the process that leads to the formation of a conference

structure as a game in strategic form. The game is a generalization of the linking game

as formulated by Myerson (1991) and discussed by Dutta, Nouweland and Tijs (1996).

Furthermore, we will show that in this game, the only component efficient allocation rules

that result in a weighted potential game are the weighted (extended) Myerson values.
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Let γ be an allocation rule and (N, v) a cooperative game. Define the conference

formation game Γ(N, v, γ) determined by the tuple (N ; (Si)i∈N ; (fγi )i∈N ) where for all

i ∈ N

Si := {T | T ⊆ 2N\{i}}

represents the strategy set of player i . A strategy of player i denotes the set of coalitions

player i wants to join to form conferences. A strategy profile s = (s1, . . . , sn) ∈
∏
i∈N Si,

induces a set of conferences H(s) given by

H(s) := {H | |H| ≥ 2; H\{i} ∈ si, i ∈ H}.

The interpretation is that a conference is formed if and only if all players in this conference

are willing to form it. The payoff function fγ = (fγi )i∈N is then defined as the allocation

rule applied to the conference structure formed,

fγ(s) = γ(H(s)).

In case there is no ambiguity about the underlying cooperative game we will simply write

Γ(γ) instead of Γ(N, v, γ). In the remainder we will consider an arbitrary game (N, v).

In order to prove that weighted (extended) Myerson values are the only allocation

rules that are component efficient and that lead to conference formation games which

are weighted potential games, we need two lemmas.

Lemma 4.1 Let γ be an allocation rule and w ∈ IRN
++. If the conference formation

game Γ(γ) is a w-potential game, then for all hypergraphs (N,H), all H ⊆ N and all

i, j ∈ H
1

wi

(
γi(H) − γi(H\{H})

)
=

1

wj

(
γj(H) − γj(H\{H})

)
. (9)

Proof: Since Γ(γ) is a w-potential game, Γ(γ) has a w-potential Pw. We will show that

γ satisfies equation (9).

Let (N,H) be a hypergraph, so (N, v,H) ∈ HCSN . Define for all k ∈ N ,

sk := {H\{k} | H ∈ H, k ∈ H}.
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Then it holds that H(s) = H. Let H ∈ H and i ∈ H, then for all j ∈ H\{i} we get

Pw(si\{H\{i}}, sj, s−ij) = Pw(si\{H\{i}}, sj\{H\{j}}, s−ij)

= Pw(si, sj\{H\{j}}, s−ij),

since the three strategy tuples all result in the formation of the same conferences, the

conferences in H\{H}, and hence, they all result in the same payoffs.

Using this we find for all i, j ∈ H

1

wi

(
γi(H)− γi(H\{H})

)
=

1

wi

(
fγi (s)− fγi (si\{H\{i}}, s−i)

)
= Pw(s)− Pw(si\{H\{i}}, s−i)

= Pw(s)− Pw(sj\{H\{j}}, s−j)

=
1

wj

(
fγj (s)− fγj (sj\{H\{j}}, s−j)

)
=

1

wj

(
γj(H) − γj(H\{H})

)
.

This completes the proof. 2

The following lemma shows that the conference formation game corresponding to

an arbitrary cooperative game with a weighted (extended) Myerson value used as an

allocation rule is a weighted potential game.

Lemma 4.2 The conference formation game Γ(µw) is a w-potential game.

Proof: Consider the following set of cooperative games, indexed by the set of strategy

profiles of Γ(µw), {(N, vH(s))}s∈S. Let R ⊆ N and s = (sR, sN\R) ∈ S. Since vH(s)(R) =∑
C∈R/H(s) v(C) and R/H(s) does not depend on sN\R it follows that vH(s)(R) does not

depend on sN\R. This implies that {(N, vH(s))}s∈S ∈ GN,S. Since fµ
w

i (s) = µwi (H(s)) =

Φw
i (vH(s)) by definition, it follows by theorem 2.1 that Γ(µw) is a w-potential game. 2

If we combine the results of the lemmas above we can prove the next theorem.

Theorem 4.1 Let γ be a solution concept that is component efficient. The conference

formation game Γ(γ) is a weighted potential game if and only if γ coincides with a

weighted (extended) Myerson value for all hypergraphs (N,H).
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Proof: Suppose that the conference formation game Γ(γ) is a weighted potential game.

From lemma 4.1 it follows that there exist weights w for which γ satisfies equation

(9). Since γ is component efficient, it then follows, by the proof of theorem 3.1, that γ

coincides with µw for all hypergraphs (N,H).

The reverse statement follows by lemma 4.2. 2

5 Potential maximizing strategies

In this section we will consider potential maximizing strategies in the conference forma-

tion game Γ(µw). Throughout this section we will assume that the underlying cooperative

game (N, v) is superadditive, i.e. v(R∪ T ) ≥ v(R) + v(T ), for all disjoint R, T ⊆ N . We

will show that the strategy resulting in the complete conference structure, the structure

with all subsets of players in the set of conferences, is a potential maximizing strategy.

Furthermore, we will show that all potential maximizing strategies result in the same

payoff as the strategy corresponding to the full cooperation structure.9

First we need some notation to denote the structures that will result according to the

conference formation game with a weighted (extended) Myerson value used as allocation

rule. Let s = (s1, . . . , sn) be the strategy tuple with si = 2N\{i} for all i ∈ N . This

strategy implies that player i is willing to cooperate with all subsets of the other players.

The corresponding set of conferences will be denoted by H := H(s) = {T ∈ 2N | |T | ≥

2}. A set of conferences H is called essentially complete with regard to solution concept

γ iff H and H are payoff-equivalent, i.e. γ(H) = γ(H). To facilitate the proof of the

main theorem in this section we will first prove two lemmas. The first lemma states

that a player is never worse off forming an additional conference, extending a result of

Myerson (1977).

Lemma 5.1 Let (N, v,H) ∈ HCSN , H ⊆ N and w ∈ IRN
++. For all i ∈ H it holds that

µwi (H∪ {H}) ≥ µwi (H).

9These results generalize analogous results of Qin (1996) who was concerned with Myerson values
and potential games.
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Proof: Let v′ := vH∪{H} − vH. The superadditivity of v implies that v′(R) ≥ 0 for

all R ⊆ N since every component in (N, (H ∪ {H})(R)) is the union of one or more

components in (N,H(R)). For all R with H 6⊆ R it follows that vH∪{H}(R) = vH(R)

and hence v′(R) = 0.

Let i ∈ H. Since v′(R) = 0 for all R ⊆ N\{i} we have

v′(R ∪ {i}) ≥ v′(R), for all R ⊆ N\{i}. (10)

From Weber (1988) it follows that there exists a probability distribution pwi on 2N\{i}

such that

Φw
i (v′) =

∑
R⊆N\{i}

pwi (R)
(
v′(R ∪ {i})− v′(R)

)
. (11)

Combining equations (10) and (11) completes the proof since v′ = vH∪H − vH and Φw

satisfies additivity. 2

The following lemma considers a specific deviation of a player, say i. If player i

deviates to a strategy which is a superset of his original strategy and this deviation does

not influence his payoff, then the payoffs of all the other players remain unchanged as

well.

Lemma 5.2 Let w ∈ IRN
++. Then for all i ∈ N , all s−i ∈ S−i, and all si, s′i ∈ Si with

s′i ⊆ si, it holds that if fµ
w

i (si, s−i) = fµ
w

i (s′i, s−i) then fµ
w

(si, s−i) = fµ
w
(s′i, s−i).

Proof: If H(si, s−i) = H(s′i, s−i), then the statement in the theorem is obviously true.

Otherwise, since s′i ⊆ si there exist k ∈ IN and H1, . . . , Hk ∈ 2N with i ∈ Hj for all

j ∈ {1, . . . k} such that H(si, s−i) = H(s′i, s−i) ∪ {H1, . . . , Hk}. Define H0 := H(s′i, s−i)

and for all j ∈ {1, . . . , k}

Hj := H(s′i, s−i) ∪ {H1, . . . , Hj}.

Since µwi (H0) = µwi (Hk), it follows from lemma 5.1 that µwi (Hj−1) = µwi (Hj) for all

j ∈ {1, . . . , k}.

For j ∈ {1, . . . , k}, define v′ := vHj− vHj−1. Since µwi (Hj) = µwi (Hj−1) it follows from

(10) and (11) that

v′(R ∪ {i}) = v′(R), for all R ⊆ N\{i}, (12)
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since pwi (R) > 0 for all R ⊆ N\{i}.10 Consider an arbitrary l ∈ N\{i} and S ⊆ N\{l}.

Using equation (12) and the fact that v′(T ) = 0 for every T with Hj 6⊆ T we have

v′(R ∪ {l}) = v′((R ∪ {l})\{i}) = 0 (13)

and

v′(R) = v′(R\{i}) = 0. (14)

It follows that Φw
l (v′) = 0 and hence, by the additivity of the weighted Shapley values

that

µwl (Hj) = Φw
l (vHj) = Φw

l (vHj−1) = µwl (Hj−1). (15)

We conclude that

fµ
w

(s′i, s−i) = µw(H0) = µw(H1) = . . . = µw(Hk) = fµ
w

(si, s−i). (16)

This completes the proof. 2

We can now state our main theorem, dealing with the potential maximizers in con-

ference formation games that are weighted potential games.

Theorem 5.1 Let w be a vector of positive weights and let Pw be a weighted po-

tential for the conference formation game H(µw). Then s ∈ argmax Pw. Further, if

t ∈ argmax Pw then H(t) is essentially complete for µw.

Proof: Let i ∈ N , si ∈ Si and s−i ∈ S−i. Define the following conference sets: H1 :=

H(si, s−i) and H2 := H(si, s−i). From si ⊆ si we conclude that H2 ⊆ H1. Furthermore,

note that ifH ∈ H1\H2, then i ∈ H. If we apply lemma 5.1 repeatedly for all H ∈ H1\H2

then

fµ
w

i (si, s−i) = µwi (H1) ≥ µwi (H2) = fµ
w

i (si, s−i). (17)

We conclude that s is a weakly dominant strategy.

Consider the n-tuple of weakly dominant strategies s and an arbitrary n-tuple of

strategies t. Construct a sequence (si)ni=0 with si = (s1, . . . , si, ti+1, . . . , tn). This con-

struction implies that s0 = t and sn = s. Since s is a weakly dominant strategy it holds

10This follows for example from the expression for weighted Shapley values of Kalai and Samet (1988).
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for all i ∈ {0, . . . , n − 1} that µwi+1(H(si+1)) ≥ µwi+1(H(si)), so Pw(si+1) ≥ Pw(si). Thus

Pw(s) = Pw(sn) ≥ Pw(sn−1) ≥ . . . ≥ Pw(s1) ≥ Pw(s0) = Pw(t). (18)

This completes the proof of the first part of the theorem.

Furthermore, since Pw(s) ≥ Pw(t) for all strategy-tuples t ∈ S it follows that if t is

a potential maximizing strategy then Pw(s) = Pw(t). But then every inequality in (18)

has to hold with equality for this strategy-tuple t. Since

Pw(sk)− Pw(sk−1) =
1

wk

(
µwk (H(sk))− µwk (H(sk−1))

)
≥ 0

for all k ∈ {1, . . . , n} it follows that µwk (H(sk)) = µwk (H(sk−1)) for all k ∈ {1, . . . , n}.

From lemma 5.2 we then conclude that µw(H(sk)) = µw(H(sk−1)) for all k ∈ {1, . . . , n}

and hence,

µw(H(t)) = µw(H(s0)) = . . . = µw(H(sn)) = µw(H(s)).

We conclude that if t ∈ argmax Pw then it holds that H(t) is essentially complete for

µw. 2

6 Concluding remarks

In this paper we have extended the model of Myerson (1991), who introduced a strategic

form game that describes a link formation process resulting in a graph. Here we describe

a strategic form game, called the conference formation game, resulting in a hypergraph.

In this paper we restrict ourselves to superadditive games and to conference forma-

tion games that are weighted potential games. It turns out that, under an efficiency

requirement, the class of allocation rules generating conference formation games that are

weighted potential games is the class of weighted (extended) Myerson values. Further-

more, the argmax set of the conference games that are weighted potential games predicts

the formation of the full cooperation structure or a structure that is payoff equivalent to

the full cooperation structure.

Although we concentrated on conference formation games, most of the results in this

paper also hold for the original game of Myerson (1991) dealing with links rather than
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conferences. This is shown in a much more technical way, not using the representation

theorem of section 2, in Dutta, Nouweland and Tijs (1995), a preliminary version of

Dutta et al. (1996).

Our results point in the direction of the formation of a full cooperation structure.

However, if we drop the superadditivity assumption or consider another solution concept,

this need not be the case. Aumann and Myerson (1988) derive different results for a game

where the cooperation structure is formed sequentially rather than simultaneously.
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