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Abstract: This is the �rst of two papers dealing with the optimal bu�er allocation

problem in tandem manufacturing lines with unreliable machines. We address the
theoretical issues that arise when using sample-path optimization, a simulation-based

optimization method, to solve this problem. Sample-path optimization is a recent
method to optimize performance functions of stochastic systems. By exploiting the
fact that the performance function we want to optimize is the almost sure limit of

a sequence of random functions, it overcomes some of the di�culties from which
variants of stochastic approximation methods su�er.

We provide a mathematical framework that makes use of a function space con-

struction to model the dependence of throughput on bu�er capacities and maximum
ow rates of machines. Using this framework we prove various structural properties

of throughput and show how these properties, along with a niceness condition on
the steady-state, can be used to prove that the sample-path optimization method
converges almost surely when applied to the bu�er allocation problem.

Among the properties established, monotonicity in bu�er capacities and in ma-
chine ow rates are especially important. Although monotonicity results of this

nature have appeared in the literature for discrete tandem lines, as far as we are
aware the kind of analysis we present here has not yet been done for continuous

tandem lines.
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1 Introduction

Research reported in the present and the accompanying paper aims to enhance the set

of available tools for analyzing and optimizing tandem lines with unreliable machines.

In this paper we provide a novel mathematical framework to model the dynamics of

such systems, propose a new solution methodology for the bu�er allocation problem,

and discuss the technical details of our solution. The accompanying paper, G�urkan

(1996b), will discuss operational issues that arise during the implementation.

A tandem queue consists of a number of servers in series. There may be bu�ers

of �nite sizes between the servers. Jobs start at the �rst server, pass through each

server in sequence, and �nally leave the system after being served by the last server.

These queues have been widely used to model a single line of multistage automated

assembly lines or virtual paths in communication networks; see for example Ho et al.

(1983), Gershwin (1987), Buzacott and Shanthikumar (1992), and Yamashita and
�Onvural (1994).

We focus on a particular tandem queue where service rates are deterministic.
The servers are subject to random breakdowns: these failures are operational (i.e. a

server may only breakdown during service); operating quantities between failures as
well as repair times are random with arbitrary distributions. It is common to use this
type of tandem queues to model tandem production lines in which machines are the

servers, see Buzacott and Shanthikumar (1992) and Yamashita and �Onvural (1994)
and references therein. In a tandem production line, the material processed may be

discrete entities (e.g. assemblies in an automobile factory) in which case we call it
a discrete tandem (DT) line or it may be continuous (e.g. chemical production) in
which case we refer to a continuous tandem (CT) line.

Possible decision variables in tandem production lines include bu�er capacities,
cycle times of machines, and failure and repair rates of machines. Recently, there

has been progress towards the optimization of steady-state throughput, the amount
of production per unit time by the last machine in steady-state, with respect to ma-

chine cycle times. Plambeck, Fu, Robinson, and Suri (1996) used the sample-path

optimization method to optimize lines with up to 50 machines under various linear
equality and inequality constraints on the cycle times. The aim of the current paper
and its companion G�urkan (1996b) is to take this one step further and to optimize

the steady-state throughput with respect to bu�er capacities. Under certain condi-

tions, the existence of a steady-state in tandem queues is guaranteed by regeneration

theorems. We do not go into any detail about such conditions; we refer the reader
to, for example Loynes (1962), Nummelin (1981), and Gershwin and Schick (1983).

The bu�er allocation problem is still an open question in the study of tandem pro-

duction lines. Analytical results based on Markov chain representations of the model

are available only for 2- and 3-machine DT lines in Gershwin and Schick (1983), and
for 2-machine CT lines in Gershwin and Schick (1980). To �nd optimal bu�er al-
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locations in DT lines, a heuristic method based on a Markov chain representation

was used in Hillier and So (1991); since the number of states of the Markov chain

grows very rapidly with increasing number of machines and bu�er capacities, only

lines with up to �ve machines could be considered. The intractability of analytical

models for long production lines makes simulation an attractive approach to study

these lines. A method to estimate the gradient of line throughput with respect to

bu�er capacities in DT lines was introduced in Ho et al. (1979) and these gradient

estimates were then used in a heuristic \hill climbing" algorithm to �nd optimal

bu�er allocations. This was also the �rst paper in which the technique of pertur-

bation analysis was used to compute gradient estimates in discrete-event dynamic

systems. As for CT lines, an algorithm based on generalized Benders' decomposition

was developed to optimize steady-state throughput and in-process inventory with re-

spect to bu�er capacities in Caramanis (1987). To compute the necessary gradients,

the approach of Ho et al. (1979) was adopted. There was no justi�cation for using
a deterministic optimization technique with noisy function and gradient values to

solve a stochastic optimization problem.
One approach to model and analyze DT lines is to approximate them by CT

lines. The continuous production case can be visualized as the limit of the discrete

production case as the piece size approaches zero while the production rate remains
constant; see Fu (1996). For a translation of various input parameters and perfor-

mance measures between CT and DT lines, see Suri and Fu (1994). A major reason
for using CT lines instead of DT lines is the considerable increase in computational
e�ciency. Extensive numerical results on the substantial time advantage of CT sim-

ulations over DT simulations are reported in Suri and Fu (1994). Using CT lines
is bene�cial from an optimization point of view as well: techniques for continuous
parameter optimization are much more advanced than those for discrete parameter

optimization. Furthermore, when dealing with continuous parameters there is the
possibility of obtaining gradient estimates.

For these reasons, to optimize the steady-state throughput with respect to bu�er

capacities, we will use CT line approximations for DT lines. Extensive numerical

results on both DT and CT lines in Suri and Fu (1994) indicate that approximation

of DT lines via CT lines is quite accurate. For example, for fairly small lines (up to
six machines), the throughput values obtained from CT line approximations in Suri

and Fu (1994) were very close to the throughput of the original DT line (relative

errors ranging from 0:0% to �2:3%); in an extensive study of 192 15-machine lines,
in 90% of the cases the di�erence between the DT line throughput and the equivalent

CT line throughput was less than 4%. Since CT line simulations are substantially
faster than DT line simulations and the approximations are quite accurate, we believe

optimizing CT lines is an important step in enhancing the set of tools available for

optimizing DT lines.
The bu�er allocation problem in tandem production lines is one instance of a
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generic simulation optimization problem: given that one can obtain a function and a

gradient value at a parameter setting, locate an optimizer of the performance func-

tion. When faced with this problem, people often used some form of the stochas-

tic approximation method; see Robbins and Monro (1951), Kiefer and Wolfowitz

(1952), or the single-run optimization variant Meketon (1983, 1987). These meth-

ods are known to have a number of drawbacks. First, their empirical performance

is very sensitive to the choice of a predetermined step size. Fu and Healy (1992)

and L'Ecuyer et al. (1994) contain a number of examples which demonstrate this

sensitivity. Second, since they are mainly �rst-order gradient methods, they are

often thought to experience more di�culties on large problems than on small prob-

lems. Third, in case of constrained optimization, these methods handle inequality

constraints {even linear inequalities{ via projection onto the feasible set. This can

retard the performance of an algorithm immensely, as is illustrated by an example

in Appendix 6 of Plambeck, Fu, Robinson, and Suri (1996). In that example, such
a method requires nearly 1043 steps to �nd the minimizer (the origin) of a linear

function on the nonnegative orthant R2
+. Notice that this di�culty does not arise

in case of linear equality constraints since one can reduce this to an unconstrained
problem by appropriate a�ne transformations. Finally, if the function being op-

timized is non-di�erentiable, then the stochastic approximation method becomes a
variant of subgradient optimization; see Correa and Lemar�echal (1993) for example.

That method is known to be very slow and it also su�ers from other drawbacks such
as the lack of a good stopping criterion and the di�culty in enforcing feasibility as
mentioned above.

Recently a new method called sample-path optimization that overcomes some
of these di�culties was proposed in Plambeck, Fu, Robinson, and Suri (1996) and
analyzed in Robinson (1996). The method exploits the fact that the performance

function we want to optimize is the almost-sure limit of a sequence of approximating
functions (outputs of simulations of runs of increasing lengths, all using the same

random number streams). That is, if we go out far enough along the sample path

we get a good estimate of the limit function. Being a deterministic function, this re-

sulting estimate can then be optimized using deterministic optimization techniques.

One of the most powerful features of sample-path optimization is the availability of
superlinearly convergent (fast) deterministic optimization methods that can handle

constraints explicitly and that do not su�er from increases in the problem dimen-

sion. Using these methods we can often optimize the approximating function to
high accuracy in relatively few function and gradient evaluations. This is particu-

larly important when function and gradient evaluations are expensive. The method
can be used even when the performance function or the sample functions are non-

di�erentiable (the convexity of the functions is required in this case), this time using

methods of non-smooth convex minimization, such as bundle algorithms, in the op-
timization scheme. In addition, the method separates optimization from the compu-
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tation of function and gradient values. This modularity turns out to be quite helpful

when the system simulated is large and complex and/or the optimization routine is

sophisticated.

Since the optimization problem we are facing is a di�cult one with possibly sev-

eral variables and constraints, sample-path optimization is evidently a promising

stochastic optimization technique to solve this problem. In x2:2 we describe the

sample-path optimization method in more detail. Appendix A contains the conver-

gence results of the method which are relevant to the work presented in this paper.

For proofs and detailed analysis of those results, we refer the interested reader to

Robinson (1996). For successful applications of the method on systems of consider-

able sizes, see Plambeck, Fu, Robinson, and Suri (1996). A comprehensive summary

of the properties of the method is given in G�urkan, �Ozge, and Robinson (1994) which

also reports the performance of the method on a small closed queueing network. An

alternative set of conditions to those developed in Robinson (1996) for proving the
convergence of the method are provided in G�urkan, �Ozge, and Robinson (1996).

This new set of conditions substantially broadens the class of problems to which the
method is applicable; in particular it enables the solution of stochastic variational
inequalities using the sample-path technique. A brief survey of related techniques

and ideas similar to sample-path optimization that have appeared in the literature
can be found in Robinson (1996).

The remainder of this paper is divided into four main sections. At the end of
the paper there are four (or three) appendices containing additional technical detail.
Of the main sections, Section 2 contains the description of the problem and the

solution methodology we propose. In x2:1, we describe the characteristics of the
tandem line under study. In x2:2, we discuss the basic ideas behind the sample-
path optimization method. In x2:3, we mention the advantages of using sample-

path optimization to �nd optimal bu�er allocations and discuss some of the issues
associated with this approach. Section 3 is devoted to addressing the theoretical

issues. In x3:1, we provide a mathematical framework to model the dynamics of the

tandem line and develop the necessary machinery for the technical analysis. In x3:2,

we prove some properties of throughput, namely monotonicity, upper semicontinuity,

and properness. Among those properties, monotonicity in bu�er capacities and in
machine ow rates deserve special attention. Although monotonicity results of this

nature for DT lines have appeared in the literature, (best to our knowledge) such

results were not available for CT lines. After establishing these properties, we then
show how they can be used to prove the convergence of the sample-path optimization

method when applied to the bu�er allocation problem. Finally, in Section 4 we
summarize the work presented, briey mention some of the practical issues that

arise when implementing the method. For a complete discussion of these operational

issues we refer the reader to G�urkan (1996b).
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Figure 1: The tandem production line

2 Description of the problem and our approach

2.1 The bu�er allocation problem

A tandem line consists of m machines in series connected by m�1 bu�ers of possibly

�nite sizes. The product enters from one end of the line, goes to each machine in
sequence, �nally emerges from the other end as a �nal product. The time it takes
a machine to process one unit of product is called the cycle time. Notice that in a

CT line the natural description for the processing rate of a machine is the ow rate
which is the reciprocal of cycle time.

Tandem lines are a class of production lines which are commonly used for mass

production of various products. The study of such lines may be required in order to
design a new line or to improve an existing line. In either case, we are faced with

an optimization problem in a complex stochastic system: to optimize the perfor-
mance of the line under various �nancial and/or non-�nancial constraints. Possible
decision variables include bu�er capacities, cycle times, and failure and repair rates

of machines. There are many trade-o�s arising from the complex dynamics of the
system which make analytical study of these lines very di�cult. People who study

these lines usually focus on two common performance measures: line throughput,

the amount of production per unit time, and in-process inventory. In this paper, we
focus on the line throughput; since the in-process inventory is bounded by the total

bu�er capacity, and the cost associated with it can be incorporated into the overall

bu�er cost.

The particular tandem line we study has the following additional features:

� There is in�nite supply to the �rst machine and in�nite demand from the last
machine.

� There is no transfer delay from machines to bu�ers, within bu�ers, or from
bu�ers to machines.

� A machine can fail only when it is operational. Operating quantity to failure

for each machine is a random variable.
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� The repair time for each machine is a random variable.

� Each machine has a deterministic maximum ow rate, so each machine can

work at a rate anywhere between zero and this maximum.

A few words about the dynamics of the line are in order. Consider a machine Mi.

Since it is unreliable, it will sometimes fail. As soon as it is repaired it will continue

to produce until another failure occurs. In addition to its own failures, sometimes

Mi may have to reduce its production rate or even completely stop because of the

interactions with other machines. For example,

a) If the bu�er Bi is full, Mi cannot produce at a rate larger than the current

rate of Mi+1. In such a case Mi is said to be blocked.

b) Similarly, if the bu�er Bi�1 is empty, Mi cannot produce at a rate larger than

the current rate of Mi�1. In such a case Mi is said to be starved.

These characteristics result in complex dynamics for the system and have made
it impossible (to date) to use analytical methods to optimize the performance mea-
sures such as steady-state throughput or in-process inventory. In this work we focus

on optimizing the steady-state throughput with respect to bu�er capacities under
various constraints. As a result of the interactions between the machines, one would
like to increase the bu�er capacities to make the machines more independent of each

other to increase the throughput. However, due to �nancial and spatial limitations,
increasing the bu�er capacities may not be feasible.

For the tandem lines described above, analytical expressions for steady-state
throughput of 2-machine CT lines and of 2- and 3- machine DT lines are available;
see Gerschwin and Schick (1980) and the references in Suri and Fu (1994). However,

lack of analytical results for longer lines makes using simulation attractive to analyze
and optimize these lines. Sample-path optimization is a powerful simulation-based

method that can be used in the solution of this problem.

2.2 Sample-path optimization method

In this section we describe the basic ideas behind a simulation-based method, sample-

path optimization, for optimizing performance functions in certain stochastic sys-

tems. We do not go into any technical detail and refer the interested reader to
Robinson (1996). However, since in x3:2 we make use of the main convergence result

of that work, we provide it in Appendix A.
Many problems in simulation optimization can be modeled by an extended-real-

valued stochastic process fLn(�) j n = 1; 2; : : : g. The Ln take values that may be

real numbers or �1, whereas the parameter � takes values in Rk. Using extended-

real-valued random variables is very convenient for modeling constraints, since one
can always set Ln(�) = +1 for those � that do not satisfy the constraints. For each
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n � 1 and each � 2 Rk, Ln(�) are random variables de�ned on a common probability

space (
;F ; P ).

The method assumes the existence of a limit function L1 such that the Ln almost

surely converge pointwise to L1 as n!1. For the systems we are concerned with,

such existence and convergence can often be inferred from regeneration theorems

and/or the strong law of large numbers. In the following we refer to Ln(�) as the

sample function and we write Ln(!; �) when we want to emphasize the dependence

of Ln(�) on the sample point !.

Let us demonstrate this setup with a simple example. Suppose that we are

analyzing anM=M=1 queue and we are interested in the steady-state system time of

a customer, denoted by L1. Let Ln be the average of the system times of n customers,

i.e. Ln is the output of a simulation of run length n (n service completions in this

case). >From the regeneration theorems we know that under certain conditions on

the parameters of the system L1 exists and the Ln converge pointwise to L1 along
almost every sample path.

We are interested in �nding the in�mum and, if it exists, a minimizer of L1. In
general we can only observe Ln for �nite n. Therefore we approximate minimizers of
L1 using such information about Ln. The method is simple: �x a large n and ! 2 
,

compute a minimizer ��n(!) of Ln(!; :), and take ��n(!) as an approximate minimizer
of L1(!; :). Note that minimizers of L1(!; � ) may generally depend on the sample

point !. However, in many practical problems for which one would anticipate using
this technique L1 is a deterministic function, for example a steady-state performance
function or an expected value, i.e. it is independent of !.

As shown in Robinson (1996), the conceptual method of sample-path optimization
converges with probability one under three hypotheses: the approximating functions
Ln(!; � ) are lower semicontinuous and proper; they epiconverge to the limit function

L1(!; � ); and the limit function L1(!; � ) almost surely has a nonempty, compact set
of minimizers. For a precise statement of this result, see Theorem 8 and Proposition

2 in Appendix A.

Notice that once we �x n and a sample point !, Ln(!; �) becomes a deterministic

function of �. With this observation, very powerful methods of constrained and un-

constrained deterministic optimization are available to use on Ln. In the smooth case
we can apply superlinearly convergent methods like the BFGS algoritm (or a variant

of it in case of constraints) to minimize Ln to high accuracy in few function and

gradient evaluations. For more information on these algorithms see Fletcher (1987)
and Gill et al. (1981) and for the software available see Mor�e and Wright (1993). Use

of superlinearly convergent methods enables us to be con�dent about the location
and the accuracy of the minimizer of Ln; i.e. we can di�erentiate between the errors

due to the approximation of L1 by Ln and those due to the inaccurate computation

of a minimizer of Ln. With slower algorithms like stochastic approximation this is
di�cult, if not impossible. If the sample functions and/or the performance function
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we want to minimize are nondi�erentiable and convex, then we can use the Bundle-

Trust method; see Schramm and Zowe (1990) and Kiwiel (1990). We emphasize that

in both the smooth and the non-smooth case, the deterministic solution methods

available can handle constraints explicitly and without any di�culty.

Another useful feature of this approach is its modularity; the computation of

function and gradient values is separated from the optimization. This enables the

use of already existing simulation codes (if they also provide gradient values or can be

modi�ed to do so) together with optimization codes that call external subroutines for

function and gradient evaluations. If the system simulated is large and complex, and

the optimization code is sophisticated, then the advantage of modularity becomes

more substantial.

2.3 The solution methodology

Recall that our objective is to optimize the steady-state throughput with respect

to bu�er capacities under various constraints, using a simulation-based optimization
method. To solve this problem with the existing technology, namely with variants of
the stochastic approximation method, for CT lines of even moderate sizes is ine�-

cient and di�cult (if not impossible). This is due to several drawbacks that stochastic
approximation methods su�er from, including lack of a good stopping criterion, dif-

�culty in enforcing feasibility, and slow empirical convergence rate as discussed in
Section 1. As mentioned above, sample-path optimization is a recent alternative
that is suitable for optimizing performance measures of complex systems CT lines.

Furthermore, the method has been tested numerically on a number of applications
and the computational experience to date has been very promising. In all cases,
computational results suggest that even a fairly small computational e�ort may pro-

duce a solution that is accurate enough for practical purposes: substantial increases
in computation time resulted in fairly small changes in the optimal solution.

Using sample-path optimization to solve the bu�er allocation problem has two

apparent advantages; the e�ect of modularity will be quite substantial due to the

size and the complex dynamics of the system and the availability of superlinearly

convergent deterministic optimization algorithms will enable us to locate the opti-
mizer to high accuracy in relatively few function and gradient evaluations even in

the presence of numerous and/or complicated constraints.

Clearly, this idea raises a number of questions:

(i) What are the theoretical issues that arise when we attempt to apply sample-

path optimization to the bu�er allocation problem? Is the problem well struc-
tured enough?

(ii) What are the operational issues we have to deal with, if this method is used to

solve a real-world problem?
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(iii) Is it computationally feasible to use this method and if so how well does it

perform in this particular application?

It turns out that answering the �rst set of questions is closely linked to estab-

lishing certain properties of the function to be optimized. In an actual problem, to

optimize the performance of the system, one would minimize a combination of re-

ciprocal of throughput and a cost function. The cost function usually captures some

information regarding the �nancial limitations and space availability about bu�er

capacities. Provided that the added cost function has a reasonable functional form

(e.g. continuity), the properties of the function we want to minimize will follow

from the properties of throughput. In Section 3, we establish certain properties of

throughput and discuss their implications for the method's convergence.

In summary, the method we propose consists of optimizing the deterministic

function obtained by �xing a sample path. In x3:2, we show that under a regularity
condition on the steady-state, the optimizer computed using such a scheme converges
almost surely to the correct optimizer as we go far enough on the sample-path. This

makes us con�dent about using sample-path optimization to �nd optimal bu�er
allocations. At the next stage of this work, using CT line simulations enables us
to compute certain directional derivatives using in�nitesimal perturbation analysis

(IPA) from a single realization of the sample path. We then locate a minimizer of
the resulting function using the most powerful deterministic optimization techniques

available to us. A detailed discussion of these implementation issues can be found in
G�urkan (1996b).

3 Technical analysis

In this section we develop the machinery required to deal with the theoretical issues
that arise when applying sample-path optimization method to �nd optimal bu�er

allocations. In x3:1 we provide a mathematical framework to model the dynamics

of the tandem line and in x3:2 we use this framework to prove various properties
of throughput and the convergence of the conceptual method when applied to the

bu�er allocation problem.

3.1 Mathematical framework

Let T be the prespeci�ed amount of time we observe the line and qi(t) be the amount
produced by Mi up to time t for i = 1; : : : ; m. Then the line throughput can be

de�ned as
TPT = qm(T )=T:

We de�ne

bj = bu�er capacity of Bj,
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Ci = maximum ow rate of Mi,

W i
p = operating quantity between the (p� 1)st and the pth failures at Mi,

Ri
p = repair time of Mi after the pth failure.

For each i, fW i
pg

n
p=1 and fRi

pg
n
p=1 are random variables with distributions that

are concentrated on (0;1).

For a �xed sample path, i.e. for �xed sequences fW i
p; i = 1; : : : ; m; p � 1g and

fRi
p; i = 1; : : : ; m; p � 1g, let fij be the quantity produced by the ith machine up to

its jth failure. Then

fij =
jX

p=1

W i
p:

Fix T (simulation time), let C([0; T ];Rm) be the space of continuous functions

from [0; T ] to Rm with the sup-norm topology. That is, for g 2 C([0; T ];Rm),

kgk = supfjgi(x)j : i = 1; : : : ; m; x 2 [0; T ]g:

We next construct a multifunction F : Rm�1 ! C([0; T ];Rm) as follows. For
any b = (b1; : : : ; bm�1) 2 Rm�1

+ , we de�ne F (b) to be the set of continuous functions
g : [0; T ]! Rm satisfying the following requirements:

g1 � g2 � : : : � gm � 0;
gi is non-decreasing for each i = 1; : : : ; m;
g(0) = 0;

jgi(x)� gi(y)j � Cijx� yj for any x; y 2 [0; T ] and i = 1; : : : ; m,
gi(x)� gi+1(x) � bi for any x 2 [0; T ] and i = 1; : : : ; m� 1:

For b =2 Rm�1
+ , we let F (b) = ;. Hence domF = Rm�1

+ . The graph of F is

de�ned as gphF = f(b; g) : g 2 F (b)g. One should think of the functions g 2 F (b) as
possible ways of operating the CT line. If we interpret gi(t) as the amount produced

by machine i up to time t, then functions in F (b) obey the bu�er capacity and

maximum ow rate constraints:

(i) the amount produced by a machine cannot be less than the amount produced

by the succeeding machine,
(ii) the amount produced by a machine does not decrease with time,

(iii) the line starts operating at time zero,

(iv) a machine cannot work at a rate higher than its maximum ow rate,
(v) the amount produced by a machine cannot exceed the amount produced by

the succeeding machine plus the bu�er capacity between them.
We de�ne A to be the following subset of F (1):

A = fg 2 F (1) : �(ft : gi(t) = fijg) � Ri
j; for each i = 1; : : : ; m and j = 1; 2; : : : g;

where � is the Lebesgue measure onR. Again, if we think of functions inA as possible
ways of operating a CT line with unlimited bu�er capacities between machines, then
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the condition �(ft : gi(t) = fijg) � Ri
j means that under any possible operating

strategy the amount of time machine i stays non-operational after its jth failure is

at least equal to its jth repair time.

F (b) models the bu�er capacity and maximum ow rate constraints, whereas A

models the failure and repair times of a CT line with unlimited bu�er capacities

between machines. So F (b) \ A can be thought of as the set of all possible ways of

operating the CT line. Notice that q is in F (b) \A. Recall that among functions in

F (b)\A, q gives the amount produced using the strategy under which each machine

is operated at maximum possible rate whenever it is operational. The pseudo-code

developed in Fu (1996) prescribes a way of constructing such a strategy during a

simulation. His vi is the e�ective ow rate of Mi, i = 1; : : : ; m; at any time the

pseudo-code prescribes how to set each one to its maximum possible value in a well-

de�ned, non-circular way.

Using this framework we can have the following three technical lemmas; their
proofs are deferred to Appendix B.

Lemma 1 The multifunction F has the following properties:

a. gphF is closed.

b. gphF is convex.

c. F is compact-valued and F (b) � F (1) for all b 2 Rm�1.

In the next lemma we use the terms Berge-usc and Hausdor� distance, which are
de�ned in Appendix A. We denote the interior of a set S by intS.

Lemma 2 The multifunction F is Berge-usc in Rm�1 and b 7! F (b) is a continuous
mapping from int (Rm�1

+ ) to compact subsets of C([0; T ];Rm) with the metric topology

induced by the Hausdor� distance.

Lemma 3 A is closed in F (1).

Now let
QT (b) = supfgm(T ) : g 2 F (b) \ Ag:

In the next theorem, we show that the supremum in the de�nition ofQT (b) is actually

attained and it is equal to the amount produced by the last machine up to time T

when each machine is operated at maximum possible rate whenever operational. The

proof of the theorem is provided in Appendix C.

Theorem 1 Suppose that the event times have no cluster point. Then for each

�nite time T , QT (b) = qm(T ).

Remark The assumption that the event times have no cluster point is realistic since

in any computer simulation of �nite length the distinct random numbers generated

are separated by some � > 0 determined by the speci�cations of the computer.
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3.2 Properties of throughput and their implications on convergence

We now discuss some properties of TPT and TP1, namely upper semicontinuity,

monotonicity (non-decreasing), and properness. As one can see from Theorem 8 of

Appendix A, these turn out to be crucial in proving the convergence of the sample-

path optimization method when applied to the bu�er allocation problem.

Below we use the term \non-decreasing" for a function f : Rm ! R, by which

we mean that f(x1; : : : ; xk) � f(y1; : : : ; yk) whenever xi � yi for i = 1; : : : ; k.

Theorem 2 For T 2 [0;1], TPT is a non-decreasing function of b with probability

one.

Proof. Observe that for b0 � b, F (b0) � F (b). Hence QT (b
0) � QT (b) and TPT is

a non-decreasing function of b.

The reader may compare this monotonicity result with Meester and Shanthiku-

mar (1990). Their paper is concerned with monotonicity of throughput as a func-
tion of bu�er capacities of a discrete tandem queue with exponential service times,
whereas we are concerned with monotonicity of throughput of a continuos tandem

line with unreliable machines and deterministic ow rates. Furthermore, we do not
make any distributional assumptions for the failure and repair times. Aside from

these di�erences, our proof technique is quite di�erent from theirs. They use certain
recursive equations to characterize the dynamics of the system, especially the number
of departures from each server, and obtain the result by manipulating these equa-

tions inductively, whereas we provide a new function space representation to model
the dynamics of the system and exploit this mathematical framework to obtain the

result.
Meester and Shanthikumar (1990) and Anantharam and Tscoucas (1990) also

show the concavity of sample throughput in bu�er capacities. This result holds for

the discrete analog of the system we are studying if failure and repair times are

exponentially distributed, as shown in G�urkan (1996a); however it fails to hold for

CT lines; see Figure 2 and the discussion following Theorem 4.

One can also de�ne a multifunction ~F (C) from Rm to C([0; T ];Rm) by the same
four conditions that we used to de�ne F, where the variable is C, the vector of maxi-

mum ow rates, and follow the lines of proof of Theorem 2 to prove the monotonicity

of throughput in ow rates. We note that though it is not the subject of the work
we report here, the mathematical framework provided in x3:1 may facilitate similar

analysis for throughput as a function of ow rates.

Theorem 3 For T 2 [0;1], TPT is a non-decreasing function of C with probability

one.

Proof. Observe that if C 0 � C, then ~F (C 0) � ~F (C 0).
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We should point out the di�erence between the monotonicity result of Theorem 3

and those of Shanthikumar and Yao (1989a); as in the previous result the di�erence

is in the system studied and the proof technique employed. Theorem 3 is concerned

with continuous tandem queues, whereas Shanthikumar and Yao study general dis-

crete queueing networks for which the discrete tandem queue is a special case and

use recursive equations to establish the monotonicity of throughput in the job service

times. In addition to monotonicity, Shanthikumar and Yao (1989b) show that the re-

ciprocal of throughput is a convex function of parameters of the external interarrival

times and the machine service times, provided that these times themselves are con-

vex functions of those parameters. This convexity result is later extended to discrete

tandem queues with unreliable machines in Fu (1996). In addition, the convexity of

reciprocal of throughput in maximum ow rates of machines in CT lines is proven

in Fu (1996). We pointed out to B.-R. Fu that by using the recursive equations for

departure time process developed in Fu (1996), he can also show the monotonicity
of throughput in maximum ow rates of machines; this would be an alternative way

of proving Theorem 3.

Remark A generalized semi-Markov process (GSMP) representation is constructed

in Suri and Fu (1994) to model CT lines. In G�urkan (1996b), it is shown that this
GSMP is not non-interruptive (in the sense of Schassberger (1976)). Unfortunately,

violation of the non-interruption condition rules out the applicability of the results,
developed in Glasserman and Yao (1992a, 1992b), for checking the �rst and sec-
ond order properties of stochastic systems that can be modeled as non-interruptive

GSMP's.

The next result deals with the upper semicontinuity of sample throughput. This

is important for two reasons: convergence analysis of the sample-path optimization
method for our problem requires upper semicontinuity of sample throughput, and

lack of upper semicontinuity in a function to be maximized may cause great di�cul-

ties when doing practical optimization.

Theorem 4 For T 2 [0;1), TPT is an upper semicontinuous function of b with

probability one.

Proof. Let T 2 [0;1). We will show that qm(T ) is an upper semicontinuous

function of b and the result will follow since TPT (b) = qm(T )=T . By Theorem 1

it is enough to show that QT (b) is an upper semicontinuous function of b. Let

H : F (1) ! R be de�ned by H(g) = gm(T ). Then H is continuous and attains

its supremum over F (b) \ A since the set F (b) \ A is compact by Lemmas 1 and 3.
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Furthermore for any y 2 R, the set Sy = fg 2 F (1) : H(g) < yg is open. Then

fb : QT (b) < yg = fb : gm(T ) < y for all g 2 F (b) \ Ag

= fb : F (b) \ A � Syg

= fb : F (b) � Sy [ Acg:

So fb : QT (b) < yg is an open set since Sy [ Ac is open and F is Berge-usc.

The reader may wonder whether the sample throughput, TPT for T 2 [0;1), is

lower semicontinuous as well. In fact, TPT is a discontinuous function of bu�er capac-

ities for �nite T ; see Figure 2. This is due to the fact that if two events occur at the

same time, an in�nitesimal change in bu�er capacities may cause the order of these

events to change, as illustrated by a simple, numerical example in G�urkan (1996a),

p. 52-56. Of course, when the failure quantities and repair times for machines have

continuous distributions, one may argue that the probability of a continuous random
variable being equal to a speci�c value is zero; hence the probability that the time
of two events coincides in a discrete event simulation is zero, as well. Therefore

these types of phenomena cannot take place, in practice. On the other hand, it is
clear from Figure 2 that once a sample path (a random number sequence !) is �xed,

there are some bu�er capacities at which this type of phenomenon does occur and
results in discontinuities in throughput. In other words, at each b the probability
of throughput being discontinuous is zero; but the probability of throughput being

discontinuous at some b is not zero.
Using the upper semicontinuity and monotonicity of sample throughput, one can

easily show that for any �nite T , any b, and any � > 0, there exists � > 0 such that

for every j, if 0 < �bj < � and b0 = b + �bj then TPT (b) � TPT (b
0) < TPT (b) + �.

This shows that the phenomenon described in that example can occur when bu�er

capacities are decreased by an in�nitesimal amount; it cannot occur when they are

increased by an in�nitesimal amount. Furthermore, this phenomenon may likewise
occur when the operating time to failure (instead of operating quantity) is a random

variable, see Remark 4.33 of G�urkan (1996a).

Fortunately, as can be seen in Theorem 8, the upper semicontinuity of TPT

su�ces to prove the convergence of the conceptual method; the discontinuity of the
sample functions does not constitute a problem from the theoretical point of view.

In the next result we use the term "proper" for an extended-real-valued function

f . It means that f never takes the value �1 and it is not identically +1.

Remark Note that the analysis above does not depend on the particular distribu-

tions chosen for the random variables W i
p and Ri

p. For the next result, Theorem

5, we assume that for each i and p, random variables W i
p and Ri

p are exponentially

distributed with means wi and 1=ri respectively, and show that 1=TPT is a proper
function of b. While proving this, we show that TPT (0) > 0 for any T , which means
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that a CT line with no bu�er capacity has still positive throughput. Essentially any

distribution whose support is on (0;1) could be used in this result; the choice of

the exponential distribution is made for ease of exposition.

Theorem 5 For T 2 [0;1], 1=TPT is a uniformly bounded, positive, proper func-

tion of b with probability one.

Proof. First observe that for any T , TPT is a bounded function of b; increasing the

bu�er capacities will not improve the line throughput beyond a certain point, since

line throughput is bounded by Cm, the maximum ow rate of the last machine, in any

case. We now show that for any T , TPT (0) > 0. The properness will immediately

follow since for any T and any b, 1=Cm � 1=TPT (b) � 1=TPT (0).

When b = 0, the line operates at the rate of the slowest machine, say Cmin and
it stops (i.e. fails) whenever one of the machines fails. Since there is no bu�er

between the machines and the product is continuous, this particular m�machine
line degenerates to a 1�machine line but with possibly more complicated failure and

repair distributions. We have TPT (0) = QT =T where QT is the amount produced by
this 1�machine line in [0; T ]. For this equivalent 1�machine line, de�ne

Xi: operating quantity between the (i� 1)st and ith failures of the machine,

Yi: repair time after the ith failure.
Observe that the Xi are exponentially distributed random variables with rate

w�11 + � � �+ w�1m and the probability density function (pdf) of Yi is given by

f(t) =
w�11

w�11 + � � �+ w�1m

r1 � exp(�r1t) + : : :+
w�1m

w�11 + � � �+ w�1m

rm � exp(�rmt);

by conditioning on which machine has failed. Since QT � minfX1; CminTg and

X1 > 0 with probability one, we have QT=T > 0 with probability one for any �nite

T .
Let t0 = 0 and tn = time of the nth repair for n � 1. Then tn =

Pn
i=1(C

�1
minXi+Yi)

and the amount produced at time tn is
Pn

i=1Xi: For any T 2 [tn�1; tn], the ratioQT=T

is smallest either at T = tn�1 or at T = tn (the quantity produced remains constant

between tn�1 + C�1
minXi and tn). So

inf
T

QT

T
= inf

n

Pn
i=1XiPn

i=1(C
�1
minXi + Yi)

:

By the strong law of large numbers,

1

n

nX
i=1

Xi ! (w�11 +� � �+w�1m )�1 and
1

n

nX
i=1

Yi !
(r1w1)

�1 + � � �+ (rmwm)
�1

w�11 + � � �+ w�1m

as n!1:
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Hence

lim
n!1

Pn
i=1XiPn

i=1(C
�1
minXi + Yi)

> 0:

So K = infT QT=T > 0; and we conclude that TPT (0) � K > 0; for any T .

We now discuss how the assumptions of the conceptual method are satis�ed under

a regularity condition on the steady-state. First we give a general result about the

epiconvergence of non-increasing functions, then apply it to the particular problem we

have. The de�nition of epiconvergence (denoted by
e

�!) can be found in Appendix

A; the proof of Proposition 1 is provided in Appendix D.

Proposition 1 Assume that with probability one,

a. Ln ! L1.

b. L1 is lower semicontinuous.

c. Each Ln(1 � n � 1) is a non-increasing function.

Then with probability one, Ln
e

�! L1.

Theorem 6 Assume that with probability one,

a. TPT ! TP1.

b. TP1 is upper semicontinuous.

Then with probability one, 1=TPT
e

�! 1=TP1.

Proof. Use Proposition 1 with Theorem 2.

Theorem 6 shows that 1=TPT
e

�! 1=TP1, provided TP1 is upper semicontinu-
ous. Intuitively, one even expects it to be continuous: the steady-state throughput

of a line should not be very sensitive to small changes in the bu�er capacities. In a 2-
machine line, the continuity of steady-state throughput is provided by the analytical

formula derived in Gershwin and Schick (1980). At this time we do not have a proof
of the upper semicontinuity of TP1 for lines with more than 2 machines, although

computational evidence strongly indicates that steady-state throughput is indeed a

continuous function of bu�er capacities. For an example, see Figure 3, which displays
the throughput of a 2-machine CT line, where operating quantities to failures and

repair times are exponentially distributed, for di�erent run lengths T . In extensive
numerical experiments (also for longer lines) we observed the same kind of behavior:

a discontinuous function with frequent jumps of large sizes when T is small, but a

smooth function when T is large.
As mentioned earlier, in an actual optimization problem, one would minimize a

combination of the reciprocal of throughput and a cost function. The cost function

usually captures the information regarding space limitations as well as costs of bu�er

capacities. In the next theorem, we show that the sample-path optimization method

converges when applied to the optimization of throughput with respect to bu�er
capacities.
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Theorem 7 Suppose that TP1 is an upper semicontinuous function of b and f

is a continuous, non-decreasing, non-negative function that is norm-coercive: i.e.,

f(b)!1 as jjbjj ! 1. Let ffTg be a sequence of lower semicontinuous and proper

cost functions associated with bu�er capacities that converge uniformly on compact

sets to f . Then for su�ciently large T and any positive scalars � and �, the set of

minimizers of �
TPT

+�fT is nonempty and any point in it is close to some minimizer

of �

TP1
+ �f .

Proof. The function �
TP1

+ �f is lower semicontinuous, and it is norm-coercive

because f is norm-coercive and �

TP1
is bounded below by zero. Thus the set of

minimizers of �

TP1
+ �f on Rm�1

+ is nonempty and bounded; it must also be closed

by lower semicontinuity. Use Theorems 4 and 5 to see that each �

TPT
+�fT is a lower

semicontinuous and proper function of b. Then apply Theorem 7.44 of Rockafellar

and Wets (1996) and Theorem 6 to get �

TPT
+ �fT

e
�! �

TP1
+ �f . The result follows

by Theorem 8 and Proposition 2.

Remark Although Theorem 7 allows us to work with a sequence of functions ffTg,

a typical choice would be to use the constant sequence in which fT = f :=
Pm�1

i=1 bi
for every T . This functional form would model a problem in which one wants to
maximize the throughput but there are costs associated with increasing the bu�er

capacities.

4 Conclusion

In this paper we have discussed the theoretical issues that arise when applying a

simulation-based method, sample-path optimization, to the bu�er allocation prob-
lem in tandem lines with unreliable machines. We provided a novel mathematical

framework to model the dynamics of the system and used this framework to prove

the convergence of the conceptual method. As a by-product we established interest-

ing properties of system throughput, such as monotonicity in bu�er capacities and

in machine ow rates. To the best of our knowledge, these structural properties are
the �rst of their kind for the tandem lines studied in this paper.

The next question we shall address is a practical one: What do we actually do

when we attempt to use the method in a real-world application? The second paper
(G�urkan 1996b) will deal with the operational issues that arise in the implementation

of this method. These include:
(1) How to use in�nitesimal perturbation analysis to compute certain directional

derivatives of sample throughput?

(2) What are the di�culties that arise during optimization due to the special
structure of the sample functions (see Figure 2)?

(3) How does the sample-path optimization method perform numerically on

this problem and what kind of modi�cations to the basic method can improve the
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method's performance?
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Appendix A

This appendix contains the convergence results of Robinson (1996) that are rel-

evant to the work presented here. We �rst need to de�ne several crucial concepts.

De�nition 1 A sequence fn of extended-real-valued functions de�ned on Rk epi-

converges to an extended-real-valued function f1 de�ned on Rk (written fn
e

�! f1)

if for each � 2 Rk the following hold:

a. For each sequence f�ng converging to �, f1(�) � lim infn!1 fn(�n).

b. For some sequence f�ng converging to �, f1(�) � lim supn!1 fn(�n).

Note that in (b) we actually have f1(�) = limn!1 fn(�n), because of (a).
It is known that epiconvergence is independent of pointwise convergence in the

sense that neither implies the other. For a very readable elementary treatment of the
relationships between di�erent types of convergence, see Kall (1986). Attouch (1984)

contains comprehensive treatment of epiconvergence and related issues. Also see the
forthcoming book Rockafellar and Wets (1996) for a treatment of epiconvergence
from the perspective of optimization.

De�nition 2 Let Z be a topological space and let f be an extended-real-valued func-

tion on Z. A nonempty subset M of Z is a complete local minimizing (CLM) set

for f with respect to an open set G � M , if the set of minimizers of f on clG is M .

The concept of a CLM set, introduced in Robinson (1987), extends the idea of an

isolated local minimizer to cases in which the set of minimizers might not be a

singleton.

De�nition 3 A multifunction F from a topological space Z to a topological space

Y is Berge-usc at a point z0 of Z if for each open set U of Y with F (z0) � U the set

fz 2 Z : F (z) � Ug is open. F is Berge-usc in Z if it is Berge-usc at every point of

Z and if F (z) is compact for every z 2 Z.

Berge-usc is introduced in Berge (1963) under the name \upper semicontinuity";

see Rockafellar and Wets (1996) for a treatment of relationships between various
semicontinuity and continuity notions for multifunctions.
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Let S and T be subsets of Rk. We use the notation e(S; T ) for the excess of S

over T , de�ned by

e(S; T ) = sup
s2S

d(s; T ); d(s; T ) = inf
t2T

ks� tk:

If e(S; T ) small, then each point of S is close to some point of T , though some

points of T might be far from any point of S. Such nonsymmetric behavior is not

present in the Hausdor� distance between S and T (written h(S; T )) that is de�ned

by h(S; T ) = maxfe(S; T ); e(T; S)g.

We can now state the basic result of Robinson (1996).

Theorem 8 [Theorem 3.7 of Robinson (1996)] Suppose that the following assump-

tions hold:

a. With probability one, each Ln (1 � n < 1) is lower semicontinuous and

proper.

b. With probability one, Ln
e

�! L1 as n!1.

There is a subset � of 
 having measure zero, with the following properties:

suppose that ! =2 �, let G be an open bounded set in Rk, de�ne for 1 � n � 1

�̂n(!) = inf
�2clG

Ln(!; �); M̂n(!) = f� 2 clG j Ln(!; �) = �̂n(!)g;

and assume that M̂1(!) is a CLM set for L1(!; � ) with respect to G. Then

1. limn!1 �̂n(!) = �̂1(!), and �̂1(!) is �nite.
2. M̂n(!) is Berge-usc at 1, and M̂1(!) is compact.

3. There is a �nite positive integer N! such that for each n � N!, M̂n(!) is a
nonempty, compact CLM set for Ln(!; � ) with respect to G.

4. limn!1 e(M̂n(!); M̂1(!)) = 0.

Theorem 8 permits us to look at sets of local minimizers that may not be global

minimizers; in this sense its setting is very general. As explained in the next propo-

sition, the assumption in Theorem 8 of the existence of a CLM set for L1(!; � ) can

be replaced by a stronger, inf-compactness assumption.

Proposition 2 [Proposition 3.8 of Robinson (1996)] Suppose that the following as-

sumptions hold:

a. With probability one, each Ln (1 � n < 1) is lower semicontinuous and

proper.

b. With probability one, Ln
e

�! L1 as n!1.

c. With probability one, L1 is proper and its set M1 of minimizers is nonempty

and compact.

Then for almost every !, M1(!) is a CLM set for L1(!; � ) with respect to some

open bounded set G(!).
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Some remarks are in order. First, in general the set G of Theorem 8 depends

on the sample point !, which may cause an inconvenience since we use this set to

construct �̂1(!) and M̂1(!). This inconvenience can be removed by assuming that

L1 is a deterministic function. This holds for the limit functions in this paper, since

we consider steady-state throughput. Second, in the case of convex functions one can

take G to be Rk in Theorem 8, i.e. the localization provided by G is not necessary.

We refer the interested reader to Robinson (1996) for results in the case of convex

functions. Finally, since numerical methods used in practice �nd solutions that are

approximate, the behavior of the method when �-minimizers are computed is quite

important from a practical point of view. Results in Section 4 of Robinson (1996),

especially Theorem 4.2, show that the behavior of the method remains unchanged

in that case.

Appendix B

This appendix contains the proofs of the three technical lemmas from x3.1.

For b 2 Rm�1
+ write F (b) = F1(b) \ F2(b) \ F3(b) \ F4(b) where

F1(b) = fg : g1 � : : : � gm � 0g,
F2(b) = fg : gi is non-decreasing for each i = 1; : : : ; mg,

F3(b) = fg : gi(0) = 0; jgi(x) � gi(y)j � Cijx � yj for any x; y 2 [0; T ] and i =
1; : : : ; mg,
F4(b) = fg : gi(x)� gi+1(x) � bi for any x 2 [0; T ]; and i = 1; : : : ; m� 1g.

Lemma 1 The multifunction F has the following properties:

a. gphF is closed.

b. gphF is convex.

c. F is compact-valued and F (b) � F (1) for all b 2 Rm�1.

Proof. For (a), we take a sequence f(bn; gn)g in gphF that converges to a point

(b; g) and show that (b; g) 2 gphF . Clearly, g 2 F1(b) \ F2(b) \ F4(b). Take � > 0

and �nd a positive integer N� such that for all n � N�, t 2 [0; T ], and i = 1; : : : ; m,
kgni (t)� gi(t)k < �. Then for all x; y 2 [0; T ] and i = 1; : : : ; m,

kgi(x)� gi(y)k = kgi(x)� gni (x) + gni (y)� gi(y) + gni (x)� gni (y)k

� kgi(x)� gni (x)k + kgi(y)� gni (y)k+ kgni (x)� gni (y)k

< 2� + Cikx� yk:

Since � can be made arbitrarily small, we must have g 2 F3(b) as well. Hence gphF

is closed.
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To prove (b), we take (b; g); (a; h) 2 gphF and � 2 [0; 1]. Clearly,

(1� �)g + �h 2 F1((1� �)b+ �a) \ F2((1� �)b+ �a) \ F4((1� �)b+ �a):

For any i = 1; : : : ; m and x; y 2 [0; T ],

k[((1� �)gi(x) + �hi(x)]� [((1� �)gi(y) + �hi(y)]k � (1� �)kgi(x)� gi(y)k+ �khi(x)� hi(y)k

� (1� �)Cikx� yk+ �Cikx� yk

= Cikx� yk:

Hence (1� �)g + �h 2 F3((1� �)b+ �a) as well.

Clearly, F1(b); F2(b); F3(b); and F4(b) are closed sets. Furthermore, for any g 2

F3(b), any x 2 [0; T ], and i = 1; : : : ; m, jgi(x)j � Cijxj � CiT . Hence for any

g 2 F3(b), kgk � maxmi=1CiT and

kg(x)� g(y)k =
m

max
i=1

jgi(x)� gi(y)j �
m

max
i=1

Cikx� yk for any x; y 2 [0; T ]:

Then by the Arzel�a{Ascoli theorem F3(b) is compact. Hence F is compact-valued.

Furthermore we have for all b 2 Rm�1, F (b) � F (1).

Lemma 2 The multifunction F is Berge-usc in Rm�1 and b 7! F (b) is a continuous

mapping from int (Rm�1
+ ) to compact subsets of C([0; T ];Rm) with the metric topology

induced by the Hausdor� distance.

Proof. Since gphF is closed and for all b 2 Rm�1, F (b) is a subset of the compact
set F (1), the multifunction F is Berge-usc inRm�1 by the corollary to Theorem 7 in
Section 7.1 of Berge (1963). Berge-usc implies that for any � > 0 and any b 2 Rm�1,

there exists a � > 0 such that

e(F (b0); F (b)) < � for every b0 with kb0 � bk < �: (4.1)

To see this, observe that F (b) + int (�B) is an open neighborhood of F (b) and use

the de�nition of Berge-usc.

Let � > 0 and take b 2 int domF = int (Rm�1
+ ) and g 2 F (b). By applying

Theorem 1 of Robinson (1976) to the inverse multifunction F�1, we can �nd �(g) > 0

such that F�1(g+�B) � b+�(g)�B, i.e. if kb0�bk < ��(g), then there exists f 2 F (b0)

with kg � fk < �. Notice that �(g) depends on g; however for every h 2 F (b) one
could always take �(h) � �(g)(1 + kh � gk)�1, see p. 133 of Robinson (1976). If
we let Kg = maxh2F (b) kh � gk (which is attained since F (b) is a compact set) and

� = �(g)(1 + Kg)
�1=� > 0, then � � �(h) for all h 2 F (b). So for all g 2 F (b) and

b0 with kb0 � bk < �, there exists f 2 F (b0) with kf � gk < �. This is equivalent to

having e(F (b); F (b0)) < � if kb0�bk < � which together with (4.1) gives the continuity

of the mapping b 7! F (b), for all b 2 int (Rm�1
+ ) using the Hausdor� distance.
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Lemma 3 A is closed in F (1).

Proof. Take a sequence fgng in A that converges to a function g in F (1).

Assume that g =2 A. Then there exist i and j with �(ft : gi(t) = fijg) < Ri
j. Since

g 2 F (1), each component of g is continuous and non-decreasing. Therefore the

set ft : gi(t) = fijg is actually an interval, say [r; s]. Choose � > 0 small enough so

that �([r� �; s+ �]) < Ri
j, g increases in [r� �; r], and g increases in [s; s+ �]. Then

� := minfgi(s + �) � fij; fij � gi(r � �)g > 0. Since the gn ! g in the sup-norm,

we have uniform convergence in each component. Hence there exists N� such that

jgni (t)� gi(t)j < � for all n � N� and t 2 [0; T ]. Take t > s+ �, then for any n � N�

we have

gni (t) > gi(t)� �

� gi(t)� (gi(s+ �)� fij)

� fij:

Similarly, we can show that gni (t) < fij for any t < r � � and n � N�. So for any

n � N�, if t =2 [r � �; s+ �] then gni (t) 6= fij. Therefore we have

�(ft : gni (t) = fijg) � �([r � �; s + �]) < Ri
j;

by choice of �. This contradicts the fact that gn 2 A.

Appendix C

This appendix contains the proof of Theorem 1 from x3.1.

Theorem 1 Suppose that the event times have no cluster point. Then for each �nite

time T , QT (b) = qm(T ).

Proof. Let vi(t) be the rate of machine i at time t under strategy q and v
g
i (t) be

the rate of machine i at time t under strategy g. When t is the time of an event, we

take vi(t) = vi(t
+).

Without loss of generality we assume bi > 0 for each i (otherwise we could

combine two machines). Suppose there exists g 2 F (b)\A such that gm(T ) > qm(T ).
Let � = infft : gi(t) > qi(t) for some ig where � < T . Suppose that ftkg is a sequence

decreasing to � , such that for each k there is an index ik with gik(tk) > qik(tk). By

using the pigeonhole principle we can �nd some i such that for a subsequence ftkjg
we have gi(tkj ) > qi(tkj ) for each j. For simplicity, rename this sequence as ftkg.
Note that gi(�) = qi(�) and gi(t) > qi(t) for t 2 (�; � + �0] for some �0 > 0, by

continuity of gi and qi.



25

Under strategy q, machine i cannot be under repair at time � . To see this, suppose

it were not true; then under strategy g machine i must have �nished the same repair

by time � . So it must have begun the repair earlier, say at t0, whereas under q

machine i began its repair at time t1 > t0. But qi(t) < qi(t1) for t < t1 (failures are

operational only), so gi(t0) = qi(t1) > qi(t0) which contradicts the de�nition of � .

By assumption, � is not a cluster point of the event times. Since under q the rate

of machine i changes only at an event time, there is �1 > 0 such that in the interval

[�; � + �1] that rate is constant, say v
q
i . We claim that v

q
i < Ci. To see this, observe

that if it were not true, then we would have for all � 2 (0;minf�0; �1g)

gi(� + �)� qi(� + �) = gi(�)� qi(�) +
Z �+�

�
[vgi (t)� Ci]dt:

Since gi(�) = qi(�), we would have gi(� + �) � qi(� + �) � 0 which contradicts the

existence of �0.

Therefore for small enough � 2 (0;minf�0; �1g) either
a) qi(t) = qi�1(t) for t 2 [�; � + �]

or
b) qi(t) = qi+1(t) + bi for t 2 [�; � + �];

since if neither (a) nor (b) occurs, then machine i should be running at rate Ci on

[�; � + �).
If (a) occurs, then for su�ciently large k

gi�1(tk)� qi�1(tk) = gi�1(tk)� gi(tk)� [qi�1(tk)� qi(tk)] + gi(tk)� qi(tk)

� gi(tk)� qi(tk) > 0:

We get the �rst of these inequalities since gi�1(tk)� gi(tk) � 0 and qi�1(tk) = qi(tk).

The second inequality is a consequence of the choice of �. Now we can repeat the
same argument for machine i � 1. Note that we must then have gi�1(�) = qi�1(�)

and this time we know that only (a) can occur. So we get the same property for

i� 2; i� 3; : : : . Eventually we reach machine 1 and a contradiction (since the �rst

machine is never starved).

If (b) occurs, then for su�ciently large k

gi+1(tk)� qi+1(tk) = gi+1(tk)� gi(tk) + qi(tk)� qi+1(tk) + gi(tk)� qi(tk)

� gi(tk)� qi(tk) > 0:

The �rst of these inequalities follows from gi+1(tk)+bi � gi(tk) and qi(tk)�qi+1(tk) =
bi. The second inequality is a consequence of the choice of �. Here again we must

have gi+1(�) = qi+1(�). Therefore we can repeat the above argument for machine
i + 1 and this time we know that (b) is the only possibility. So we get the same

property for i + 2; i + 3; : : : . Eventually we reach machine m and a contradiction

(since the last machine is never blocked).
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Appendix D

This appendix contains the proof of Proposition 1 from x3.2.

Proposition 1 Assume that with probability one,

a. Ln ! L1.

b. L1 is lower semicontinuous.

c. Each Ln(1 � n � 1) is a non-increasing function.

Then with probability one, Ln
e

�! L1.

Proof. Construct a set � of measure zero such that whenever ! =2 �, Ln ! L1
pointwise, L1 is lower semicontinuous, and for each n = 1; : : : ;1, Ln is a non-

increasing function. Choose any ! =2 � and for brevity omit the sample point ! from
Ln and L1.

We �rst prove that Ln are (almost) equi-lower semicontinuous, i.e for any x 2 Rn

and � > 0 there exist a neighborhood U(x; �) and a number N(x; �) such that

Ln(y) > Ln(x)� � for each y 2 U(x; �) and n � N(x; �):

Fix x and � > 0. Since L1 is lower semicontinuous, we can �nd a � > 0 satisfying
L1(y) > L1(x) � �=3 for y 2 �m

i=1[xi � �; xi + �]. We also have Ln(x + �) !

L1(x + �) and Ln(x) ! L1(x) by pointwise convergence where (x + �) means
(x1 + �; : : : ; xm + �). Hence we can choose N such that

Ln(x+ �) > L1(x + �)� �=3 and L1(x) > Ln(x)� �=3 for n � N:

Then for n � N ,

Ln(y) � Ln(x+�) > L1(x+�)��=3 > L1(x)��=3��=3 � Ln(x)��=3�2�=3 = Ln(x)��:

Now Ln
e

�! L1 follows from Theorem 5 of Kall (1986).
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