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Abstract: Finite potential games have Nash equilibria in pure strategies. This note provides

some results on the existence of equilibria or approximate equilibria if some players have in�nite

sets of strategies.

1 Introduction

Potential games incorporate information about Nash equilibria in a single real-valued function,

called a potential, on the strategy space. These games were introduced in Monderer and Shapley

(1996). After recalling the de�nitions of exact, ordinal and generalized ordinal potential games

in section 2, it will follow easily that maxima of a potential function with respect to unilateral

deviations are Nash equilibria of the game. Since a potential function of a �nite potential game

always has a maximum, such games have at least one Nash equilibrium in pure strategies. This

need no longer be the case if in�nite games are considered. If a Nash equilibrium does not exist,

there may be instances of the game in which players either receive a large payo� that satis�es

them or cannot gain too much from deviating. Such an instance is an approximate equilibrium.

The de�nition of approximate equilibria is also recalled in section 2.

The main purpose of this paper is to provide some results on the existence of Nash equilibria

or approximate equilibria in in�nite potential games.

In section 3 we look at approximate equilibria. We show that generalized ordinal potential

games in which at most one player has an in�nite set of strategies always has approximate

equilibria. This generalizes a theorem from Norde and Tijs (1996) on exact potential games to

ordinal and generalized ordinal potential games.

An open problem from Peleg, Potters, and Tijs (1996) is solved in section 4 by showing that

an ordinal potential game where all players have compact strategy sets and continuous payo�

functions may not have a continuous ordinal potential function.

�I thank Stef Tijs, Peter Borm, and Henk Norde for useful comments.
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2 De�nitions and preliminary results

A strategic game is a tuple G = hN; fX igi2N ; fu
igi2Ni, where N = f1; : : : ; ng; n 2 IN is the

player set, for each i 2 N the set of player i's strategies is X i, and ui :
Q

i2N
X i ! IR is player

i's payo� function.

For brevity, we de�ne X =
Q

i2N
X i and for i 2 N : X�i =

Q
j2Nnfig

Xj. Let x =

(x1; : : : ; xn) 2 X and i 2 N . Then x�i 2 X�i is the vector (x1; : : : ; xi�1; xi+1; : : : ; xn). With a

slight abuse of notation, we denote x = (xi; x�i).

The following de�nitions are due to Monderer and Shapley (1996). A strategic game G =

hN; fX igi2N ; fu
igi2Ni is

� an exact potential game if there exists a function P : X ! IR such that for all i 2 N , for

all x�i 2 X�i and all yi; zi 2 X i:

ui(yi; x�i)� ui(zi; x�i) = P (yi; x�i)� P (zi; x�i):

� an ordinal potential game if there exists a function P : X ! IR such that for all i 2 N , for

all x�i 2 X�i and all yi; zi 2 X i:

ui(yi; x�i)� ui(zi; x�i) > 0, P (yi; x�i)� P (zi; x�i) > 0:

� a generalized ordinal potential game if there exists a function P : X ! IR such that for all

i 2 N , for all x�i 2 X�i and all yi; zi 2 X i:

ui(yi; x�i)� ui(zi; x�i) > 0) P (yi; x�i)� P (zi; x�i) > 0:

Such a function P is called an (exact, ordinal or generalized) potential of the game G. Clearly,

an exact potential game is an ordinal potential game, which in its turn is a generalized ordinal

potential game. In exact potential games the di�erence in the value of the potential equal the

di�erence in the payo� to the deviating player. In ordinal potential games only the signs of the

di�erences match. Generalized ordinal potential games allow for freedom in the potential if a

deviating player's payo� does not change.

Economic applications of potential games include oligopolies (Slade, 1994) and congestion

situations (Rosenthal, 1973).

The potential maximizer of a generalized ordinal potential game G = hN; fX igi2N ; fu
igi2Ni

is the set of strategy combinations x 2 X for which some potential P achieves a maximum. The

following proposition follows immediately from these de�nitions.

Proposition 2.1 Let G = hN; fX igi2N ; fu
igi2Ni be a generalized ordinal potential game and

P a potential for G. If x 2 X is a Nash equilibrium of hN; fxigi2N ; fPgi2Ni, i.e., of the game

with all payo� functions replaced by P , then x is a Nash equilibrium of G. In particular, every

�nite generalized ordinal potential game has at least one Nash equilibrium, since the potential

maximizer is nonempty.

If G is an exact or ordinal potential game and x is a Nash equilibrium of G, then x is also a

Nash equilibrium of hN; fxigi2N ; fPgi2Ni. This is not necessarily true for generalized ordinal

potential games.
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Example 2.1 Consider a two-player game with strategy space X = X1 � X2 and u1(x) =

u2(x) = 0 for all x 2 X . Then any function P : X ! IR is a generalized ordinal potential

function, so the maxima of P w.r.t. unilateral deviations not necessarily pick out all pure Nash

equilibria of the game.

An improvement path is a sequence (x1; x2; : : :) of elements xk 2 X such that for all k 2 IN

the strategy combinations xk and xk+1 di�er in exactly one, say the i(k)-th, coordinate and

ui(k)(xk) < ui(k)(xk+1). A �nite improvement path (x1; : : : ; xk), with k � 3, is an improvement

cycle if x1 = xk.

Lemma 2.1 Let G = hN; fX igi2N ; fu
igi2Ni be a generalized ordinal potential game. Then G

contains no improvement cycles.

Proof. Suppose, to the contrary, that (x1; : : : ; xk) is an improvement cycle of G. Let P be a

potential for G. Since for all l = 1; :::; k � 1 : ui(l)(xl) < ui(l)(xl+1), we have P (x1) < � � � <

P (xk) = P (x1), a contradiction. 2

Let � > 0; k 2 IR. A strategy xi 2 X i of player i is called an �-best response to x�i 2 X�i if

ui(xi; x�i) � sup
yi2Xi

ui(yi; x�i)� �

and a k-guaranteeing response to x�i 2 X�i if

ui(xi; x�i) � k:

If xi is either an �-best or k-guaranteeing response (or both) to x�i, it is called an (�; k)-best

response. Notice that an (�; k)-best response to x�i always exists. A strategy combination

(x1; : : : ; xn) is called an �-equilibrium of the game G if for each i 2 N , xi is an �-best response

to x�i. It is called an (�; k)-equilibrium if xi is an (�; k)-best response to x�i for all i 2 N . In

such an equilibrium, each player can gain at most � from deviating or receives at least a utility

of k.

A game is called weakly determined if it has an (�; k)-equilibrium for every � > 0 and every

k 2 IR.

We conclude this section with some examples to illustrate these de�nitions. Notice that a

one-person game is trivially a potential game.

Example 2.2 Consider a one-person game with the player having strategy space Z and u(x) = x

for all x 2 Z. This game has no Nash equilibria, but is weakly determined, since for every k 2 IR,

x = bk+1c is a k-guaranteeing response, where for r 2 IN; brc is the largest integer not exceeding

r.

Example 2.3 Consider a one-person game with the player having strategy space (0;1) and

u(x) = � 1
x
for all x 2 (0;1). This game has no Nash equilibria, but for every � > 0, x > 1

�
is

an �-equilibrium.

The following example from Norde and Tijs (1996) shows that in�nite potential games may not

be weakly determined.

Example 2.4 Consider the 1�1-bimatrix game with payo� functions u1(i; j) = i � j and

u2(i; j) = j � i, where i; j 2 IN. This is an exact potential game, with a potential P (i; j) = i+ j

for all i; j 2 IN. Clearly, this game does not have (�; k)-equilibria whenever k > 0.
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3 Equilibria and approximate equilibria in in�nite games

Norde and Tijs (1996) provide theorems on equilibrium existence for several classes of games with

an exact potential. Their proofs are largely based either on the equality sign in the de�nition

of an exact potential or on a characterization of exact potential games in terms of coordination

and dummy games (See Facchini et al. (1995); a similar characterization for Cournot games was

given in Slade (1994)). As a consequence, their proofs do not carry over to ordinal or generalized

ordinal potential games. Theorem 3.1 generalizes one of their results. If at most one player in a

generalized ordinal potential game has an in�nite set of strategies, the game has (�; k)-equilibria

for all � > 0; k 2 IR.

Theorem 3.1 Let G = hN; fX igi2N ; fu
igi2Ni be a generalized ordinal potential game. If

X1; : : : ; Xn�1 are �nite sets, then G is weakly determined.

Proof. Let P be a potential for G. For each xn 2 Xn �x �(xn) 2 argmax
x
�n2X�n P (xn; x�n).

Let � > 0; k 2 IR. Construct a sequence  = (x1; x2; : : :) in X as follows: Take xn 2 Xn, de�ne

x1 = (xn; �(xn)). Let m 2 IN. Suppose xm is de�ned. If m is odd, and

� xn
m

is not an (�; k)-best response to x�n
m

, take xm+1 = (xn; x�n
m

) with xn an (�; k)-best

response to x�n
m

;

� otherwise, stop.

If m is even, and

� x�n
m

62 argmaxx�n2X�n P (xn
m
; x�n), take xm+1 = (xn

m
; �(xn

m
));

� otherwise, stop.

If the sequence  is �nite, the terminal point is clearly an (�; k)-equilibrium. So now assume

this sequence is in�nite.

Since the sets X1; : : : ; Xn�1 are �nite, there exist l;m 2 IN such that l is even, m is odd,

l < m, and x�n
l

= x�n
m

. By construction, P (xl) < P (xm), which implies un(xl) � un(xm).

But xn
l
is an (�; k)-best response to x�n

l
= x�n

m
, so xn

m
is an (�; k)-best response to x�n

m
. Since

x�n
m

= �(xn
m
), the other players cannot improve at all. Hence xm is an (�; k)-equilibrium. 2

Example 2.4 indicates that this result cannot be extended to include two or more players with

an in�nite strategy set.

Under di�erent assumptions we can also establish existence, like in the following theorem.

Recall that a real-valued function f on a topological space T is called upper semi-continuous

(u.s.c.) if for each c 2 IR the set fx 2 T jf(x) � cg is closed.

Theorem 3.2 Let G = hN; fX igi2N ; fu
igi2Ni be a generalized ordinal potential game. If

X1; : : : ; Xn�1 are �nite, Xn is a compact topological space and un is u.s.c. in the n-th co-

ordinate, then G has a Nash equilibrium.

Proof. Fix for each x�n 2 X�n an element �(x�n) 2 �(x�n) = argmaxz2Xn un(z; x�n), which

is possible by the upper semi-continuity and compactness conditions.
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Suppose that G is not determined. Let x�n 2 X�n. Take x1 = (�(x�n); x�n). Then there

exists an in�nite improvement path (x1; x2; : : :) such that for each k 2 IN, if xn
k
62 �(x�n

k
), then

xk+1 = (�(x�n
k

); x�n
k

), and otherwise xk+1 = (z; x�i
k
) for some i 2 N and z 2 X i satisfying

ui(z; x�i
k
) > ui(xk).

Since X�n is �nite and player n uses only strategies from f�(x�n)jx�n 2 X�ng, there exist
k; l 2 IN; k < l, such that xk = xl. Hence (xk; xk+1; : : : ; xl) is an improvement cycle. However,

Lemma 2.1 shows that the absence of improvement cycles is necessary for the existence of a

potential function, which yields the desired contradiction. 2

A similar result for a di�erent class of potential games is given in Voorneveld (1996).

4 Continuity of potential functions

Peleg, Potters, and Tijs (1996) study properties of the potential maximizer. It was left as an open

problem in their paper whether ordinal potential games on a compact strategy space with payo�

functions ui which are continuous in the i-th coordinate have a non-empty potential maximizer

or, even stronger, whether all such ordinal potential games possess a continuous potential. The

result from this section indicates that this is not the case, even if payo� functions are continuous

in each coordinate.

Theorem 4.1 There exists an ordinal potential game with compact strategy spaces and contin-

uous payo� functions for which no potential achieves a maximum and which consequently has

no continuous ordinal potential function.

Proof. Consider the game with N = f1; 2g, X1 = X2 = [0; 1], and payo� functions de�ned as

u1(x; y) =

(
0 if (x; y) = (0; 0)

xy
6

(x2+y2)3
otherwise

and

u2(x; y) =

(
0 if (x; y) = (0; 0)

x
6
y

(x2+y2)3
otherwise

:

Clearly, these payo� functions are continuous. Moreover,

P (x; y) =

(
0 if (x; y) = (0; 0)

xy

(x2+y2)3
otherwise

is a non-continuous (consider the image of the sequence f( 1
n
; 1
n
)g1

n=1) ordinal potential for the

game. This follows easily from u1(x; y) = y5P (x; y) and u2(x; y) = x5P (x; y).

Now consider any ordinal potential Q for this game and the path C in the strategy space

from (1; 1) to (1
2
; 1) to (1

2
; 1
2
) : : :( 1

2n
; 1
2n
) to ( 1

2n+1
; 1
2n
) : : : This path is depicted in Figure 1.

For n 2 IN0 and y = 1
2n

the functions u1(�; y) and (hence) Q(�; y) are strictly decreasing on

[ 1
2n+1

; 1
2n
]. We will work out this case and leave other similar cases to the reader. The partial

derivative of u1 with respect to x equals

@u1(x; y)

@x
= y5

@P (x; y)

@x
=

y6(y2 � 5x2)

(x2 + y2)4
:
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(1,1)

aa'

a"

b

b'

b"

Figure 1: The strategy space and path C from Theorem 3.1

Since 1
2n+1

� x � 1
2n
, we have that 1

22n
� 5

22n
� y2 � 5x2 � 1

22n
� 5

22n+2
, which is equivalent to

�4
22n

� y2 � 5x2 � 22

22n+2
� 5

22n+2
= �1

22n+2
< 0.

Similarly, for n 2 IN and x = 1
2n

the functions u2(x; �) and (hence) Q(x; �) are strictly

decreasing on [ 1
2n
; 1
2n�1

]. This implies that Q must strictly increase along the path C from (1; 1)

to (0; 0).

Also Q(x; 0) = Q(1; 0) < Q(1; 1) and Q(0; y) = Q(0; 1) < Q(1; 1). Once again using the

above, if (x; y) lies to the right of C, like the point a in Figure 1, and (x0; y) is on C, like

the point a0, then Q(x; y) < Q(x0; y), since given y 2 (0; 1), there exists a n 2 IN such that
1
2n
� y < 1

2n�1
. Then by de�nition ( 1

2n
; y) is on C and u1(�; y) is strictly decreasing on [ 1

2n
; 1].

Also, if (x; y) lies to the left of C, like the point b, and (x; y0) is on C, like the point b0, then

Q(x; y) < Q(x; y0), since, given x 2 (0; 1), there exists an n 2 IN such that 1
2n+1

� x < 1
2n
. Then

by de�nition (x; 1
2n
) is on C and u2(x; �) is strictly decreasing on [ 1

2n
; 1].

Therefore, for any (x; y) 2 [0; 1]2, we have Q(x; y) < Q( 1
2n
; 1
2n
) for some n 2 IN. For the

points a and b in Figure 1, such points are denoted by a00 and b00, respectively. Since the sequence

fQ( 1
2n
; 1
2n
)g1

n=0 is strictly increasing, Q has no maximum, which is what we had to prove.

The continuity of a potential function for this game together with the compactness of the

strategy space in the product topology would imply the existence of a maximum, contradicting

our proof. Hence this game has no continuous potential. 2
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Notice that continuity, however, is too strong a requirement. Reasonable conditions may exist

under which a potential turns out to be upper semi-continuous, which given the compactness of

the strategy space would still result in a maximum.
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