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Envy-free Allocations of Indivisible Objects:
an Algorithm and an Application

Flip Klijn�

Department of Econometrics and CentER, Tilburg University,

P.O.Box 90153, 5000 LE Tilburg, The Netherlands

August 5, 1997

Abstract: This paper studies envy-free allocations for economies with indivisible objects,
quasi-linear utility functions, and an amount of money. We give a polynomially bounded
algorithm for finding envy-free allocations. Connectedness of envy-graphs, which are used in
the algorithm, characterizes the extreme points of the polytopes of sidepayments corresponding
with envy-free allocations. As an application, the existence result of envy-free allocations
provides a proof of the total balancedness of permutation games.

Journal of Economic Literature Classification Number: D63
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1 Introduction

In a lot of economic situations a finite number of objects and an amount of money have to be
fairly allocated to a finite set of agents. An allocation assigns to every agent a bundle consisting
of some objects and some amount of money. In this paper we study the class of envy-free
allocations, as introduced by Foley (1967). An allocation is envy-free if everyone likes his own
bundle at least as well as that of anyone else.

A general formulation of the allocation problem for divisible objects has been described by
Varian (1974). He proved the existence of fair allocations (cf. Schmeidler and Yaari (1969)),
i.e. allocations that are Pareto-efficient and envy-free, under the assumption that there are no
weakly Pareto-efficient allocations which all individuals regard as indifferent.

The case with indivisible objects has been addressed by Svensson (1983) and Maskin (1987).
They show that if there is enough money, in a suitable sense, fair allocations exist. A more
general model, one without restrictions on the number of people and objects and that allows for
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undesirable objects and negative amounts of money, has been considered by Alkan, Demange,
and Gale (1991). Their proof of the existence of fair allocations is constructive and can be used
to provide an exponentially bounded algorithm for finding a fair allocation in our quasi-linear
model. The algorithm is based on a result that can be proved from linear programming duality
or by a direct combinatorial argument.

Finally, Aragones (1995) provides a polynomially bounded algorithm that yields envy-free
allocations in economies with the same number of agents as indivisible objects, a fixed amount
of money, and in which every individual has a quasi-linear utility function. It is assumed that
each individual consumes one of the objects and an amount of money. Aragones requires
an initial, arbitrary, Pareto-efficient allocation of the objects. The Pareto-efficient allocation
induces a directed, weighted graph, where nodes correspond with agents, and the weight of an
arc designates the extent to which an agent envies another agent under the allocation. Then, as
Aragones shows, the search for an envy-free allocation reduces to finding a path with maximal
sum of envies starting from each of the nodes. The envy-free allocation that follows is also
Pareto-efficient, since in her model envy-freeness implies Pareto-efficiency.

In this paper, we present another polynomially bounded algorithm that yields an envy-
free allocation for the model of Aragones. Starting with an arbitrary feasible allocation we
construct a directed graph with nodes that correspond with the objects, and arcs that represent
indifference (weak arcs) or strict envy (strong arcs). The algorithm eliminates all of the strong
arcs; consequently, an envy-free allocations results.

The elimination of all of the strong arcs is obtained by two procedures. The first procedure
is applied when there is a cycle containing a strong arc. In this procedure all of the agents in the
cycle are transferred one node in the direction of the cycle, which has the effect that the number
of strong arcs strictly decreases. The second procedure is applied when there is no cycle with a
strong arc. This procedure changes the sidepayments among the agents such that a strong arc
disappears or a cycle with a strong arc appears.

Our algorithm is, just as Aragones’s algorithm, polynomially bounded. A difference, how-
ever, is that Aragones needs a Pareto-efficient initial allocation, while we do not impose any
condition on the initial allocation; but if we do start with a Pareto-efficient allocation of the
objects, the allocation of objects is not changed by the algorithm. Aragones considers directed,
weighted graphs where nodes correspond with agents, and where the weight of an arc designates
the envy of agent towards another agent. By contrast, we consider directed graphs with two
different kinds of arcs and with nodes that correspond with the objects.

For every Pareto-efficient allocation of the objects, the set of sidepayments that give an
envy-free allocation is a polytope. We show that connectedness of the undirected envy-graphs
characterizes the extreme points of these polytopes. It is an easy device to recognize and to
construct extreme envy-free allocations.

As an application of the model, we give a proof of the total balancedness of the class of
permutation games, as introduced by Tijs, Parthasarathy, Potters, and Rajendra Prassad (1984).
Although there are already some proofs, e.g. Tijs et al. (1984) and Curiel and Tijs (1986),
another proof is given, using the existence result of envy-free allocations in our model.

The work is organized as follows. Section 2 deals with definitions and the formal description
of our model. In section 3 the algorithm is presented. Extreme envy-free allocations are con-
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sidered in section 4. Finally, section 5 provides a proof of the total balancedness of permutation
games.

2 Definitions and the model

The model and also most of the notation are the same as in Aragones (1995). An economy is
represented by an ordered pairE = (F;M), whereM is a real number representing the available
amount of an infinitely divisible object, which we call money. F describes the fundamentals of
the economy E and is given by F = (N;Q;U), where N = f1; : : : ; ng is a finite set of agents
and Q = f�1; : : : ; �ng the set of indivisible objects, and U the valuation matrix which will be
defined next. Each agent i 2 N is assumed to be endowed with a quasi-linear utility function
ui : Q� IR! IR:

ui(�j; x) = ui�j + x (�j 2 Q;x 2 IR);

where ui�j can be any real number. The number ui(�j; x) is interpreted as the utility that agent
i 2 N derives when he receives an object �j 2 Q and an amount of money x 2 IR. Now, we
define the valuation matrix U by Uij := ui�j (i; j 2 N ) 1.

For each economy we want to distribute the objects and the money among the agents in a
feasible way, that is, we want each agent i to consume exactly one object �(i) and a certain
amount of money xi such that the sum of money distributed equals the amount of money
available:

Pn
i=1 xi = M . In view of the quasi-linear structure of the utility functions we may

rescale the economy in such a way that, without loss of generality, M = 0. Henceforth, an
economy is given by a triple (N;Q;U). Let E be the collection of all economies. Denote by
�N the class of all bijections N ! Q.

Definition 2.1 A feasible allocation for the economyE = (N;Q;U) is a pair (�; x) 2 �N�IR
n

such that
Pn

i=1 xi = 0.

LetZ(E) be the set of feasible allocations for the economyE. A solution is a correspondence
' : E ! Z(E) that associates with each economy E a non-empty subset '(E) of Z(E). We
are interested in so called envy-free solutions, which satisfy the following notion of equity: no
agent prefers the bundle of any other agent to his own.

Definition 2.2 (Foley (1967)) Let E = (N;Q;U) be an economy. A feasible allocation (�; x) 2

Z(E) is envy-free if

ui�(i) + xi � ui�(j) + xj for all i; j 2 N:

Let F (E) be the set of envy-free allocations of E.
Another property that is often used in the selection of normatively appealing allocations is

Pareto-efficiency. In our quasi-linear model a feasible allocation is Pareto-efficient if and only
if there is no other feasible allocation which makes all agents strictly better off. The proof of
the following proposition is omitted; it can be checked easily.

1The results are also applicable to the situation of fewer objects than agents by introducing null objects (worthless
objects).
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Proposition 2.3 Let E = (N;Q;U) be an economy. A feasible allocation (�; x) 2 Z(E) is
Pareto-efficient if and only if

X
i2N

ui�(i) �
X
i2N

ui�(i) for all � 2 �N : (1)

Let P (E) be the set of Pareto-efficient allocations ofE. Since the requirement is only on the
distribution of objects, we shall say that � 2 �N is Pareto-efficient if condition (1) is satisfied.
The proof of the next result for a more general class of preferences can be found in Svensson
(1983) and Alkan et al. (1991).

Proposition 2.4 For every economy E 2 E , ; 6= F (E) � P (E).

In the next section, we turn to the main result of this paper. We will describe an algorithm
that yields an envy-free (and thus Pareto-efficient) allocation, starting with an arbitrary feasible
allocation.

3 The algorithm

Before we can describe the algorithm, we need to introduce envy-graphs. Given an economy
E = (N;Q;U) and a feasible allocation (�; x) 2 Z(E), we make a directed graphG describing
the envy between the agents in the following way. Let the objects be the nodes of the graph. To
each node � 2 Q we assign the pair (��1(�); x��1(�)), meaning that agent ��1(�) receives the
bundle (�; x��1(�)). Now, we introduce two kinds of directed arcs. There is a directed arc from
node � to node �, � 6= � if the agent corresponding with node �, agent ��1(�), strictly prefers
the bundle corresponding with node � to his own bundle. That is, if

u��1(�)� + x��1(�) > u��1(�)� + x��1(�):

This kind of arc is referred to as a strong arc and will be depicted in the graph as shown in
figure 1.

α β

(σ−1(α), x )
σ−1 (α)

(σ−1(β), x )σ−1 (β)

Figure 1: a strong arc.

The other situation in which two nodes � and � are connected by a directed arc is if agent
��1(�) is indifferent between having the bundle corresponding with node � and having his own
bundle. That is, if

u��1(�)� + x��1(�) = u��1(�)� + x��1(�):
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We refer to this kind of arc as a weak arc and we will depict it in the graph as shown in figure 2.

α β

(σ−1(α), x )
σ−1 (α)

(σ−1(β), x )σ−1 (β)

Figure 2: a weak arc.

The graph G is called an envy-graph. Note that different allocations may yield the same
envy-graph.

Example 3.1 Consider the economy with N = Q = f1; : : : ; 6g and valuation matrix U given
by

U =

2
666666664

1 0 7 6 0 0

4 4 0 0 0 1

0 1 1 7 0 0

1 0 6 6 1 4

0 0 1 6 5 0

1 1 1 0 0 5

3
777777775
:

For instance, U13 = 7 means that agent 1 derives utility 7 when he receives object 3. Figure
3 depicts the envy-graph corresponding to the feasible allocation (�; 0), where �(i) = i for all
i 2 N and 0 = (0; 0; 0; 0; 0; 0). �

6

5 1

2

3

4

(6,0)

(1,0)

(2,0)(4,0)

(5,0)

(3,0)

Figure 3: G, an envy-graph.

Clearly, a feasible allocation is envy-free if and only if the corresponding envy-graph has
no strong arcs. Assume that we have a feasible allocation (�; x) that is not envy-free. Let G
be the envy-graph corresponding with (�; x). We want to eliminate the strong arcs of G, and
maintain feasibility at the same time. For that purpose we introduce two procedures called the
permutation procedure and the sidepayment procedure.
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Let us first describe the permutation procedure. This procedure is applied in case there is
a strong arc in G that is contained in a directed cycle. So, suppose that this is indeed the case
and let c be such a cycle. All of the agents in c are transferred one node in the direction of the
cycle, while all of the other agents and all of the amounts of money are kept in place. Clearly,
the new allocation that we get in this way is still feasible. What is more, lemma 3.2 tells us that
the corresponding envy-graph G� has at least one strong arc less than G.

Lemma 3.2 Let G be an envy-graph. If G contains a cycle with at least one strong arc, then
the permutation procedure applied to this cycle yields an envy-graph G� with at least one strong
arc less than G.

Proof. First, note that arcs from nodes outside the cycle to nodes inside the cycle do not change;
agents’ envy depends only on the bundles, not on the particular agents whom the bundles are
assigned to. Second, it is obvious that arcs between nodes outside the cycle do not change.
Third, the arcs from nodes inside the cycle to nodes outside the cycle weaken. That is, they
may disappear or turn from strong to weak. This follows since the players in the cycle get better
bundles than in the previous situation. Finally, we consider the case of arcs between nodes inside
the cycle. The transfer in the direction of the cycle leads to a weak gain for all of the agents
that correspond with nodes inside the cycle. Hence, the number of agents a particular agent
(strictly) envies does not increase. Note that the agent that corresponds with the starting point
of the considered strong arc in G envies strictly fewer agents after the permutation procedure.
We conclude that there are fewer strong arcs in the new envy-graph G� than in G. 2

Example 3.3 illustrates that also the number of strong arcs from nodes inside the cycle to
nodes outside the cycle may decrease strictly.

Example 3.3 We apply the permutation procedure to the cycle 1 !! 3 ! 2 ! 1 in the graph of
figure 3. This gives the graph depicted in figure 4. Two strong arcs disappear. Note that one
strong arc is a strong arc from a node inside the cycle to a node outside the cycle. �

6

5 1

2

3

4

(6,0)

(2,0)

(3,0)(4,0)

(5,0)

(1,0)

Figure 4: G�, the result of the permutation procedure.
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If the envy-graph G contains strong arcs, but none of them is contained in a cycle, then we
apply the sidepayment procedure. We take a strong arc in G and try to construct a cycle which
contains the strong arc. The construction is based on adding money to and subtracting money
from some specific bundles. It turns out that either this can be done (without getting new strong
arcs), or a strong arc is eliminated.

Let us describe the sidepayment procedure in full detail. Consider a strong arc, from, say,
node � to node �. We label the nodes in the graph, and thus the bundles, as follows. Node �
gets label �, node � gets label 	. Let �Q := Qnf�; �g. A node  2 �Q gets label 	 if there is
a directed path of weak arcs from � to , and it gets label � if there is a directed path of weak
arcs from  to �. Because there is no cycle with a strong arc, it is not possible that a node gets
label 	 as well as label �. The remaining nodes, that have neither label 	 nor label �, get
label�. Let r and s be the number of nodes having label 	 and label�, respectively. Note that
r; s > 0, since � and � get label � and	, respectively. Every bundle with label	 will ‘pay’ an
amount x > 0 of money, and every bundle with label � will ‘get’ an amount y > 0 of money
such that sy = rx. Let x̂ > 0 be the minimum value of x for which a new weak arc emerges.
This minimum exists, because there are only a finite number of agents and because all of the
agents have a quasi-linear utility function. Let ŷ =

rx̂

s
. Clearly, the new allocation is feasible,

since the sum of sidepayments equals sŷ � rx̂ = s rx̂
s
� rx̂ = 0.

The following properties tell us what happens with the envy between the nodes. For
convenience we adopt the following way of speaking. We say, for instance, that the envy of
(	;�) increases, if for every agent corresponding with a node labeled	, we have an increasing
extent of envy with respect to the bundles that are labeled �.

Property 3.4 The sidepayment procedure does not change the envy of (�;�), (	;	), and
(�;�).

Proof. This immediately follows from the fact that equally labeled bundles undergo the same
change of money. 2

Property 3.5 The sidepayment procedure reduces the envy of (�;�), (�;	), and (�;	).

Proof. This follows from the fact that x̂; ŷ > 0 and the fact that �-labeled, 	-labeled, and
�-labeled bundles get a positive, negative, and a zero amount of money, respectively. 2

Property 3.6 The sidepayment procedure increases the envy of (	;�), (	;�), and (�;�).
There emerges, however, no new strong arcs between these nodes.

Proof. The first part is clear. The second follows from the way x̂ is chosen. 2

Note that from property 3.5 it follows that there may disappear a strong arc different from
the strong arc in consideration. This is illustrated in example 3.7.
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Example 3.7 We apply the sidepayment procedure to the strong arc 2 !! 4 in the graph of figure
4. Nodes 1 and 2 get label �, nodes 3 and 4 get label 	 and nodes 5 and 6 get label � (see
figure 5). We find x̂ = 2. The first new weak arc that emerges is the one from node 4 to node 6.
Note that the strong arc 5 !! 4 disappears. The new envy-graph is depicted in figure 6. �

6

5 1

2

3

4

(6,0)

(2,0)

(3,0)(4,0)

(5,0)

(1,0)

6

5 1

2

3

4

(6,0)

(2,2)

(3,2)(4,-2)

(5,0)

(1,-2)

Figure 5: labeling. Figure 6: result of the sidepayment
procedure.

From properties 3.4, 3.5, and 3.6 it follows that in the sidepayment procedure we do not get
any new strong arcs.

If the sidepayment procedure results in a decrease of the number of strong arcs, then we
have a new feasible allocation with at least one strong arc less. If the sidepayment procedure
yields a cycle containing a strong arc, then we can apply the permutation procedure and get a
decrease of the number of strong arcs as well. The following lemma states that one of the two
conditions is satisfied after at most n�1 times of applying the sidepayment procedure to the
strong arc under consideration.

Lemma 3.8 Let G be an envy-graph. If G contains at least one strong arc and if there is no
cycle in G containing a strong arc, then after at most n�1 times of applying the sidepayment
procedure to a fixed strong arc leads either to the elimination of a strong arc, or to the emergence
of a cycle containing a strong arc.

Proof. Consider a strong arc and apply the sidepayment procedure to this strong arc. If a strong
arc turns weak, or if a weak arc from a 	-labeled to a �-labeled node emerges then we are
done. So, suppose this is not the case. Then, by properties 3.4, 3.5, and 3.6, a new weak arc
from a 	-labeled to a �-labeled node or from a �-labeled to a �-labeled node emerges. This
implies that the number of 	-labeled and �-labeled nodes increases strictly. Since there are in
G at most n� 2 nodes that have label �, the lemma follows. 2

We have proved now that the following algorithm yields an envy-free allocation in a finite
number of steps.

Algorithm 3.9 (Envy-free allocation by elimination of strong arcs)
Let a feasible allocation be given. Consider its envy-graph.
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Step 1. If there are no strong arcs, then we have an envy-free allocation. Stop.
Otherwise go to step 2.

Step 2. If there is a cycle containing a strong arc,
then apply the permutation procedure and go to step 1.
Otherwise fix a strong arc and go to step 3.

Step 3. Apply the sidepayment procedure to the fixed arc and go to step 4.
Step 4. If a strong arc is eliminated, go to step 1.

If a cycle with a strong arc appears, go to step 2.
Otherwise go to step 3.

The complete algorithm is illustrated by figure 3 through figure 8.

Example 3.10 We apply the sidepayment procedure to the arc 2 !! 4 in the graph of fig-
ure 6. The result is depicted in figure 7. Now, we apply the permutation procedure to the
cycle 2 !! 4 ! 1 ! 2 in the graph of figure 7. The resulting allocation, which is depict-
ed in figure 8, consists of the allocation of objects � = (3; 2; 4; 1; 5; 6) and sidepayments
x = (�2:4; 2:6;�2:4; 2:6; 0;�0:4). This allocation is envy-free. �

6

5 1

2

3

4

(6,-0.4)

(2,2.6)

(3,2.6)(4,-2.4)

(5,0)

(1,-2.4)

6

5 1

2

3

4

(6,-0.4)

(4,2.6)

(2,2.6)(3,-2.4)

(5,0)

(1,-2.4)

Figure 7 Figure 8: an envy-free allocation.

Finally, we discuss some aspects of the algorithm. To discuss the computational complexity
of the algorithm, let an action be defined as the application of one of the two procedures. We
make the following observations. First, the graph corresponding with the initial allocation has
at most 2

�
n

2

�
strong arcs. Second, it takes at most (n�1) actions to reduce the number of strong

arcs by one. Hence, the total number of actions is at most 2
�
n

2

�
(n� 1) = n(n� 1)

2 ' n3. The
computation of x̂ in the sidepayment procedure requiresO(n2) operations. So, the algorithm is
bounded in a polynomial way.

Once there is a Pareto-efficient allocation of objects, this particular allocation of objects does
not change during the rest of the algorithm. This easily follows from proposition 2.3 and the
fact that whenever an exchange of objects is carried out the sum of utilities increases strictly.
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It is easy to check that the algorithm is still applicable to the model with the more general
utility functions

ui(�j; x) = ui�j + g(x) (i 2 N;�j 2 Q;x 2 IR);

where g : IR! IR is continuous, strictly increasing and satisfies

lim
x!1

g(x) =1 and lim
x!�1

g(x) = �1:

The allocation of objects � of figure 8 is the first allocation of objects in the example that is
Pareto-efficient. Starting with� and sidepayments equal to zero, the algorithm of Aragones gives
the envy-free allocation (�; y), where y = (�2; 3;�2; 3;�1;�1). The vector of sidepayments
y differs from the vector of sidepayments x = (�2:4; 2:6;�2:4; 2:6; 0;�0:4) found by our
algorithm.

4 Extreme envy-free allocations

In this section we will consider the set of envy-free allocations, and show its connection with
the envy-graphs we introduced in the previous section. Every Pareto-efficient allocation of the
objects gives rise to a polytope of sidepayments which generate all envy-free allocations for this
allocation of the objects. We will show that a vector of sidepayments of an envy-free allocation
is an extreme point of the corresponding polytope if and only if the corresponding undirected
envy-graph is connected.

Let us first introduce some additional notation. Let E = (N;Q;U) be an economy. Let
� : N ! Q be a Pareto-efficient allocation of the objects. The set of sidepayments x 2 IR

n for
which (�; x) is an envy-free allocation is denoted by S� � IR

n. We give an explicit expression
for the set S�. For i 2 f1; : : : ; ng, let Ai 2 Mn�[n(n�1)](IR) be the matrix with columns
ei � ej , j 6= i (here, ek is the k-th unit vector in IR

n). Furthermore, let e be the all-one vector
of size n, i.e. e = (1; : : : ; 1)> 2 IR

n. Now we define the matrix A 2 Mn�[n(n�1)+2](IR) by
A := [A1 � � �An e (�e)]. Thus,

A =

2
6666666664

1 � � � 1 �1 0 � � � 0 � � � 0 1 �1

�1 � � � 0 1 1 � � � 1 � � � 0 1 �1

0 � � � 0 0 �1 � � � 0 � � � 0 1 �1

...
. . .

...
...

...
. . .

...
. . .

...
...

...
0 � � � 0 0 0 � � � 0 � � � �1 1 �1

0 � � � �1 0 0 � � � �1 � � � 1 1 �1

3
7777777775
:

For i 2 f1; : : : ; ng, let c�i 2 IR
n�1 be the vector with entries k�ij , j 6= i, where k�ij denotes the

extent to which agent i envies j 6= i under the allocation (�; 0):

k�ij := ui��(j) � ui��(i):

Define b� 2 IR
[n(n�1)+2] by (b�)

>
:= ((c�1)

>
; � � � ; (c�n)

>
; 0; 0). Thus,

(b�)
>
= (k�12; : : : ; k

�
1n; k

�
21; k

�
23; : : : ; k

�
n(n�1); 0; 0):

10



Then,
S�

= fx 2 IR
n
: x>A � (b�)

>
g:

Clearly, S� is a polytope. Let ext(S�
) be the set of its extreme points.

For an envy-graphG corresponding to an envy-free allocation (�; x),we define the undirected
envy-graph �G to be the graph that results when we take the directions out of G. For example,
the undirected envy-graph that results from figure 8 (see example 3.10) is depicted in figure 9.

6

5 1

2

3

4

(6,-0.4)

(4,2.6)

(2,2.6)(3,-2.4)

(5,0)

(1,-2.4)

Figure 9: �G, an undirected envy-graph.

The following theorem shows that it is easy to ascertain whether a sidepayment vector
x 2 IR

n of an envy-free allocation (�; x) is an extreme point of the polytope S� . To prove the
theorem, we need a lemma on the extreme points ofS�. For x 2 S� define tight(�; x) := fAej :

x>Aej = b�j ; 1 � j � n(n+ 1) + 2g, the set of columns that give an equality in x>A � (b�)
>,

and es:tight(�; x) := tight(�; x)nfe;�eg, the set of columns that are essentially tight (the last
two columns of A yield an equality for all x 2 S�). Finally, let W be the subspace of IR

n

spanned by the first n(n� 1) columns of A. Note that W is the orthogonal complement of feg
in IR

n. Without proof the following lemma recalls a well-known result from linear algebra.

Lemma 4.1 Let E = (Q;N;U) be an economy. Let � be a Pareto-efficient allocation of the
objects, and let x 2 S�. Then, the following statements are equivalent.

(i) x 2 ext(S�
)

(ii) tight(�; x) spans IRn

(iii) es:tight(�; x) spans W

We can now prove the following theorem.

Theorem 4.2 Let E = (Q;N;U) be an economy and let (�; x) be an envy-free allocation. The
sidepayment vector x 2 IR

n is an extreme point of the polytope S� if and only if the undirected
envy-graph corresponding with (�; x) is connected.
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Proof. Suppose that for a sidepayment vector x 2 IR
n of an envy-free allocation (�; x) the

corresponding undirected envy-graph is connected. We show that es:tight(�; x) spans W . Let
i; j 2 N , i 6= j. We are done if ei � ej is in the subspace spanned by es:tight(�; x). Since
there is an undirected path in �G from �(i) to �(j) there are p(1); : : : ; p(z) 2 N such that,
ei � ep(1); ep(1) � ep(2); : : : ; ep(z) � ej are in the subspace spanned by es:tight(�; x). Then the
sum of these vectors, ei � ej , is also in the subspace spanned by es:tight(�; x). This proves the
‘if’ part.
To prove the ‘only if’ part, let the sidepayment vector x 2 IR

n of an envy-free allocation (�; x)

be an extreme point of the polytope S� . We show that the corresponding undirected envy-graph
�G is connected. So suppose, to the contrary, that �G is not connected. Then there are i; j 2 N ,
i 6= j for which there is no undirected path from �(i) to �(j). Now, define for every p 2 N

V (p) := f0g [ fek � el 2 es:tight(�; x) : k; l 2 N and there is an undirected path in �G

from �(p) to �(k)g:

Note that if ek � el 2 V (p), then �(k) and �(l) are directly connected in �G. Furthermore, let

~V := f0g [ es:tight(�; x)n(V (i) [ V (j)):

For p 2 N , let W (p) be the linear span of V (p) and let ~W be the linear span of ~V . Since
x 2 ext(S�

), it follows from lemma 4.1 that W = ~W + W (i) + W (j). Hence, there are
~w 2 ~W;wi 2 W (i), and wj 2 W (j) such that ei � ej = ~w + wi

+ wj . Since ~wi = ~wj = wi
j =

w
j
i = 0, it follows that

k ei � wi k =

q
< ei; ei � wi > � < wi; ei � wi >

=

q
< ei; ej + ~w + wj > � < wi; ej + ~w + wj > = 0:

Hence, ei = wi 2 W (i). This implies that there are real numbers�kl (k; l 2 N , (ek�el) 2 W (i))
such that,

ei =
X

(k; l) 2 N2 :

(ek � el) 2 W (i)

�kl(e
k � el): (2)

It follows from (2) that

X
(k; l) 2 N2 :

(ek � el) 2 W (i)

�kl �
X

(l; k) 2 N2 :

(el � ek) 2 W (i)

�lk =

(
0 if k 6= i;
1 if k = i.

(3)

But it also holds that,

X
k 2 N

0
BB@ X

l 2 N :

(ek � el) 2 W (i)

�kl �
X
l 2 N :

(el � ek) 2 W (i)

�lk

1
CCA =

X
(r; s) 2 N2 :

(er � es) 2 W (i)

�rs�
X

(r; s) 2 N2 :

(er � es) 2 W (i)

�rs = 0:

(4)
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Equation (4) contradicts with equation (3). This completes the proof. 2

In the sequel we will say that an envy-free allocation (�; x) is extreme if x 2 ext(S�
).

From theorem 4.2 we learn that the allocation (�; y) at the end of section 3 is extreme,
whereas the allocation (�; x) from example 3.10 is not. In general neither the algorithm of
section 3 nor the algorithm of Aragones generates extreme allocations. However, given an
envy-free allocation (�; x), one can find an extreme point of the corresponding set S� in a
straigthforward manner as follows. For this, suppose that x is not an extreme point of S� . By
theorem 4.2 the corresponding undirected envy-graph �G is not connected. Let Q0 6= Q be one
of the largest maximally connected2 sets of nodes in �G. Again, we use a kind of sidepayment
procedure to get a new envy-free allocation. Every node in QnQ0 will ‘pay’ an amount x > 0 of
money. Every node inQ0 will ‘get’ an amount y > 0 of money such that q0y = (n� q0)x, where
q0 denotes the number of elements in Q0. Since the undirected envy-graph is not connected, we
have q0 < n. Let x̂ > 0 be the minimum value of x for which a new weak arc emerges. This
minimum exists because there are only a finite number of agents and because all of the agents
have a quasi-linear utility function. Let ŷ =

(n�q0)x̂

q0
. Clearly, the new allocation is feasible,

since the sum of sidepayments is

q0ŷ � (n� q0)x̂ = q0
(n � q0)x̂

q0
� (n� q0)x̂ = 0:

Furthermore, the new allocation is still envy-free, and the maximal number of nodes in a
maximally connected set of nodes is increased by at least one. If the new undirected graph
is not connected, we can apply this procedure once more. Since every time that we apply the
procedure the maximal number of nodes in a maximally connected set of nodes is increased by
at least one, it follows that after a finite number of applying the procedure we find an envy-free
allocation (�; z) where z is an extreme point of the set S� . Thus, we have an extension of the
algorithm of section 3 that yields an envy-free allocation (�; z) with z 2 ext(S�

).

Example 4.3 We apply the procedure above to the envy-free allocation (�; x) of example 3.10
(see also figure 9). We have Q0

= f1; 2; 3; 4; 6g. Some calculation gives x̂ = 5ŷ = 1
1
6
, and the

extreme envy-free allocation (�; z) where z = (�2
1
6
; 25

6
;�2

1
6
; 25

6
;�1

1
6
;�1

6
).

We conclude this section with the remark that for a Pareto-efficient allocation � of the objects
and every vector of sidepayments x 2 ext(S�

), there is no vector of sidepayments z 2 S�,
z 6= x for which the allocation (�; z) gives the same undirected envy-graph. This follows from
the connectedness of the undirected envy-graph corresponding with (�; x) and the fact that for
z 2 S� it holds that

P
i2N zi = 0.

5 Permutation games

In this section the existence of envy-free allocations is used to prove that permutation games are
totally balanced. First we recall the definition of permutation games.

2That is, there is no connected set Q00 6= Q0 of nodes in �G such that Q0 � Q00.
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Permutation games, introduced by Tijs, Parthasarathy, Potters, and Rajendra Prassad (1984),
describe a situation in which n persons all have one job to be processed and one machine
on which each job can be processed. No machine is allowed to process more than one job.
Sidepayments between the players are allowed. If player i processes his job on the machine of
player j the processing costs are cij . LetN := f1; : : : ; ng be the set of players. The permutation
game (N; c) with costs cij is the cooperative TU-game defined by

c(;) := 0 and

c(S) := min
�S2�S

X
i2S

ci�S(i) for all S 2 2
Nnf;g;

where �S is the class of all S-permutations and 2
N the collection of all subsets of N .

Tijs et al. (1984) prove, using the Bondareva-Shapley theorem and the Birkhoff-von Neu-
mann theorem on doubly stochastic matrices, that permutation games are totally balanced3.
Curiel and Tijs (1986) give another proof, showing a relation between assignment games and
permutation games. Here we give a proof of the total balancedness of permutation games by
using the existence result of envy-free allocations in the model of section 2.

Theorem 5.1 Permutation games are totally balanced.

Proof. Let a cost matrix C = fcijg 2 Mn�n(IR) be given. Consider the permutation game
(N; c). For every T 2 2

Nnf;g the subgame (T; cT ) of (N; c) is also a permutation game.
Consequently, it is sufficient to prove that (N; c) is balanced.

Let U be the valuation matrix defined by U := �C , and let E be the economy defined by
E := (N;N;U). From 2.4 it follows that there is a pair (�; x) 2 F (E). Define

yi := �ui�(i) � x�(i) + xi for all i 2 N:

Then y := (yi)i2N is a core element. This can be seen rather easily. For the grand coalition N
we haveX

i2N

yi =
X
i2N

(�ui�(i) � x�(i) + xi) =
X
i2S

ui�(i) = min
�N2�N

X
i2N

�ui�N (i) = c(N);

where the last but one equality follows from the Pareto-efficiency of (�; x). For S 2 2
Nnf;g,

with �S 2 �S such that

c(S) = min
�S2�S

X
i2S

�ui�S(i) =
X
i2S

�ui�S(i);

it holds thatX
i2S

yi =
X
i2S

(�ui�(i) � x�(i) + xi) =
X
i2S

(�ui�(i) � x�(i) + x�S(i)) �
X
i2S

�ui�S(i) = c(S);

where the inequality follows from the envy-freeness of (�; x). This proves the theorem. 2

3A cooperative TU-game (N,c) with costs c is totally balanced if every sub-game of (N; c) has a non-empty
core, i.e. for every S 2 2

Nn; there is a vector xS 2 IR
S such that

P
i2T

xSi � c(T ) for all T 2 2
Sn; andP

i2S
xSi = c(S).
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