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Abstract

In this paper, we present a model for an exchange economy which
is an extension of the classical model as introduced by Arrow and
Debreu. In the classical model, there is a finite number of commodi-
ties and a finite number of consumers. The commodities are treated
separately, and so a commodity bundle is an element of the positive
orthant of the Euclidean space IRl, where l is the number of com-
modities. A closer look at Arrow and Debreu’s model shows that this
Euclidean structure is used only indirectly.

Instead of using the Euclidean structure, we allow for just the exis-
tence of commodity bundles, and do not take into consideration indi-
vidual commodities. More specifically, we model the set of all possible
commodity bundles in the exchange economy under consideration, by
a pointed convex cone in a finite-dimensional vector space. This vec-
tor space is used only to define the suitable topological concepts in
the cone, and therefore is not part of the model.

Since we do not consider separate commodities, we do not intro-
duce prices of individual commodities. Instead, we consider price
systems, which attach a positive value to every commodity bundle.
These price systems are modelled by the linear functionals on the vec-
tor space that are positive on the cone of commodity bundles. The set
of price systems is a cone with similar properties as the commodity
cone. More precisely, the price cone is the polar cone of the commodity
cone.

The commodity cone introduces a partial ordering on the commod-
ity bundles and the price systems are compatible with this ordering. If
we take the positive orthant of the Euclidean space IRl as the pointed
convex cone then the partial ordering coincides with the Euclidean
order relation on IRl taken in the classical approach.

In this setting, given a finite number of consumers each with an ini-
tial endowment and a preference relation on the commodity cone, we
prove existence of a Walrasian equilibrium under assumptions which
are essentially the same as the ones in Arrow and Debreu’s model. We
introduce the new concept of equilibrium function on the price system
cone; zeroes of an equilibrium function correspond with equilibrium
price systems. So proving existence of a Walrasian equilibrium comes
down to constructing an equilibrium function with zeroes.
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1 Introduction

1.1 Commodity bundles, price systems

We start with the classical description of an exchange economy in which a
finite number of commodities are available. In this economy, a commodity
bundle is composed of these commodities only, where each commodity is
present in a certain amount. In the classical model of an exchange economy
with k commodities, every commodity bundle is represented by a k-tuple of
non-negative numbers (α1, . . . αk) ∈ (IR+)k. In this representation, αi de-
notes the quantity of units of commodity i where i ∈ {1, . . . , k}. Each of
the bundles e1 = (1, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1) repre-
sents one unit of a particular commodity and the bundles together form the
natural basis to describe any commodity bundle. More precisely, a commod-
ity bundle x is described uniquely as x =

∑k
j=1 αiej and the collection of

commodity bundles can be seen as the positive orthant of the vector space
IRk with {e1, . . . , ek} as its natural basis. The set (IR+)k of all commodity
bundles is called the commodity set and in this set, commodity bundles can
be added and be multiplied with a positive scalar, using the addition and
scalar multiplication defined on IRk.

Commodity bundles are ordered in a natural way. The bundle x is at least
as large as the bundle y if x can be split into two commodity bundles, one
of which equals y, in other words, if x− y is also a commodity bundle. This
corresponds with the natural Euclidean order relation ≥E on IRk defined by

(α1, . . . , αk) ≥E (β1, . . . , βk) if αj ≥ βj for all j ∈ {1, . . . , k}.

The vector space IRk with the Euclidean order relation is a partially or-
dered vector space, i.e., ≥E is reflexive, transitive, anti-symmetric, and both
translation- and scaling-invariant on IRk.

The main goal of this paper is to present a model of a pure exchange economy
in which we assume just the appearence of commodity bundles, and to prove
existence of an equilibrium in this setting. So we leave the classical idea,
as described above, that commodities occur separately. We represent the
collection of all commodity bundles by a subset C of some finite-dimensional
vector space V , where C can be thought of as replacing (IR+)k and V as
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replacing IRk. Since, in this more general vector space model, we still want
to be able to add commodity bundles and multiply any commodity bundle
by a non-negative scalar, the commodity set C has to be closed with respect
to these operations, i.e.,{

∀ x, y ∈ C : x+ y ∈ C
∀ x ∈ C ∀ α ∈ IR+ : αx ∈ C.

Furthermore, we assume that commodity bundles do not cancel out against
each other, i.e.,

∀ x, y ∈ C : x+ y = 0 implies x, y = 0.

Requiring these three properties means that the set C of all commodity bun-
dles is a pointed convex cone.

For the classical situation, where C = (IR+)k, the Euclidean order relation
≥E on IRk can also be described in the following way:

x ≥E y if and only if x− y ∈ (IR+)k.

So, a way to generalise the Euclidean order relation to fit our more general
pure exchange economy model is by imposing the order relation ≥C on V
where ≥C is defined by

x ≥C y if and only if x− y ∈ C.

In the appendix, we present an axiomatic introduction to pointed convex
cones without using the concept of vector space. We show that each pointed
convex cone induces an ordered vector space in which the cone is a total
set. A pointed convex cone is called finite-dimensional if the vector space
induced by it, has a finite dimension. In combination with Section 2, we will
conclude that the concept of ordered vector space and the concept of pointed
convex cone are interchangable. So, the essential feature in our model of an
exchange economy is the use of a pointed convex cone representing the set
of all commodity bundles that are present in the economy. From this cone,
we obtain a vector space which yields the proper topological means to prove
the existence of an equilibrium price system.
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In the classical model of an exchange economy with k commodities, each price
system is modelled by a vector p = (π1, . . . , πk), where each non-negative πj
represents the price of one unit of commodity j. At a given price system
p = (π1, . . . , πk), the value of a commodity bundle x = (α1, . . . , αk) equals
p · x =

∑k
j=1 πjαj. Regarded in this way, a price system p is a non-negative

linear functional on the set of commodity bundles, since it attaches a non-
negative value to every x ∈ (IR+)k. In our model, we do not have separate
commodities and so we cannot speak of the price of a commodity, but only
of the value of a commodity bundle. We model price systems by continuous,
additive functions that map the commodity bundle cone C into IR+, where
f(x) is the value of the commodity bundle x at price system f .
Recall that a function f : C → IR+ is called additive if for all x, y ∈ C and
for all α ≥ 0:

f(x+ y) = f(x) + f(y) and f(αx) = αf(x).

These functions extend to linear functionals on the corresponding vector
space V and establish in this way a pointed convex cone C◦, being the polar
cone of C. Indeed, let V ∗ denote the algebraic dual of V , i.e., the vector space
of all linear functionals on V . As usual we identify V and its bidual V ∗∗,
i.e., we identify x ∈ V with its action f(x) on every f ∈ V ∗. To show this
duality to full advantage, instead of f(x), we write [x, f ] for every f ∈ V ∗

and x ∈ V . With this notation C◦ = {f ∈ V ∗ | ∀ x ∈ C : [x, f ] ≥ 0}.

1.2 Consumers

Consider a model of an exchange economy with a commodity set described
by a pointed convex cone C and with corresponding price system set C◦. The
features of a consumer are a commodity bundle w, called initial endowment,
and a preference relation � defined on C, on the basis of which the consumer
is supposed to make choices. Here, x � y means that the consumer considers
the commodity bundle x to be at least as preferable as bundle y. By x � y,
we mean x � y and ¬(y � x).
The preference relation � on C satisfies reflexivity (x � x), transitivity
((x � y and y � z) imply x � z) and completeness (x � y or y � x). At a
price system p ∈ C◦, a consumer can determine his income, the value [w, p]
of his initial endowment, and therewith his budget set B(p) := {x ∈ C |
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[x, p] ≤ [w, p]} consisting of all bundles that can be afforded by his income at
price system p. Thus, the budget correspondence B : C◦ → 2C is defined by
B(p) = {x ∈ C | [x, p] ≤ [w, p]} for all p ∈ C◦. Given a preference relation �
and a price system p ∈ C◦ the demand set of the consumer is the collection
of all elements of B(p) which are maximal with respect to the preference
relation �. Strict convexity of the preference relation guarantees that the
demand set consists of at most one element. If, in addition, the preference
relation is monotone with respect to the order relation ≥C , then we can
define a function X on a subdomain Dom(X) of C◦, for which the demand
set consists of precisely one element X(p). The function X : Dom(X) → C
thus defined is called the demand function and satisfies [X(p), p] = [w, p] for
all p ∈ Dom(X). In Section 4 we shall prove that if the linear span of C
equals V , Dom(X) equals the set of internal points of C◦.

1.3 Equilibrium

Consider an exchange economy in whichm consumers participate, with initial
endowment wi and preference relation �i for every consumer i ∈ {1, . . . ,m}.
Let Xi : Dom(Xi) → C be the demand function of consumer i, where
i ∈ {1, . . . ,m}. Suppose

⋂m
i=1 Dom(Xi) 6= ∅, and define the total initial

endowment wtotal by wtotal :=
∑m
i=1wi. For every p ∈

⋂m
i=1 Dom(Xi), the total

demand Xtotal(p) at price system p is defined by

Xtotal(p) :=
m∑
i=1

Xi(p).

So, in accordance with the foregoing, if the preference relations are strictly
convex and monotone, Xtotal is a function on Dom(Xtotal) =

⋂m
i=1 Dom(Xi).

The function Xtotal with domain Dom(Xtotal), is said to satisfy Walras’ Law if

[Xtotal(p), p] = [wtotal, p] for all p ∈ Dom(Xtotal).

Preference relations which are stricly convex and monotone guarantee that
Xtotal satisfies Walras’ Law. The main question in an exchange economy is
the existence of a so called equilibrium price system, being a price system
peq 6= 0 in Dom(Xtotal) such that Xtotal(peq) = wtotal.
In the following definition we introduce our concept of equilibrium function,
on the basis of which, in Section 4, we prove existence of an equilibrium price
system.
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Definition of an equilibrium function
Let C◦ be the price system cone, Xtotal the total demand function defined
on Dom(Xtotal), and wtotal the total initial endowment for an economy with
commodity cone C. A function E : Dom(Xtotal) → C◦ is an equilibrium
function if for every p ∈ Dom(Xtotal)\{0} :

E(p) = 0 if and only if Xtotal(p) = wtotal.

The problem of proving existence of an equilibrium price, which we shall
tackle in Section 4, can now be replaced by the problem of finding an equi-
librium function with zeroes in Dom(Xtotal).

So the main theorem of this paper is:

Existence theorem
Let there be given a model of an exchange economy with the following struc-
ture: the commodity bundle set is modelled by a finite dimensional pointed
convex cone C with corresponding order relation ≥C on the vector space
V = span(C); the price system set is modelled by the polar cone of C,
C◦ = {p ∈ V ∗ | ∀ x ∈ C : [x, p] ≥ 0}; m consumers participate in
this exchange economy, each characterised by an initial endowment wi ∈ C
and a continuous, monotone, strictly convex preference relation �i on C,
i ∈ {1, . . . ,m}. If C◦◦ = C and if the total endowment is an interior point
of C, then this model of an exchange economy admits an equilibrium price
system.
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2 Pointed convex cones

2.1 Definition and properties

Although the use of a vector space is not an essential feature in the model
of a pure exchange economy, we assume from the beginning that cones are
subsets of a real vector space V . As mentioned in Section 1, an axiomatic
introduction to pointed convex cones, without the concept of vector space,
is presented in the appendix, at the end of this report. It turns out that a
pointed convex cone can always be regarded as a total subset of a real vector
space V .

Definition 2.1.1 Let S be a subset of V . Let n ∈ IN , x1, . . . , xn ∈ S, and
τ1, . . . , τn ∈ [0, 1] such that

∑n
i=1 τi = 1. Then

∑n
i=1 τixi is called a convex

combination of x1, . . . , xn. The set of all convex combinations of elements
of S is the convex hull of S, denoted by co(S). A set K ⊂ V is convex if
K = co(K).

Notice that the convex hull co(S) of S is the intersection of all convex sets
that contain S.

Definition 2.1.2 A convex subset K ⊂ V is solid if its linear span, denoted
by span(K), equals V .

Definition 2.1.3 A non-empty subset D of V is called a cone if ∀ x ∈
D ∀ α ≥ 0 : αx ∈ D. A cone D is pointed if x ∈ D and − x ∈ D imply x =
0.

Note that the intersection of an arbitrary number of cones in V , is a cone in
V .
A pointed convex cone D is said to be finite-dimensional if the dimension of
span(D) is finite.

Definition 2.1.4 A cone D1 in V is a subcone of D if D1 ⊂ D. For x ∈ D,
x 6= 0, the pointed convex subcone R = {αx | α ≥ 0} of D is called the ray
of D, generated by x.
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Proposition 2.1.5 A subset D1 of a pointed convex cone D is a pointed
convex subcone of D if and only if D1 is closed under addition and scalar
multiplication over IR+.

Definition 2.1.6 For any subset S of V the convex cone span of S, denoted
by ccs(S), is the intersection of all convex cones of V , that contain S. An
element of ccs(S) is called a cone combination of S.

Note that by definition ccs(∅) = {0}.

Proposition 2.1.7 Let S ⊂ V , then

ccs(S) = {x ∈ V | ∃ n ∈ IN ∃ x1, . . . , xn ∈ S ∃ γ1, . . . , γn ∈ IR
+ : x =

n∑
i=1

γixi}.

For every x ∈ D the set ccs({x}) = {αx | α ≥ 0} is called the ray generated
by x.

Definition 2.1.8 A subset S of V is cone dependent if there is an x ∈ S
such that x ∈ ccs(S \ {x}). A set S is cone independent if S is not cone
dependent.

Definition 2.1.9 A cone basis for a convex cone D is a cone independent
set B ⊂ D such that ccs(B) = D. A cone is called finitely generated if it has
a finite cone basis.

Example 1
Consider the following pointed convex cone in IR3:

D1 := {x ∈ R3 | ∃ α1, α2, α3, α4 ≥ 0 :
x = (α1 + α2 − α3 − α4, α1 − α2 + α3 − α4, α1 + α2 + α3 + α4)}.

This cone is finitely generated by the vectors (1, 1, 1), (1,−1, 1), (−1, 1, 1),
and (−1,−1, 1).

Example 2
Define the pointed convex cone D2 in IR3 by:

D2 := {(α1, α2, α3) ∈ R
3 | (α1)2 + (α2)2 ≤ (α3)2 and α3 ≥ 0}.

This cone is not finitely generated, but, as will become clear from the proof
of Theorem 3.2.15, a cone basis for D2 is {(α1, α2, α3) ∈ R3 | (α1)2 + (α2)2 =
1 and α3 = 1}.

7



Lemma 2.1.10 Let B be a cone basis for a pointed convex cone D, let b0 ∈
B, and let α : B → IR+ be a non-negative function on B for which the set
{b ∈ B | α(b) > 0} is finite. If b0 =

∑
b∈B α(b)b then

α(b) =

{
0 if b 6= b0

1 if b = b0.

Proof
Suppose α(b0) > 1 then (1 − α(b0))b0 =

∑
b∈B\{b0} α(b)b ∈ D and (α(b0) −

1)b0 ∈ D because α(b0)− 1 > 0. The cone D is pointed so (1− α(b0))b0 = 0
which is impossible because α(b0) 6= 1 and b0 6= 0.

Suppose α(b0) < 1, then b0 =
∑
b∈B\{b0}

α(b)b
1−α(b0)

. This is impossible since

B is cone independent. We have proved that α(b0) = 1, so we find 0 =
b0 − α(b0)b0 =

∑
b∈B\{b0} α(b)b. Now α(b) must be equal to zero for all

b ∈ B \ {b0} because D is pointed. 2

Note that a cone basis for a pointed convex cone and a linear basis for a vector
space are two quite different concepts. For {e1, . . . , en} being a linear basis for
a vector space V , each x ∈ V can be uniquely written as x =

∑n
i=1 γiei with

γi ∈ IR. However, if B is a cone basis for a pointed convex cone D each x ∈ D
can be written as x =

∑
b∈B α(b)b with α : B → IR+ a non-negative mapping

on B for which the set {b ∈ B | α(b) > 0} is finite. This representation is, in
general, not unique. In fact, we have the following lemma.

Lemma 2.1.11 If the number of elements of a cone basis B of some pointed
convex cone D is higher than the dimension of span(D), then there exists an
element in D which can be described as a positive combination of elements
of B in at least two different ways.

Proof
Let D be a pointed convex cone and let W be the subspace spanned by
D. Let dim(W ) = n and assume B is a cone basis of D with more than
n elements. The set B contains a linear basis {b1, . . . , bn} of W . So there
is bn+1 ∈ B with bn+1 6∈ {b1, . . . , bn} which can be uniquely described as
bn+1 =

∑n
i=1 αibi where at least one αi < 0. Define b :=

∑n
i=1 bi and consider

the convex combination τbn+1 + (1 − τ )b with a fixed τ ∈ (0, 1) so small
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that ταi + (1 − τ ) > 0 for all i ∈ {1, . . . ,m}. We find τbn+1 + (1 − τ )b =∑n
i=1(1− τ )bi + τbn+1 and τbn+1 + (1− τ )b =

∑n
i=1(ταi + (1− τ ))bi. 2

2.2 Extreme sets

In this subsection, we introduce the concept of extreme rays of a pointed
convex cone. We show that a cone basis, whenever it exists, generates all
extreme rays.

Definition 2.2.1 Let K be a convex subset of V . A subset E of K is extreme
in K if for all x1, x2 ∈ K and τ ∈ [0, 1] satisfying τx1 + (1 − τ )x2 ∈ E it
follows that x1, x2 ∈ E. A point e ∈ K for which {e} is extreme is an extreme
point of K.

Notice that E = ∅ and E = K are both extreme sets of K. From the
definition of extreme set we can deduce that the intersection and the union
of a collection of extreme sets of K is again an extreme set of K.

Proposition 2.2.2 Let E be an extreme set of a convex set K1 and let K2

be a convex subset of K1, then E ∩K2 is an extreme set of K2.

Proof
Let x be an element of E ∩K2 and assume x = τx1 + (1− τ )x2 for certain
x1 and x2 in K2, and τ ∈ [0, 1]. Since E is an extreme set of K1 both x1 and
x2 belong to E. We conclude that E ∩K2 is an extreme set of K2. 2

In the following, we investigate the properties of extreme sets of a pointed
convex cone D in V .

Lemma 2.2.3 Every extreme set E of a convex cone D is closed under mul-
tiplication by non-negative scalars, i.e. for all x ∈ E, the ray R := {αx |
α ≥ 0} generated by x is a subset of E.

Proof
Let E be an extreme set of D, let α ≥ 0, and let x be an element of E. If
x = 0 there is nothing to prove, so assume x 6= 0. If α = 0 then αx = 0
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and x = 1
2
0 + 1

2
2x, so 0 (and 2x) ∈ E. Now assume α > 0. Note that x is a

convex combination of αx and 1
α
x:

x =
1

1 + α
(αx) +

α

1 + α
(

1

α
x).

Since E is an extreme set of the cone D, both αx and 1
α
x ∈ E. 2

Corollary 2.2.4 Let D be a convex cone. Then D is pointed if and only if
the zero-vector 0 is the only extreme point of D.

Proof
If e is an extreme point of D, then {e} is an extreme set of D. By the
preceding lemma, the set {e} has to be closed under multiplication by positive
scalars. Only if e = 0, this condition is satisfied. The set {0} is indeed an
extreme set of D because D is pointed and so x+ y = 0 implies x = y = 0
for all x, y ∈ D. 2

Definition 2.2.5 Let D be a pointed convex cone. An extreme set E of D
is an extreme ray if E = ccs({xE}) for some xE 6= 0.

Theorem 2.2.6 Let D be a pointed convex cone. A non-empty convex ex-
treme set E of D is a convex subcone of D.

Proof
In the Lemma 2.2.3 we have already seen that E is closed under non-negative
scalar multiplication. So, in order to prove the theorem we have only to prove
that E is closed under addition. Let x, y ∈ E. The extreme set E is convex,
so 1

2
x + 1

2
y ∈ E. The set E is also closed under scalar multiplication over

IR+, so 2(1
2
x+ 1

2
y) = x+ y ∈ E. 2

We conclude this subsection by showing the relationship between a cone basis
and extreme rays.

Theorem 2.2.7 Suppose a pointed convex cone D has a cone basis B.
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1. Let b0 ∈ B. Then the ray generated by b0 is an extreme ray of D;

2. Let x generate an extreme ray of D. Then there exists λ > 0 such that
λx ∈ B.

Proof
Let α : B → IR+ and β : B → IR+ be two non-negative functions on B with
{b ∈ B | α(b) > 0} and {b ∈ B | β(b) > 0} finite.

1. Let x, y ∈ D satisfy x =
∑
b∈B α(b)b and y =

∑
b∈B β(b)b. Suppose τx+

(1−τ )y ∈ ccs({b0}) for certain τ ∈ (0, 1). Then b0 = λτx+λ(1− τ )y =∑
b∈B λ(τα(b) + (1− τ )β(b))b for certain λ > 0. By Lemma 2.1.10,

λ(τα(b) + (1− τ )β(b)) =

{
0 if b 6= b0

1 if b = b0,

so α(b) = β(b) = 0 for all b 6= b0. In other words x, y ∈ ccs({b0}).

2. Let x be a generator of an extreme ray E satisfying x =
∑
b∈B α(b)b.

Since x 6= 0, we find
∑
b∈B α(b) > 0. Since the vector x is a generator

of E, for all b ∈ B we have α(b) = 0 or b ∈ ccs({x}). Because B
is a cone basis, at most one element of B can be in ccs({x}). Since∑
b∈B α(b) > 0 there is precisely one element b0 ∈ B with α(b0) > 0,

and for all b 6= b0 we have α(b) = 0. Hence λx ∈ B with λ = 1
α(b0)

.

2

Corollary 2.2.8 Let D be a pointed convex cone and let the set of extreme
rays {Ri | i ∈ I} of D be non-empty. If in each extreme ray Ri a generator
xi is chosen, then the set {xi | i ∈ I} is cone independent.

Proof
Assume there is an extreme ray generator x, satisfying x =

∑
i∈I α(i)xi,

where α : I → IR+ and {i ∈ I | α(i) > 0} is finite. Without loss of generality
we may assume

∑
i∈I α(i) = 1. The ray generated by x is extreme in D, so

for all i ∈ I satisfying α(i) > 0 we find xi = x. Hence, {xi | i ∈ I} is cone
independent. 2
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The question whether a cone basis for some pointed convex cone D actually
exists will be answered in Section 3.1, where we shall use a version of the
Krein-Milman theorem in the setting of a finite-dimensional vector space (cf.
[Pani93, p.191]).
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3 Partially ordered vector spaces

3.1 Algebraic considerations

In this subsection we show that each pointed convex cone in a vector space
V induces a partially ordered vector space.

Definition 3.1.1 [ABB89] A partially ordered vector space is a pair (X,≥),
where X is a vector space over IR and ≥ is a relation on X, satisfying
∀ x, y, z ∈ X ∀ α ≥ 0 :

• reflexivity: x ≥ x,

• transitivity: if x ≥ y and y ≥ z, then x ≥ z,

• anti-symmetry: if x ≥ y and y ≥ x, then x = y,

• translation-invariance: if x ≥ y and z ∈ X, then x+ z ≥ y + z,

• scaling-invariance: if x ≥ y, then αx ≥ αy.

Lemma 3.1.2 Let D be a cone in V . Define the order relation ≥D by

x ≥D y :⇐⇒ x− y ∈ D,

then ≥D is reflexive, transitive, and anti-symmetric if and only if D is non-
empty, convex, and pointed, respectively.

Proof
Suppose ≥D is reflexive, then ∀ x ∈ V : x ≥D x or 0 = x − x ∈ D. So D is
non-empty.
Suppose D is non-empty, then 0 ∈ D because D is closed under multiplica-
tion over IR+. Let x ∈ V , then x ≥D x because x− x = 0 ∈ D.

Suppose ≥D is transitive. Let x, y ∈ D and τ ∈ (0, 1). D is a cone so τx ∈ D
and (1− τ )y ∈ D, i.e., τx ≥D 0 and 0 ≥D (τ − 1)y. The order relation ≥D
is transitive, so τx ≥D (τ − 1)y and hence τx+ (1− τ )y ∈ D.
Suppose D is convex and suppose x ≥D y and y ≥D z for some x, y, z ∈ V .
From x−y ∈ D and y−z ∈ D we conclude 1

2
(x−y)+ 1

2
(y−z) = 1

2
(x−z) ∈ D.

13



So x ≥D z.

Suppose ≥D is anti-symmetric and x ∈ V satisfies x ∈ D and −x ∈ D. So
x ≥D 0 and −x ≥D 0, i.e., x = 0. We conclude that D is pointed.
Suppose D is pointed and x ≥D y and y ≥D x for some x, y ∈ V . Then
x− y ∈ D and y − x ∈ D. The cone D is pointed so x− y = 0 or x = y. So
≥D is anti-symmetric. 2

Lemma 3.1.3 Let V be a vector space and D a pointed convex cone in V ,
then (V,≥D) is a partially ordered vector space. Let (X,≥) be a partially
ordered vector space, then D := {x ∈ X | x ≥ 0} is a pointed convex cone.

Definition 3.1.4 An element u of a pointed convex cone D is called an order
unit for D if

∀ y ∈ D ∃ λ(y), µ(y) ≥ 0 : µ(y)u ≤D y ≤D λ(y)u.

Example
Let V be the vector space of all polynomials on [0, 1] with degree at most
equal to 5. Let k > 5 and let xi ∈ [0, 1] be given for every i ∈ {1, . . . , k}.
The set D := {p ∈ V | ∀ i ∈ {1, . . . , k} : p(xi) ≥ 0} is a pointed convex cone
in V .
The order relation ≥D on V is defined by

p ≥D q :⇐⇒ ∀ i ∈ {1, . . . , k} : p(xi)− q(xi) ≥ 0.

Let p0 ∈ V satisfy p0(xi) > 0 for all i ∈ {1, . . . , k}, and for every p ∈ D
define

λ(p) := maxi
p(xi)
p0(xi)

µ(p) := mini
p(xi)
p0(xi)

.

Then, for every p ∈ D, µ(p)p0 ≤D p ≤D λ(p)p0. Hence, p0 is an order unit
for D.

Order units are used in proving the continuity of the total demand function
(cf. Section 1). Existence of order units in a pointed convex cone D satisfying
span(D) = V , will be proved in Lemma 3.2.12.
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To conclude this subsection on some algebraic features of partially ordered
vector spaces, we remark that the model of an exchange economy which
was introduced in Section 1 (and which will be described more precisely in
Section 4.1) is not a special case of the model presented in [ABB89], and
therefore their equilibrium theorem is, in general, not applicable.

In fact, in [ABB89] the commodity-price duality is described by a Riesz
dual system 〈E,E′〉, where the Riesz space E is the commodity space and
the Riesz space E′ is the price space. A Riesz space (or a vector lattice) is a
partially ordered vector space X, which is a lattice at the same time. That is,
a partially ordered vector space (X,≥) is said to be a Riesz space whenever
for every pair of vectors x and y the supremum (least upper bound) and
infimum (greatest lower bound) exist in X. Using standard lattice theory
notation, the supremum and infimum of the set {x, y} will be denoted by
x ∨ y and x ∧ y, respectively. Recall that in a partially ordered vector space
X an element z ∈ X is said to be the supremum of a non-empty subset A of
X whenever

1. a ≤ z holds for each a ∈ A;

2. if a ≤ b holds for all a ∈ A and some b ∈ X, then z ≤ b.

The condition that the commodity space is a Riesz-space is rather restrictive,
although satisfied by the classical situation where X equals IRn with the
Euclidean structure.
In our model of an exchange economy, the commodity bundle set is mod-
elled by the positive cone D of a partially ordered vector space (V,≥D). As
the following example will clarify, a partial order relation ≥D induced by a
pointed convex cone D, does not necessarily induce a lattice structure.

Example
Consider the pointed convex cone D1 defined in Example 1 of Section 2.1:

D1 := {x ∈ IR3 | ∃ α1, . . . , α4 ≥ 0 :
x = α1(1, 1, 1) + α2(1,−1, 1) + α3(−1, 1, 1) + α4(−1,−1, 1)}.

The ordering corresponding with the cone D1 is defined by:

x ≥D1 y ⇐⇒ x− y ∈ D1.
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Let x = (0,−1, 1) ∈ D1 and y = (0, 1, 1) ∈ D1. The collection of all upper
bounds of the set {x, y} is equal to (x+D1) ∩ (y +D1). Since both (1, 0, 2)
and (−1, 0, 2) are elements of this intersection, they are both upper bounds of
{x, y}. After tedious, but elementary calculations one can show that there is
no z ∈ (x+D1)∩(y+D1) such that both z ≤D1 (1, 0, 2) and z ≤D1 (−1, 0, 2),
i.e., there is no least upper bound of {x, y}. We conclude that (IR3,≥D1) is
not a vector lattice.

3.2 Topological considerations

Let V be a finite dimensional real vector space. If, for a basis {e1, . . . , en}
and for every element x =

∑n
i=1 αiei in V , we define ‖ x ‖:=

∑n
i=1 | αi |,

then ‖ . ‖ defines a norm on V . Denote the corresponding linear topology
on V by T (V ). It is well-known that T (V ) is the only topology on V which
is linear. As a consequence all norms in V are equivalent, i.e., they generate
the topology T (V ). Therefore, in the sequel we shall not specify a norm on V .

We recall some elementary notions.

Let S ⊂ V and x, y ∈ V . The complement of S is the set V \ S.
An element x of S is an interior point of S if there is O ∈ T (V ) satisfying
x ∈ O and O ⊂ S. The set of all interior points of S is called the interior of
S and is denoted by int(S). Note that int(S) ∈ T (V ).
An element x of V is an adherent point of S if every O ∈ T (V ) satisfying
x ∈ O contains an element of S. The closure of S, denoted by cl(S), is the
set of all adherent points of S. If S = cl(S), then S is closed.
The set cl(S) ∩ cl(V \ S) is called the boundary of S and is denoted by ∂S.
The set S is bounded if ∀ O ∈ T (V ) ∃ λ > 0 : S ⊂ λO, where λO := {x ∈
V | ∃ y ∈ O : x = λy}. By the Heine-Borel theorem any closed and bounded
set in V is compact.
For any norm ‖ . ‖ in V the dual norm ‖ . ‖∗ is, for every f ∈ V ∗, defined by

‖ f ‖∗ := max{|[x, f ]| :‖ x ‖= 1}.

Recall from Section 1 that for every f ∈ V ∗ and x ∈ V , by [x, f ] we denote
f(x).
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Identifying V and its bidual space (V ∗)∗, i.e., identifying each x ∈ V with
its action f → [x, f ] on V ∗, we have ‖ x ‖= ‖ x ‖∗∗ where ‖ . ‖∗∗ is, for every
x ∈ V , defined by

‖ x ‖∗∗ := max{|[x, f ]| : ‖ f ‖∗ = 1}.

Definition 3.2.1 Let S be a subset of V . The polar set S◦ of S is given by
S◦ = {f ∈ V ∗ | ∀ x ∈ S : [x, f ] ≥ 0}. The bipolar set S◦◦ of a set S ⊂ V is
given by S◦◦ = (S◦)◦ = {x ∈ V | ∀ f ∈ S◦ : [x, f ] ≥ 0}.

Note that for every S ⊂ V , the set S◦ is closed in V . Since we identify V
and V ∗∗, the set S◦◦ is closed in V .

Also, note that our definition of polar set coincides with the one in [Pani93,
p.83] and not with the one in [Conw90, p.126].

Lemma 3.2.2 For every S ⊂ V , S 6= {0} : S◦◦ = cl(ccs(S)).

Proof
Clearly, ccs(S) ⊂ {x ∈ V | ∀ f ∈ S◦ : [x, f ] ≥ 0} = S◦◦. The set S◦◦

is closed in V so cl(ccs(S)) ⊂ S◦◦. Suppose x 6∈ cl(ccs(S)), we shall show
that x 6∈ S◦◦. Because cl(ccs(S)) is closed and convex, by the Hahn-Banach
Theorem [Conw90, p.78], there is a functional f0 ∈ V ∗ such that [x, f0] < 0
and [y, f0] > 0 for all y ∈ cl(ccs(S)). This functional f0 is an element of S◦

and so x 6∈ S◦◦. 2

If S is a finite set, then S◦◦ = ccs(S) (cf. Appendix A.2).
By Lemma 3.2.2, a convex cone D is closed if and only if D◦◦ = D.

Corollary 3.2.3 Let D be a closed convex cone in V . Then for all x, y ∈ V :

x ≥D y if and only if ∀ f ∈ D◦ : [x, f ] ≥ [y, f ].

Lemma 3.2.4 Let D be a solid closed convex cone and let x0 ∈ D. Then
x0 ∈ int(D) if and only if ∀ f ∈ D◦ \ {0} : [x0, f ] > 0.
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Proof
Suppose x0 ∈ int(D) and suppose there exists f ∈ D◦ such that [x0, f ] = 0.
Since x0 ∈ int(D) there is an O ∈ T (V ) satisfying x0 + O ⊂ D. For all
y ∈ O : [y, f ] = [x0 + y, f ] ≥ 0, from which we conclude f = 0.
For the converse, suppose x0 ∈ ∂D. Since D is convex, int(D) is convex, so
by the Weak Separation Theorem of Minkowski ([Pani93, p.60])

∃ f0 ∈ V
∗ ∃ α ∈ IR :

{
∀ λ ≥ 0 : [λx0, f0] ≤ α
∀ x ∈ int(D) : [x, f0] ≥ α.

On the one hand we can choose λ equal to 0, and on the other hand int(D)
contains a sequence of elements converging to 0. So, we find α = 0, and as a
consequence f0 ∈ D◦. By choosing λ equal to 1, we find [x0, f0] ≤ 0 and this
is a contradiction. 2

Lemma 3.2.5 Let D be a solid closed convex cone in V . Then D is pointed
if and only if D◦ has an interior point, i.e.,

∃ f0 ∈ D
◦ ∀ x ∈ D \ {0} : [x, f0] > 0.

Proof
Since 0 is an extreme point of D, the set D \ {0} is convex. The intersection
of D \ {0} and (−D) \ {0} is empty because D is pointed. By the Weak
Separation Theorem of Minkowski ([Pani93, p.60]) there is f0 ∈ V ∗ satisfying
∀ x ∈ D \ {0} : [x, f0] > 0. Conversely, suppose there is an x 6= 0 in D
satisfying −x ∈ D. By Corollary 3.2.3, [x, f ] = 0 for all f ∈ D◦, so D◦ does
not have an interior point. 2

Lemma 3.2.6 Let D be a convex cone in V . Then D is solid if and only if
int(D) 6= ∅.

Proof
Evidently int(D) 6= ∅ implies that D is solid.
Since the linear span of D equals V , D contains a linear basis {e1, . . . , en} of
V . Define x0 :=

∑n
i=1 ei, then x0 is an interior point of D because for every

f ∈ D◦, f 6= 0 : [x0, f ] > 0. 2
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Next, we give a summary of the propositions proved above, and their dual
versions.

Corollary 3.2.7 Let D (and therefore also D◦) be a convex cone. Then

int(D) 6= ∅ ⇐⇒ D is solid,
int(D◦) 6= ∅ ⇐⇒ D◦ is solid.

If, in addition, D is closed then

x ≥D y ⇐⇒ ∀ f ∈ D◦ : [x, f ] ≥ [y, f ],
f ≥D◦ g ⇐⇒ ∀ x ∈ D : [x, f ] ≥ [x, g].

If D is closed and also solid then

D is pointed ⇐⇒ int(D◦) 6= ∅,
x0 ∈ int(D) ⇐⇒ ∀ f ∈ D◦ : [x0, f ] > 0.

If D◦ is (closed and) solid then

D◦ is pointed ⇐⇒ int(D) 6= ∅,
f0 ∈ int(D◦) ⇐⇒ ∀ x ∈ D : [x, f0] > 0.

Theorem 3.2.8 Let D be a closed pointed convex cone in V . For all f ∈
int(D◦), the set {x ∈ D | [x, f ] = 1} is compact.

Proof
The set {x ∈ D | [x, f ] = 1} is closed. We shall prove that it is bounded.
Consider a norm ‖ . ‖ in V . Suppose there is a sequence (xn)n∈IN in
{x ∈ D | [x, f ] = 1} such that ‖ xn ‖→ ∞. The vector space V being

finite-dimensional, the sequence
(

xn
‖xn‖

)
n∈IN

has a convergent subsequence(
xnk
‖xnk‖

)
k∈IN

with certain limit y, ‖ y ‖= 1. Moreover, [ xn
‖xn‖

, f ] → 0. We

conclude that [y, f ] = 0. Since f ∈ int(D◦) we find y = 0. This is a contra-
diction. 2

Corollary 3.2.9 Let D be a pointed convex cone in V . The set {f ∈ D◦ |
[x, f ] = 1} is compact for all x ∈ int(D).
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Theorem 3.2.10 Let S be a subset of a closed pointed convex cone D, let
p0 ∈ int(D◦). Then S is bounded if and only if sup{s ∈ S | [s, p0]} <∞.

Proof
We only prove ” ⇐= ”. Define α := sup{s ∈ S | [s, p0]}, then the set S is a
subset of the compact set {x ∈ D | [x, p0] ≤ α} and therefore bounded. 2

Brouwer’s Fixed Point Theorem [Conw90, p.149]
Let K be a non-empty compact convex subset of a finite-dimensional normed
vector space X and let F : K → K be a continuous function, then there
exists x ∈ K such that F(x) = x, i.e., F has a fixed point in K.

Brouwer’s Fixed Point Theorem has the following consequence for continuous
functions on pointed convex cones.

Theorem 3.2.11 Let D be a closed pointed convex cone in a finite dimen-
sional vector space and let G : D \ {0} → D be a continuous function. Then
there is x ∈ D \ {0} such that G(x) = αx for some α ≥ 0. In fact, for all
f0 ∈ int(D◦) there is x ∈ D such that G(x) = [G(x), f0]x.

Proof
Let f0 ∈ int(D◦). The set K := {x ∈ D | [x, f0] = 1} is non-empty, convex

and compact by Theorem 3.2.8. Define F(x) := x+G(x)
1+[G(x),f0]

for all x ∈ K, then
F : K → K is a continuous function. By the preceding theorem the function
F has a fixed point x in K, so

x = F(x) =
x+ G(x)

1 + [G(x), f0]
,

hence G(x) = [G(x), f0]x. 2

As mentioned in Section 2, we use the concept of order unit to prove that
the demand functions are continuous.

Theorem 3.2.12 Let D be a solid closed pointed convex cone in V . Then
every x0 ∈ int(D) is an order unit for D.
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Proof
By Corollary 3.2.7, int(D) 6= ∅. Let x0 ∈ int(D) and define K := {f ∈ D◦ |
[x0, f ] = 1}. Then D◦ = {αf | f ∈ K and α ≥ 0}, and by Corollary 3.2.9,
K is compact. From Definition 3.1.4 and Corollary 3.2.3 we conclude that
x0 is an order unit if and only if

∀ x ∈ D ∃ λ(x), µ(x) ≥ 0 ∀ f ∈ K : µ(x)[x0, f ] ≤ [x, f ] ≤ λ(x)[x0, f ].

For every x ∈ D define

λ(x) := max{[x, f ] | f ∈ K}
µ(x) := min{[x, f ] | f ∈ K}.

Then µ(x)[x0, f ] ≤ [x, f ] ≤ λ(x)[x0, f ] for all f ∈ K. 2

Observe that from the proof it follows that µ(x) > 0 if and only if x ∈ int(D).

Corollary 3.2.13 Let D be a solid closed pointed convex cone in V , let
x0 ∈ int(D), and let (xn)

n∈IN be a sequence in int(D), with limit x0. Then
there are sequences (λn)

n∈IN and (µn)
n∈IN such that

µnx0 ≤D xn ≤D λnx0 and lim
n→∞

µn = lim
n→∞

λn = 1.

Proof
Take λn = λ(xn) and µn = µ(xn) as in the proof of Theorem 3.2.12. 2

In Section 2.2 we introduced the concept of cone basis, and we left open the
question whether a cone basis actually exists. We shall now prove that any
closed pointed convex cone has a cone basis. In the appendix we shall pay
attention to pointed convex cones with a finite cone basis.

Theorem 3.2.14 (Krein-Milman) (cf. [Pani93, p.191]) Each non-empty
compact convex set K in a finite-dimensional vector space is the convex hull
of its set of extreme points, i.e., K = co(ext(K)).

Theorem 3.2.15 If D is a closed pointed convex cone then D has a cone
basis.
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Proof
By Lemma 3.2.5, int(D◦) 6= ∅. Let f0 ∈ int(D◦), then by Theorem 3.2.8 the
set K := {x ∈ D | [x, f0] = 1} is compact. The set K is also convex, so by
the Krein-Milman Theorem K = co(ext(K)), and therefore D = ccs(K) =
ccs(ext(K)). We shall prove that ext(K) is a cone independent set.

Claim: Every e in ext(K) generates an extreme ray of D.
Proof: Let µ ≥ 0. Take µe = τx1 +(1−τ )x2 for some x1, x2 ∈ D
and τ ∈ (0, 1). If µ = 0 then x1 = x2 = 0 because 0 is an
extreme point of D. So assume µ > 0. If x1 = 0 or x2 = 0
there is nothing to prove, so we assume x1 6= 0 6= x2. Now,
e = τ x1

µ
+ (1− τ )x2

µ
= τy1 + (1− τ )y2 where y1, y2 ∈ D. We shall

prove that y1 and y2 (and therefore also x1 and x2) are elements
of the ray {αe | α ≥ 0} generated by e.

Since 1 = [e, f0] = τ [y1, f0] + (1 − τ )[y2, f0], we can write e =
τ [y1, f0]

y1

[y1,f0]
+ (1− τ )[y2, f0] y2

[y2,f0]
which is a convex combination

of y1

[y1,f0]
and y2

[y2,f0]
, both elements of K.

Conversely, by Proposition 2.2.2, every extreme ray {αx | α ≥ 0} corresponds
with an extreme point α0x of K, where α0 ∈ IR

+ is such that [α0x, f0] = 1.
By Corollary 2.2.8 the set ext(K) is cone independent. SinceK = co(ext(K))
and D = {αa | α ≥ 0 and a ∈ K}, ext(K) is a cone basis in D. 2
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4 A model for a pure exchange economy

4.1 First analysis of the model

In Section 1 we suggested the following model of an exchange economy:

• The commodity bundle set is modelled by a finite-dimensional pointed
convex cone C with corresponding order relation ≥C on the vector
space V = span(C),

• The price system set is modelled by the polar cone of C,

C◦ := {p ∈ V ∗ | ∀ x ∈ C : [x, p] ≥ 0},

• m consumers participate in this exchange economy, each characterised
by an initial endowment wi ∈ C and a preference relation �i on C,
i ∈ {1, . . . ,m}.

The main theorem of this paper, stating existence of an equilibrium price
system, is now presented.

Existence Theorem
Consider the model of an exchange economy, described above. Under the
assumptions that

• C◦◦ = C,

• ∀ p ∈ C◦ \ {0} : [wtotal, p] > 0,

• each preference relation �i is

– continuous: ∀ y ∈ C the sets {x ∈ C | x �i y} and {x ∈ C | y �i
x} are closed in V with respect to the linear toplogy on V ,

– monotone: ∀ x, y ∈ C : x ≥C y implies x �i y,

– strictly convex: ∀ x, y ∈ C, τ ∈ (0, 1) : x �i y and x 6= y imply
τx+ (1− τ )y �i y,

this exchange economy model admits an equilibrium price system.
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The rest of this section is devoted to a proof of this theorem, using the
mathematical results obtained in Sections 2 and 3.
For the definition of the budget correspondence Bi, and the demand func-
tion Xi for every i ∈ {1, . . . ,m}, we refer to Section 1.

Lemma 4.1.1 Let i ∈ {1, . . . ,m}, p ∈ C◦, and x ∈ Bi(p). Assume [wi, p] > 0.
If x �i y holds for all y ∈ C satisfying [y, p] < [wi, p], then x �i y holds for
all y ∈ C satisfying [y, p] ≤ [wi, p].

Proof
Assume x �i y holds for all y ∈ C satisfying [y, p] < [wi, p]. Let y ∈ Bi(p)
satisfy [y, p] = [wi, p]. For all λ ∈ [0, 1) we have [λy, p] < [wi, p] and thus
x �i λy. The preference relation �i being continuous we conclude x �i y. 2

Next we prove that each demand set contains at most one element and we
show that Walras’ Law is valid.

Lemma 4.1.2 Let p ∈ C◦ and i ∈ {1, . . . ,m}. Then the demand set con-
tains at most one element.

Proof
Let p ∈ C◦ and suppose x and y are both elements of the demand set. On
the one hand, the preference relation �i is strictly convex so if x 6= y then
τx + (1 − τ )y �i x for all τ ∈ (0, 1). On the other hand, the budget set
Bi(p) := {z ∈ C | [z, p] ≤ [wi, p]} is convex, whence τx+ (1− τ )y ∈ Bi(p). 2

Corollary 4.1.3 Let y ∈ C and p ∈ Dom(Xi). If y >C Xi(p) then y 6∈ Bi(p).

Proof
Due to the monotony of the preference relation, y >C Xi(p) implies y �i
Xi(p). Since the demand set consists of precisely one element, y �i Xi(p)
and y 6= Xi(p) imply y 6∈ Bi(p). 2
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Lemma 4.1.4 Let i ∈ {1, . . . ,m}. If p ∈ Dom(Xi), then [Xi(p), p] = [wi, p].

Proof
Let x0 ∈ int(C), p ∈ Dom(Xi), and suppose [Xi(p), p] < [wi, p]. Choose λ > 0
such that

1. λx0 >C Xi(p)

2. [λx0, p] > [wi, p].

Consider the convex combination τλx0 +(1−τ )Xi(p) with τ ∈ (0, 1) so small
that [τλx0 + (1− τ )Xi(p), p] ≤ [wi, p]. Then τλx0 + (1− τ )Xi(p) ∈ Bi(p) and
τλx0+(1−τ )Xi(p) >C Xi(p). By Corollary 4.1.3, we come to a contradiction.
2

Recall that on
⋂m
i=1 Dom(Xi) the total demand function Xtotal is defined by

Xtotal(p) :=
∑m
i=1Xi(p). In Lemma 4.2.2 we shall prove that for all i ∈

{1, . . . ,m} it holds that Dom(Xi) = Dom(Xtotal) = int(C◦).

Corollary 4.1.5 (Walras’ Law) ∀ p ∈ Dom(Xtotal) : [Xtotal(p), p] = [wtotal, p].

Proof
Cf. Lemma 4.1.4. 2

Lemma 4.1.6 Let i ∈ {1, . . .m} and let (pn)
n∈IN be a sequence in Dom(Xi)

with limit p. If [wi, p] > 0 and the sequence (Xi(pn))
n∈IN is bounded, then

p ∈ Dom(Xi).

Proof
Let (Xi(pn))

n∈IN be bounded. Then we may assume that the sequence Xi(pn)
is convergent to some x ∈ C. From Xi(pn)→ x and pn → p, we conclude that
x ∈ Bi(p). We show that x is the optimal element of Bi(p). Let y ∈ Bi(p).
By Lemma 4.1.1 we may assume that [y, p] < [wi, p]. The sequence (pn)

n∈IN
converging to p, implies ∃ N ∈ IN ∀ n > N : [y, pn] < [wi, pn], i.e., y ∈ Bi(pn)
and [y, pn] 6= [wi, pn]. Lemma 4.1.4 states that y cannot be an optimal
element of Bi(pn), so Xi(pn) �i y, for all n > N . The sequence (Xi(pn))

n∈IN
converging to x and �i being continuous, we conclude that x �i y. 2
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Lemma 4.1.7 Let p ∈ Dom(Xtotal) satisfy Xtotal(p) ≤C wtotal. Then Xtotal(p) =
wtotal, i.e. p is an equilibrium price system.

Proof
Define y := wtotal−Xtotal(p), then y ∈ C and by Walras’ law, [y, p] = 0. Define
zi := Xi(p) + 1

m
y, then zi ∈ Bi(p), for all i = {1, . . . ,m}. If y were non-zero

then zi >C Xi(p) and so by Corollary 4.1.3 we arrive at a contradiction. 2

As mentioned before, the proof of the existence of an equilibrium price system
can be split into two subproblems (for the concept of equilibrium function
we refer to Section 1):

• Find an equilibrium function E.

• Given this equilibrium function E, find a p ∈ Dom(Xtotal) such that
E(p) = 0.

For the second part we have presented Theorem 3.2.11. Therefore we shall
prove there is an equilibrium function E : C◦ \ {0} → C◦, and then apply
the mentioned theorem for D = C◦.

4.2 Existence of an equilibrium

Let x0 ∈ int(C). Consider the hyperplane H := {p ∈ V ∗ | [x0, p] = 1} of
the dual space V ∗. Let Φ : IRn−1 → H be an affine parametrisation of H.
The set Φ←(H ∩C◦) is compact and convex in IRn−1. Let λ be the standard
Lebesque measure on IRn−1, and let µ be the measure on H induced by Φ
and λ. In particular, for every subset A of H we have µ(A) = λ(Φ←(A)),
and for a vector-valued function f on (a subset of) H, for which f ◦ Φ is
continuous: ∫

A
fdµ =

∫
Φ←(A)

(f ◦ Φ)dλ.

Define the function S0 on Dom(Xtotal) by

S0(p) :=
∫
H∩C◦

max{0, [Xtotal(p), q]− [wtotal, q]}qdµ(q)

=
∫
L

([Xtotal(p), q]− [wtotal, q]) qdµ(q),
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where L := {p ∈ H∩C◦ | [Xtotal(p), q] > [wtotal, q]}. Observe that for each p ∈
Dom(Xtotal), the function q 7→ max{0, [Xtotal(p), q]− [wtotal, q]}q is continuous
and C◦-valued. The set L is open in H ∩C◦ and therefore measurable. From
this we conclude that S0(p) is properly defined for every p ∈ Dom(Xtotal).

Lemma 4.2.1 The function S0 is an equilibrium function.

Proof
Clearly, if p is an equilibrium price system then S0(p) = 0. Now, assume for
some p ∈ Dom(Xtotal) we have S0(p) = 0. Then

0 = [Xtotal(p),S0(p)]− [wtotal,S0(p)]

=
∫
L
([Xtotal(p), q]− [wtotal, q])

2dµ(q).

It follows that µ(L) = 0 and therefore

[Xtotal(p), q] ≤ [wtotal, q] µ-almost everywhere on H ∩ C◦.

Define f on H by f(q) := [Xtotal(p), q] − [wtotal, q] then f ◦ Φ is continuous,
and f ◦Φ ≤ 0 on Φ←((H ∩C◦) \ L) where λ(Φ←(L)) = 0. We conclude that
the continuous function f ◦ Φ ≤ 0 on Φ←(H ∩ C◦) and therefore f ≤ 0 on
H ∩ C◦. Hence, for all q ∈ H ∩ C◦ it holds that [Xtotal(p), q]− [wtotal, q] ≤ 0
and so Xtotal(p) ≤C wtotal (cf. Corollary 3.2.3). 2

Observe that by the preceding proof, Walras’ Law has the following conse-
quence. Let α ≥ 0 and p ∈ Dom(Xtotal), then

S0(p) = αp =⇒ [Xtotal(p),S0(p)]− [wtotal,S0(p)] = 0
⇐⇒ S0(p) = 0.

We want to use Theorem 3.2.11 to prove existence of a p ∈ Dom(Xtotal)
satisfying S0(p) = αp, for some α ≥ 0. This is why we first determine the
domain of the total demand function Xtotal. It turns out that the function
S0 is not defined on the whole of the pointed convex cone C◦. Secondly, we
replace S0 by a related equilibrium function S, defined on the whole of C◦,
and thirdly, we prove continuity of this function S on C◦ \ {0}.

Lemma 4.2.2 ∀ i ∈ {1, . . . ,m} : Dom(Xi) = int(C◦).
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Proof
Let i ∈ {1, . . . ,m}. We have to prove that precisely the elements p of int(C◦)
have the property that the demand set at price system p consists of exactly
one element.

Claim 1: Dom(Xi) ⊇ int(C◦).
Proof: In Section 3 we showed that the budget set Bi(p) is com-
pact for all p ∈ int(C◦). Suppose Bi(p) contains no optimal ele-
ment, i.e. ∀ y ∈ Bi(p) ∃ z ∈ Bi(p) : z�iy. Define for all z ∈ Bi(p)
the set G(z) := {y ∈ Bi(p) | z �i y}. The preference relation �i
is continuous, so everyG(z) is an open set in Bi(p) with repsect to
the relative topology on Bi(p). Since Xi(p) = ∅, every x ∈ Bi(p) is
an element of at least one G(z). The collection {G(z) | z ∈ Bi(p)}
is an open cover of Bi(p) and because Bi(p) is compact, there is
a finite subset Z of Bi(p) such that Bi(p) =

⋃
z∈Z G(z). The

preference relation �i being transitive, Z has an optimal element
z0 ∈ Bi(p). So there is a z1 ∈ Z such that z0 ∈ G(z1) and this is
in contradiction with the optimality of z0. Hence, Xi(p) 6= ∅.

Claim 2: ∀ p ∈ ∂C◦ : Xi(p) = ∅.
Proof: Let p ∈ ∂C◦ and suppose y is a maximal element of
Bi(p). Because p ∈ ∂C◦, by Lemma 3.2.4 there is x >C 0 such
that [x, p] = 0. Clearly, x + y ∈ Bi(p) and x + y >C y, but this
is impossible by Corollary 4.1.3. Hence, Bi(p) has no maximal
element.

2

Corollary 4.2.3 Dom(S0) = int(C◦).

Because we want to apply Corollary 3.2.11, we need the function S0 to be
defined not only on int(C◦), but also on ∂C◦. To solve this problem, we are
going to adjust S0 and extend its adjustment to a function S on C◦. We
shall do this in such a way that the function S : C◦ → C◦ is an equilibrium
function.
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Firstly, we define the function η : IR→ [0, 1] by

η(α) :=


0 if α ≤ 0
α if 0 < α < 1
1 if 1 ≤ α,

and we choose a fixed p0 ∈ int(C◦), see Lemma 3.2.5. With this function η

we can now define the new function S (here we feel inspired by [ArHa71]).

Definition 4.2.4 Let p0 ∈ int(C◦). The function S : C◦ → C◦ is given by

S(p) :=

{
(1− η(Z(p, p0)))S0(p) + η(Z(p, p0))p0 p ∈ int(C◦)
p0 p ∈ ∂C◦,

where Z(p, q) = [Xtotal(p), q]− [wtotal, q].

Theorem 4.2.5 The function S is an equilibrium function. Further, if
p ∈ C◦ satisfies S(p) = 0 then p ∈ int(C◦).

Proof
Suppose S(p) = 0 for some p ∈ C◦, then from the definition of S it follows
that p ∈ int(C◦). Because S0 is an equilibrium function defined on int(C◦),
we find the following sequence of equivalences: ∀ p ∈ int(C◦):

S(p) = 0 ⇐⇒ (1− η(Z(p, p0)))S0(p) + η(Z(p, p0))p0 = 0
⇐⇒ (1− η(Z(p, p0)))S0(p) = 0 and η(Z(p, p0))p0 = 0
⇐⇒ S0(p) = 0 and η(Z(p, p0)) = 0
⇐⇒ p is an equilibrium price system.

2

Because of Theorem 3.2.11 the following lemma is interesting.

Lemma 4.2.6 Let p ∈ C◦. The following two statements are equivalent:

1. ∃ α ≥ 0 : S(p) = αp

2. S(p) = 0.
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Proof
Suppose S(p) = αp for some α ≥ 0. From the definition of S it immediately
follows that p ∈ int(C◦). Applying Walras’ Law yields

[Xtotal(p),S(p)]− [wtotal,S(p)] = α[Xtotal(p), p] − [wtotal, p] = 0.

Using the definition of S(p) for p ∈ int(C◦) we find

(1− η(Z(p, p0)))Z(p,S0(p)) + η(Z(p, p0))Z(p, p0) = 0. (∗)

Clearly, Z(p,S0(p)) =
∫
H∩C◦ max{0,Z(p, q)}Z(p, q)dµ(q) ≥ 0, and so the

first term of (∗) is non-negative. We conclude that the second term of (∗)
has to be non-positive, i.e.

η(Z(p, p0))Z(p, p0) ≤ 0.

Now, suppose Z(p, p0) were positive. Then from η(Z(p, p0)) > 0 it follows
that η(Z(p, p0))Z(p, p0) > 0 which cannot be the case. Hence Z(p, p0) ≤ 0
or η(Z(p, p0)) = 0. By equation (∗) this results in the conclusion that 0 =
Z(p,S0(p)) = [Xtotal(p),S0(p)]−[wtotal,S0(p)]. So S0(p) = 0. By the definition
of S we find S(p) = 0. 2

In order to prove that ∃ p ∈ int(C◦) ∃ α ≥ 0 : S(p) = αp, we prove that S is
continuous on C◦ \ {0} and then apply Theorem 3.2.11.
The proof that S is continuous on C◦\{0} is based on the following lemmas.

Lemma 4.2.7 Let (pn)
n∈IN be a sequence in int(C◦) converging to some

p ∈ int(C◦). For every i ∈ {1, . . . ,m}, the budget correspondence Bi has the
following two properties:

1. If xn ∈ Bi(pn) for each n, then there is a subsequence (xnk)k∈IN that
converges to some x ∈ Bi(p).

2. For each x ∈ Bi(p) there exists a sequence (xn)
n∈IN satisfying xn ∈

Bi(pn) and xn → x ∈ C.

Proof
Let i ∈ {1, . . . ,m}.
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1. By Lemma 3.2.12, p is an order unit for C◦ and since pn → p, by
Corollary 3.2.13 there are sequences λn and µn, both converging to 1,
that satisfy

∀ n ∈ IN ∃ λn, µn > 0 : µnp ≤C pn ≤C λnp.

Define K := maxn{
λn
µn
}. Assume the sequence (xn)

n∈IN satisfies ∀ n ∈
IN : xn ∈ Bi(pn). Then µn[xn, p] ≤ [xn, pn] ≤ [wi, pn] ≤ λn[wi, p] and so
[xn, p] ≤ K[wi, p] for all n ∈ IN .

Claim: The sequence (xn)
n∈IN is bounded.

Proof: Suppose (xn)
n∈IN were unbounded, then [ xn

‖xn‖
, p] ≤

K
‖xn‖

[wi, p] → 0. The sequence
(

xn
‖xn‖

)
n∈IN

is bounded and

therefore has a convergent subsequence with limit y ∈ C.
Now we obtain a contradiction, since [y, p] = 0 would imply
p 6∈ int(C◦).

As a result from the claim, (xn)
n∈IN has a convergent subsequence

(xnk)k∈IN with limit x ∈ C. Since ∀ k ∈ IN : [xnk, pnk] ≤ [wi, pnk] the
limit x belongs to Bi(p).

2. Let x ∈ Bi(p). If [x, p] < [wi, p] then ∃ N ∈ IN ∀ n > N : [x, pn] <
[wi, pn] so for all n > N choose xn := x and we are done.

Now assume [x, p] = [wi, p]. Because p ∈ int(C◦) we have [wi, p] > 0.
So, ∃ N ∈ IN ∀ n > N : 1

2
[wi, pn] < [x, pn]. Let n > N . If x ∈ Bi(pn)

define tn := 1. If x 6∈ Bi(pn), i.e., if [x, pn] > [wi, pn] then define

tn := [wi,pn]
2[x,pn]−[wi,pn]

For all n > N : tn ∈ [0, 1] and lim
n→∞

tn = 1. Now put

xn := tnx+ (1− tn)1
2
wi then [xn, pn] = [wi, pn], and xn → x as n→∞.

2

Lemma 4.2.7 expresses the type of continuity of the budget correspondences
that we need in order to prove the continuity of the individual demand func-
tions Xi, and they together imply the continuity of the total demand function
Xtotal.

Lemma 4.2.8 For each i ∈ {1, . . . ,m}, Xi is a continuous function on
int(C◦).
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Proof
Let i ∈ {1, . . . ,m} and let (pn)

n∈IN be a sequence in int(C◦) converging to
some p ∈ int(C◦). By 1) of the preceding lemma, the sequence Xi(pn) has a
subsequence Xi(pnk) that converges to some x ∈ Bi(p). Let y ∈ Bi(p). By 2)
of the preceding lemma, for all k ∈ IN there is ynk ∈ Bi(pnk) satisfying ynk →
y. Since the preference relation �i is continuous, ∀ k ∈ IN : Xi(pnk) �i ynk
implies x �i y. So, x = Xi(p). We conclude that any convergent subsequence
Xi(pnk) of Xi(pn) has Xi(p) as its limit. Furthermore, every subsequence of
Xi(pn) has a convergent subsequence. These two observations imply that
Xi(pn)→ Xi(p): suppose Xi(pn) does not converge to Xi(p), then there is an
ε > 0 and a subsequence Xi(pnk) such that ‖ Xi(p) −Xi(pnk) ‖> ε for some
norm ‖ . ‖ on V . But this subsequence has a converging subsequence with
limit Xi(p), which is a contradiction. 2

Lemma 4.2.9 The function S0 is continuous on int(C◦).

Proof
Since H ∩ C◦ is compact, we can define

M :=
∫
H∩C◦

‖ q ‖2
∗dµ(q).

Here ‖ . ‖∗ denotes the norm, dual to a chosen norm ‖ . ‖ on V .

Claim: Let p1, p2 ∈ int(H ∩ C◦) and q ∈ C◦. Then

|max{0, [Xtotal(p1), q]− [wtotal, q]} −
max{0, [Xtotal(p2), q]− [wtotal, q]}|
≤‖ Xtotal(p1)−Xtotal(p2) ‖ ‖ q ‖∗.

Proof: For α ∈ IR : max{0, α} = 1
2
(|α| − α). So, for α, β ∈ IR:

|max{0, α} −max{0, β}|
= 1

2
| |α| − |β| − (α− β) |

≤ 1
2
| |α| − |β| |+ 1

2
|α− β|

≤ |α − β|

From this, we conclude:
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| max{0, [Xtotal(p1), q]− [wtotal, q]} −
max{0, [Xtotal(p2), q]− [wtotal, q]} |

≤ | [Xtotal(p1), q]− [Xtotal(p2), q] |
≤ ‖ Xtotal(p1)−Xtotal(p2) ‖ ‖ q ‖∗.

Using the above claim, we find for p1, p2 ∈ int(C◦):

‖ S0(p1)− S0(p2) ‖∗ ≤
∫
H∩C◦

‖ Xtotal(p1) −Xtotal(p2) ‖ ‖ q ‖2
∗dµ(q)

= ‖ Xtotal(p1)−Xtotal(p2) ‖M.

Since Xtotal is continuous on int(C◦), it follows that S0 is continuous on
int(C◦). 2

Theorem 4.2.10 The function S : C◦ \ {0} → C◦ is continuous.

Proof
Since S0 and Xtotal are continuous on int(C◦), the function q 7→ η(Z(q, p0)) is
continuous on int(C◦) and so S is continuous on int(C◦). Remains to prove
that S is continuous on the boundary of C◦\{0}. Let (pn)

n∈IN be a sequence
in C◦ with limit p ∈ ∂C◦, p 6= 0, and suppose the sequence (S(pn))

n∈IN does
not converge to S(p) = p0. Then there is a subsequence (S(pnk))k∈IN such
that for all k ∈ IN : S(pnk) 6= p0. Notice that for all k ∈ IN : pnk ∈ int(C◦).
Since [wtotal, p] > 0, there is i0 ∈ {1, . . . ,m} satisfying [wi0, p] > 0. Combining
Lemma 4.1.6 and Lemma 4.2.2, yields that the sequence (Xi0(pn))

n∈IN is
unbounded, and so the sequence (Xtotal(pn))

n∈IN is unbounded in C. Hence,
there is k ∈ IN : [Xtotal(pnk), p0] − [wtotal, p0] ≥ 1 (cf. Corollary 3.2.10). So
S(pnk) = p0. This is in contradiction with the assumption that S(pn) 6→ p0.
2

Finally we come to the proof of the main theorem of this paper.

Proof of Existence Theorem
Since the equilibrium function S is continuous on C◦ \ {0}, applying Theo-
rem 3.2.11 yields that there is some p ∈ C◦ \ {0} such that S(p) = αp for
some α ≥ 0. By Lemma 4.2.6 p is an equilibrium price system. 2
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A Appendix

A.1 Axiomatic introduction to pointed convex cones

In the model of a pure exchange economy that is described in Section 4.1
we introduce the commodity set as being a pointed convex cone in a vector
space V = span(C). The vector space V has a minor role in this model.
In fact, only the notion of a pointed convex cone is needed to describe the
set of commodity bundles. However, the theory of finite-dimensional vector
spaces is used in the proof that the polar cone C◦ does not only contain the
zero-functional, and is used for deriving a number of topological results for
C and C◦. So, the vector space V is a mathematical tool only and, in fact,
not part of the model.
In this section of the appendix we show that, in modelling a pure exchange
economy, the use of a vector space can be circumvented, by the following
axiomatic definition of a pointed convex cone.

Definition A.1.1 A pointed convex cone is a set C of elements with the
following properties:

• To every pair, x and y, of elements of C there corresponds an element
x+ y ∈ C, called the sum of x and y, in such a way that:

C1: addition is commutative: x+ y = y + x,

C2: addition is associative: x+ (y + z) = (x+ y) + z,

C3: there exists an element in C, called a zero-element, denoted by 0,
satisfying x+ y = 0⇔ (x = 0 and y = 0),

C4: for every x ∈ C, the mapping addx : C → C defined by addx(y) =
y + x is injective: x+ y = x+ z implies y = z.

• To every pair x ∈ C and α ∈ IR+, there corresponds an element αx ∈
C, called the product of x and α, in such a way that

C5: multiplication over IR+ is associative: α(βx) = (αβ)x,

C6: 1 · x = x,

C7: multiplication over IR+ is distributive with respect to addition: α(x+
y) = αx+ αy,
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C8: multiplication over IR+ is distributive with respect to scalar addi-
tion: (α+ β)x = αx+ βx.

The terms ”pointed” and ”convex” refer to two vector space properties of
cones. A subset S of some vector space V is called a cone if αx ∈ S for
all x ∈ S and α ≥ 0. A cone C in a vector space V is called pointed if
x, (−x) ∈ C implies that x equals the zero-vector of V . This definition is
equivalent with axiom C3. A subset S of some vector space V is called convex
if τx+ (1− τ )y ∈ S for all x, y ∈ S and τ ∈ [0, 1]. Thus, a cone in a vector
space is convex if it is closed under addition.

Lemma A.1.2 For every pointed convex cone C, the zero-element is unique
and satisfies the following properties

1. ∀ α ∈ IR+\{0} : α0 = 0
2. ∀ x ∈ C : x+ 0 = x
3. ∀ x ∈ C : 0x = 0.

Each pointed convex cone C corresponds with a vector space V over the real
numbers IR. The construction of this vector space is similar to the one that
is used to construct the set of integers from the natural numbers IN . Define
the equivalence relation ∼ on the product set C ×C in the following way:

(x1, y1) ∼ (x2, y2) :⇐⇒ x1 + y2 = y1 + x2

For all (x1, y1) ∈ C×C, the set [(x1, x2)] := {(x, y) ∈ C×C | (x, y) ∼ (x1, y1)}
is called the equivalence class of (x1, y1). Let V be the collection of all
equivalent classes, so V = (C × C)/∼. We can define the following addition
and scalar multiplication on V :

[(x1, y1)] + [(x2, y2)] := [(x1 + x2, y1 + y2)]

α[(x, y)] :=

{
[(αx, αy)] if α ≥ 0
[((−α)y, (−α)x)] if α < 0.

It is not difficult to show that these definitions are independent of the choices
of the representatives.
With these definitions V is the vector space generated by C.
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A.2 Finitely generated cones

In this subsection of the appendix we consider a special class of convex cones:
the class of finitely generated ones. We shall show that for a model of a pure
exchange economy where the commodity set is described by a finitely gen-
erated pointed cone, construction of an equilibrium function is less difficult
than in the general case.

Definition A.2.1 A convex cone D is called finitely generated if its cone
basis is a finite set in V .

Since every finitely generated cone D is closed in V (cf. [Pani93]), we have
D◦◦ = D.

Lemma A.2.2 If S is a finite set in V , then S◦ is a finitely generated cone
in V ∗.

Proof
For the proof of this lemma, we refer to [Tiel79] and [Scha94]. 2

Corollary A.2.3 The polar cone of a finitely generated cone is finitely gen-
erated.

Proof
Let D be a finitely generated cone with cone basis {b1, . . . , bk}, then D◦ =
{f ∈ V ∗ | ∀ i ∈ {1, . . . , k} : [bi, f ] ≥ 0} = {b1, . . . , bk}◦. 2

Let D be a finitely generated cone with cone basis {b1, . . . , bk} and D◦ its
polar cone with basis {d1, . . . , dl}. The order relation ≥D on D is described
by (cf. Corollary 3.2.7):

x ≥D y if and only if ∀ j ∈ {1, . . . , l} : [x, dj] ≥ [y, dj].

Equivalently, the order relation ≥D◦ is described by

f ≥D◦ g if and only if ∀ i ∈ {1, . . . , k} : [bi, f ] ≥ [bi, g].
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Furthermore, if D is solid and pointed we have

x0 ∈ int(D) ⇐⇒ ∀ j ∈ {1, . . . , l} : [x0, dj] > 0
f0 ∈ int(D◦) ⇐⇒ ∀ i ∈ {1, . . . , k} : [bi, f0] > 0

Recall the model of an exhange economy, described in Section 4.1 and add
the extra assumption that C is finitely generated with cone basis {b1, . . . , bk}.
Let C◦ be generated by {d1, . . . , dl}. Then S0 : int(C◦)→ C◦ defined by

S0(p) :=
l∑

j=1

max{0, [Xtotal(p) − wtotal, bj]}bj

is an equilibrium function.

Proof
The cone C is pointed, so S0(p) = 0 implies

∀ j ∈ {1, . . . , k} : max{0, [Xtotal(p)− wtotal, bj]} = 0.

So [Xtotal(p) − wtotal, bj] ≤ 0 for all j ∈ {1, . . . , l} and therefore Xtotal(p) ≤C
wtotal. By Lemma 4.1.7 p is an equilibrium price system. 2

From this equilibrium function S0 : int(C◦)→ C◦ we can construct a contin-
uous equilibrium function S, defined on the whole set C◦, in the same way
as described in Section 4.2.
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