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Abstract

Cooperative aspects of multiple criteria decision making with respect to cost

allocation in a network will be studied. The vector valued costs of a graph that

connects a group of geographically scattered users to a common source have to
be distributed among the users. Here a speci�c class of cost allocation rules, the
so-called Bird rules, are studied. Bird allocations can be determined by means of
a greedy algorithm. This algorithm is based on an order on the edge set. Three

di�erent orders and their Bird rules are studied. Two of the three associated Bird
allocation rules will be characterized. Those two constitute a re�nement of the
set of stable cost allocations of the multiple criteria minimum cost spanning tree
problem.

Keywords: Multi Criteria Analysis, Cooperative Game Theory, Cost Allocation,

Spanning Trees, Stability.



1 Introduction

This paper studies cooperative aspects of multiple criteria decision making (MCDM)

with respect to cost allocation in a network.

MCDM has gained broad interest and has been extensively described in the

literature on operations research and decision theory over the last two decades.

MCDM is concerned with solving problems for which the �nal decisions have

to be acceptable with regard to several possibly con
icting objectives. Various

types of decision problems have characteristics which imply that a number of

objectives should be taken into consideration. Moreover, by doing so, a more

detailed description of the underlying problem is obtained, thereby hopefully

giving better decisions. Two good reference books on MCDM are Steuer (1986)

and Vincke (1992).

Consider a network in which a number of geographically scattered users have

to be connected to a common source. We assume that the costs for each link
between two users or between a user and the source are known and non-negative.

Furthermore, each link is assumed to carry di�erent types of costs; for example,
the construction costs and the maintenance costs of the link. We assume that
the users dislike any distribution system that has costs dominated by the costs of
another available distribution system. Thus, acceptable distribution systems can
be found among the set of spanning trees in the network. For approximations of

the set of cost e�cient spanning trees see Andersen, J�ornsten and Lind (1995)
and Hamacher and Ruhe (1994).

Next, the problem arises how to allocate the di�erent types of costs of a
spanning tree to the users. We investigate three cost allocation rules, each based
on an ordering of the network's edge set. We will refer to the problem of �nding

an acceptable distribution system and allocating its costs to the users as the cost
e�cient spanning tree (cest) problem.

For the less general case, the situation in which each link is given a one-
dimensional cost, the corresponding problem, a so-called minimum cost spanning
tree (mcst) problem, was �rst studied by Claus and Kleitman (1973) and later,
among others, by Bird (1976), Granot and Huberman (1981), and Feltkamp,

Tijs, and Muto (1994a). In a mcst problem all minimum cost spanning trees are

readily found by means of a greedy algorithm �a la Prim (1957), Dijkstra (1959)
or Kruskal (1956). The basic idea behind the algorithms is to add the cheapest
available edges, one after another to the already generated set of edges, without

constructing a cycle.

Furthermore, an allocation of the costs of a spanning tree was proposed by
Bird (1976): each agent is attributed the costs of the last edge in the unique

path from the source to the node that represents the agent. This allocation can
be implemented easily into the greedy algorithm approach of Prim (1957) and

Dijkstra (1959); see Feltkamp et al. (1994a). We will refer to this type of cost

allocations as Bird allocations.
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The basis of the greedy algorithms is an order of the edge set. For mcst prob-

lems a natural order is provided by simply arranging the edges in non-decreasing

costs. In the multiple criteria case the users might reach consensus upon a com-

mon preference relation that will be used to order the edges in the network at

hand. The more properties the users request for a preference relation, the fewer

orders are applicable. Social choice theory might suggest a description of suitable

preference relations and thereby orders.

We study three speci�c orders: unanimity, also called the strong version of

the Pareto principle, and two versions of utilitarianism, the classical utilitarian

principle and the Nash principle. The greedy algorithm is then applied to each

of them, so the associated order based Bird-rules are easily deduced.

Several properties of allocation rules are described and used to characterize

the Bird-rules based on unanimity and on the classical utilitarian principle, re-

spectively. The relationship between properties on the orders and properties of

their corresponding Bird-rules is investigated through a consistency property. A
Bird-rule is said to be consistent if the conceptual meanings of the properties
of respectively the Bird-rule and of the order used to de�ne it do not contradict

each other. The two characterized Bird-rules satisfy the consistency property;
however, the Bird-rule based on the Nash principle does not. For a characteriza-
tion of the Bird-rule de�ned with respect to mcst problems see Feltkamp et al.
(1994a). It is shown that the Bird-rule based on the classical utilitarian princi-
ple constitutes a re�nement of the Bird-rule based on unanimity. Moreover, the

two consistent Bird-rules provide stable cost allocations. The stability concept is
derived from a core concept for related games.

The paper is organized as follows. In section 2 the cost e�cient spanning
tree problem is presented. The notion of a solution concept is introduced for this

setting and a short review is given of Bird allocations and Bird-rules in the mcst
setting. Moreover, the order based Bird-rule is formally introduced. Three orders
as well as their associated Bird-rules are described in section 3. Properties, both
of orders and of solution concepts, are given. The section's main part deals with
characterizations of two Bird-rules. Two stability concepts will be revealed in

section 4, and the cost allocations derived from the Bird-rule based on unanimity
are shown to be stable. Section 5 gives conclusions.

2 Cost E�cient Spanning Tree Problems

In a multiple criteria cost e�cient spanning tree problem M = hN [ f�g; E;wi

a �nite group of agents N = f1; : : : ; ng all have to be connected to a common

source, here denoted by �, via a subset of the set of links E among the agents
or between an agent and the source. Each link e 2 E is assumed to carry m

di�erent non-negative costs, which is captured in the model by the cost function
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w : E ! IRm
+ .

The costs of the distribution system have to be allocated among the agents.

This implies that the agents have an incentive to cooperate since there might

exist a more cost e�cient distribution system than the one where each agent

connects himself directly to the source. Further, any distribution system that

connects all the agents to the source and which includes a cycle will be at least as

expensive as the distribution system where a link in the cycle is removed. Thus,

distribution systems for which the costs are not dominated by the costs of other

distribution systems, and hence cost e�cient ones, can be found among the set

of spanning trees within the network. This explains why the problem is called

a multiple criteria cost e�cient spanning tree problem. We will refer to such

problem as a cest problem.

LetM denote the class of multiple criteria cest problems. A solution concept,

�, for cest problems is a correspondence that assigns to every M 2 M, with

M = hN [ f�g; E;wi, a subset of (IRm
+ )

N . Each x 2 (IRm
+ )

N is seen as the
allocation of the costs

Pn
i=1 xi 2 IRm

+ to the users 1 up to n. Agent i 2 N is
allocated the costs xi = (x1i ; : : : ; x

m
i ) 2 IRm

+ .

2.1 Cost Allocation Through a Greedy Algorithm

The two issues a cest problem is concerned with, the one of determining an
acceptable distribution system and the related one of allocating the costs of the

system, can be solved in an integrated approach. A greedy algorithm is used to
determine distribution systems and to de�ne a solution concept that describes
the allocation of the costs of each system.

The greedy algorithm introduced by Prim (1957) and Dijkstra (1959) is a
classical method to determine a minimum cost spanning tree. This approach

for the single criterion mcst problem boils down to adding nodes and edges one
after another to a subgraph connected to the source. In each iteration one of the
cheapest edges is added without constructing a cycle. A minimum cost spanning
tree results. A straightforward adaptation of this approach to multiple criteria
cest problems, by adding non-dominated edges in each step, does not in general

lead to an e�cient spanning tree as is seen in the next example.

Example 1.

Let N = f1; 2; 3g and let the costs of the edges be as in the following �gure.
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Figure 1.

Here, by taking non-dominated edges in each iteration, one might select the

following sequence of edges: (�; 1); (�; 3); (�; 2). This leads to a spanning tree T
which costs (10; 9). However, T is not e�cient since its cost is dominated by the
tree hN [ f�g; f(�; 3); (1; 3); (2; 3)gi which costs (9; 8). Notice on the other hand

that the set of spanning trees which can be constructed by adding non-dominated
edges in each iteration contains all e�cient spanning trees.

For mcst problems a rule for the allocation of the cost of a spanning tree
between its users is suggested by Bird (1976). Each user is allocated the cost of
the �rst edge on the unique path from his node to the source. The implementation

of the Bird-rule into the Prim-Dijkstra algorithm is described in Feltkamp et al.
(1994a). In each step the cost of the new edge is allocated to the agent represented
by the newly added node. The algorithmic method constitutes a solution concept
that yields for every mcst problem the set of Bird allocations associated to the
set of minimum cost spanning trees.

It will be clear that for a cest problem Bird allocations for a given spanning
tree can be de�ned in analogy to the mcst case. Also, a greedy algorithm that
produces spanning trees in a similar way as above can be extended with the cost

allocation step.
The greedy algorithm applied in mcst problems uses a natural order on the

edge set; edge e is preferred to edge f if the cost of e is less than the cost of f .
In multiple criteria cest problems, however, such natural order is not explicitly

available. Instead we assume that the agents somehow reach agreement on an
order that will be used in the greedy algorithm.

Now, consider a cest problemM = hN [f�g; E;wi 2 M. By R(w) we denote
a partial order on the edge set (i.e. R(w) is re
exive: eR(w)e for all e 2 E and

transitive: eR(w)f and fR(w)g implies eR(w)g for all e; f; g 2 E) de�ned with

respect to the cost function. Let e; f 2 E be such that eR(w)f . This means that
the agents as a group believe that it is as least as good to use the edge e in the

distribution system as edge f given that they have to choose among the edges in
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order to construct the distribution system. Notice that there might exist edges

which are not comparable, i.e. e; f 2 E and neither eR(w)f nor fR(w)e. We

write R instead of R(w) if no ambiguity can occur.

The order based greedy algorithm builds a spanning tree and allocates the

cost of the newly added edge to the agent represented by the newly added node.

Denote for each set of edges D the set of nodes incident with D by �(D).

The order based greedy algorithm

Given: M = hN [ f�g; E;wi 2 M and R a partial order on the edge set E.

1. Set T = ;.

2. Take an edge e 2 E n T incident to f�g [ �(T ) such that the subgraph

spanned by feg [ T does not contain a cycle and such that no f 2 E n T

incident to f�g [ �(T ) exists for which the subgraph spanned by ffg [ T

does not contain a cycle and fRe and :(eRf).

3. Assign cost w(e) to the agent represented by the unique node that has been
connected to the source in the previous step.

4. T := T [ feg.

5. Continue with step 2 unless all nodes are connected to the source.

A spanning tree is constructed and an element in the solution concept �R is found.
Denote the collection of edge sets that the algorithm based on R for the problem
M 2 M can give as output by TR(M). Clearly, TR(M) is �nite for each M . The
solution concept �R assigns to every cest problem M , with ordering R on the
edge set, the set of cost allocations which are provided by the algorithm. Thus,

for each M = hN [ f�g; E;wi 2 M and each order R we have

�R(M) = f(w((pT (1); 1)); : : : ; w((pT (n); n))) j T 2 TR(M)g

where for each spanning tree hN [ f�g; T i and for each i 2 N the node which is
the immediate predecessor of i in the unique path from i to the source is denoted

by pT (i).

2.2 The Order Based Bird-rule

An order R on the edge set is said to satisfy unanimity if for all e; f 2 E the
following holds:

w(e) � w(f) ) eRf:

w(e) � w(f); w(e) 6= w(f) ) eRf and :fRe:

Unanimity, sometimes referred to as the strong version of the Pareto principle, cf.

d'Aspremont and Gevers (1977), implies that the agents prefer to pay as little as
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possible of the costs of the di�erent criteria. In the single criterion case this means

that the edges will be ordered in non-decreasing costs. Throughout the paper we

assume that the agents agree upon an order which satis�es unanimity. This is in

accordance with the assumption that the agents dislike any distribution system

which costs are dominated by the costs of another available distribution system.

However, the order based greedy algorithm might still construct a non-e�cient

spanning tree as it is seen in example 1.

To take care of this problem it seems reasonable to restrict the solution to the

cost allocations in �R(M) which are non-dominated with respect to any other

cost allocation in �R(M). The restrictive step added to the greedy algorithm

leads to a subset of �R(M) for each M 2 M. The solution concept thus de�ned

will be called the Bird-rule with respect to R. We denote it BR and it is for each

M 2 M given formally by

BR(M) = fx 2 �R(M) j6 9y 2 �R(M) :
X
i2N

yi �
X
i2N

xi and
X
i2N

yi 6=
X
i2N

xig:

3 Characterizations of Order Based Bird-rules

For a multiple criteria cest problemM = hN[f�g; E;wi 2 M the cost allocations
derived by the Bird-rule, BR(M), depend directly on the order R.

We assumed that R satis�es unanimity and hence in the single criterion
case the edges are simply ordered in non-decreasing costs. However, in the m-

dimensional setting several orders suggest themselves as being reasonable. To
choose an order on the edge set the agents might select a mapping from the set
of cost-functions to the set of orderings on the edge set and then use the derived
order. Moreover, they might agree upon some properties which the mapping
has to satisfy and use these to de�ne an acceptable order. So, to determine

which order to use, it is helpful to take also other properties than unanimity into
consideration.

Properties for orderings on a �nite set of alternatives are studied within the

context of social choice theory. Several of such properties can be interpreted into
the framework of cest problems. The following list of possible properties for an

order R(�), regarded as a mapping from the set of cost-functions to the set of
orderings of the edge set, is considered.

Anonymity.

For all w : E ! IRm
+ , for every permutation � on E and for all e; f 2 E

��1(e)R(w)��1(f) , eR(w�)f

where w�(e) = w(�(e)) for all e 2 E:
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Neutrality.

For all w : E ! IRm
+ , for every permutation � on f1; : : : ;mg and for all e; f 2 E

eR(w)f , eR(w�)f

where w�
t (e) = w�(t)(e) for t = 1; : : : ;m for all e 2 E.

Scale-independence.

For all w : E ! IRm
+ , w > 0, for all a 2 IRm

++ and for all e; f 2 E

eR(w)f , eR(a � w)f

where (a � w)(e) = (a1w1(e); : : : ; amwm(e)) for all e 2 E:

Zero-independence.

For all w : E ! IRm
+ , for all b 2 IRm for which (w + b)(e) � 0 for all e 2 E and

for all e; f 2 E
eR(w)f , eR(w + b)f

where (w + b)(e) = (w1(e) + b1; : : : ; wm(e) + bm) for all e 2 E:

Independence.

For every pair of cost functions, w;w : E ! IRm
+ , and for all e; f 2 E such that

w(e) = w(e) and w(f) = w(f)

eR(w)f , eR(w)f:

If R(�) satis�es anonymity and neutrality it follows that the deduced order on the

edge set is not in
uenced by the names or the indexation of neither the nodes nor
the criteria. Moreover, if R(�) satis�es scale- and zero-independence the scaling
of the di�erent criteria does not a�ect the derived order. The di�erent criteria
can be measured in any terms that we like, as long as only a�ne transformations
of the measurements are made. Finally, independence says that if two edges are

comparable with respect to the derived order R then the order of the two edges
should not depend of the cost of the other edges.

Now, to examine the relationship between the properties of an order and
the properties of the order based Bird-rule and to provide characterizations of

various Bird-rules, we present a list of properties for a solution concept � on

M. Some more notation is introduced �rst. For all M = hN [ f�g; E;wi 2 M

let the collection of edge sets associated with spanning trees on hN [ f�g; Ei be

denoted by TN . Denote for each D � E the corresponding cost by w(D), i.e.
w(D) =

P
e2D w(e) and denote the set of costs associated with the set of e�cient

spanning trees by Eff(M), i.e. let

Eff(M) = fw(T ) j T 2 TN and 6 9T 2 TN : w(T ) � w(T ); w(T ) 6= w(T )g:
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We state the following possible properties for a solution concept � on M.

Non-emptiness.

�(M) 6= ;, 8M 2 M.

Cost E�ciency.

f
P

i2N xi j x 2 �(M)g � Eff(M), 8M 2 M:

Anonymity.

For all hN [ f�g; E;wi 2 M and for every permutation � on N

fx�(i) 2 IRm
+ j x 2 �(N[f�g; E;w)g = fxi 2 IRm

+ j x 2 �(N[f�g; E;w�)g 8i 2 N

where w�((�(i); �(j))) = w((i; j)) for all i; j 2 N; i 6= j.

Neutrality.

For all hN [ f�g; E;wi 2 M and for every permutation � on f1; : : : ;mg

x 2 �(N [ f�g; E;w), (x�1 ; : : : ; x
�
n) 2 �(N [ f�g; E;w�)

where y��(t) = yt for all t 2 f1; : : : ;mg for all y 2 IRm.

Scale-independence.

For all hN [ f�g; E;wi 2 M and for all a 2 IRm
++,

�(N [ f�g; E; a � w) = f(a � x1; : : : ; a � xn) j x 2 �(N [ f�g; E;w)g

where (a � y)t = atyt for all t 2 f1; : : : ;mg for all y 2 IRm.

Zero-independence.

For all hN [ f�g; E;wi 2 M and for all b 2 IRm for which (w + b)(e) � 0 for all
e 2 E

�(N [ f�g; E;w + b) = f(x1 + b; : : : ; xn + b) j x 2 �(N [ f�g; E;w)g

where (y + b)t = yt + bt for all t 2 f1; : : : ;mg for all y 2 IRm.

The last two properties of the list take leafs of spanning trees into account.
We call i 2 N a leaf of the spanning tree hN [ f�g; T i if no j 2 N exists such

that i is the predecessor of j in the unique path from � to j within the tree.

Leaf-consistency.

For all hN [ f�g; E;wi 2 M and for all x 2 �(N [ f�g; E;w), if i 2 N is a leaf
in a spanning tree hN [ f�g; T i for which

P
i2N xi = w(T ) then

x�i 2 �((N n fig) [ f�g; E�i; w) and
X

j2Nnfig

x�ij = w(T \ E�i)
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where x�i = (xj)j2Nnfig, E
�i = f(l; k) 2 E j l 6= i; k 6= ig and w should be

restricted to the domain E�i.

Converse leaf-consistency.

For all hN [ f�g; E;wi 2 M with jN j � 2 and for all x 2 (IRm
+ )

N , if
P

i2N xi =

w(T ) for an e�cient spanning tree hN[f�g; T i and x�i 2 �((Nnfig)[f�g; E�i; w)

for all i 2 N where i is a leaf in hN [ f�g; T i, then

x 2 �(N;E;w):

For a solution concept � on M non-emptiness says that a cost allocation will be

attributed to each problem. The solution concept satis�es cost e�ciency if each

cost allocation derived by � exactly covers the costs of an e�cient spanning tree.

The interpretation of the next four properties: anonymity, neutrality, scale- and

zero-independence is analogical to the interpretation given for the same properties

with respect to an order. Further, leaf-consistency says that the costs allocated

to the other agents should not be a�ected if an agent situated in a leaf of the
distribution system pays his share and leaves it. Converse leaf-consistency, on the
other hand, says that if a cost allocation covers the costs of an e�cient spanning
tree and is consistent with the problems ignoring any agent represented by a leaf
of the tree then the allocation is an element of the set of cost allocations generated
by the solution concept.

We have stated two lists. A list of properties de�ned for orderings on the
edge set and a list of properties associated with solution concepts on M. Now,
recall that each Bird-rule is de�ned with respect to an order on the edge set.
Such an order might imply or can be de�ned by a set of properties in which the
agents believe. Thus, it would only make sense to regard the associated Bird-rule

as a reasonable solution concept if the conceptual meaning of the properties for
the Bird-rule and the properties of the order do correspond. If an order satis�es
neutrality and the rule does too, we say that the rule is consistent with respect
to neutrality. Thus, consistency with respect to anonymity, neutrality, scale- and
zero-independence can be de�ned. The correspondence between unanimity and

cost e�ciency will be given by consistency with respect to unanimity. In this

paper each order is assumed to satisfy unanimity and hence the associated Bird-
rules all have to satisfy cost e�ciency to be consistent w.r.t. unanimity. Further,
we will call a Bird-rule consistent if the rule is consistent w.r.t. the properties

used to de�ne the underlying order of the rule.

3.1 Bird Allocations Based on Unanimity

A prerequisite for the de�nition of the Bird-rule with respect to an order is that

the order satis�es unanimity. This seems quite natural since we assume that the
agents confronted with two distribution systems, prefer the cheapest. Consider

9



now for each multiple criteria cest problemM = hN [f�g; E;wi 2 M the partial

order � de�ned by

8e; f 2 E : e � f , w(e) � w(f):

It is straightforward to show that the related mapping � (�) satis�es unanimity,

anonymity, neutrality, scale- and zero-independence and independence. More-

over, � provides the constraints an arbitrary order on the edge set has to ful�ll

to satisfy unanimity.

The next proposition shows that the corresponding Bird-rule, B�, satis�es all

the properties for a solution concept on M we have listed so far.

Proposition 1 B� satis�es non-emptiness, cost e�ciency, anonymity, neutral-

ity, scale- and zero-independence, leaf-consistency and converse leaf-consistency.

Proof. Let M 2 M. It follows from Sera�ni (1986) and is easy to prove that
Eff(M) � f

P
i2N xi j x 2 ��(M)g and thus by the de�nition of B�(M) we have

Eff(M) = f
P

i2N xi j x 2 B�(M)g. Hence, B� satis�es non-emptiness and cost

e�ciency. It is straightforward to show that B� satis�es the other properties too.
2

An immediate consequence of Proposition 1 is that B� is consistent w.r.t. anony-
mity, neutrality, zero- and scale-independence and more important w.r.t. unanim-
ity. Thus, B� is a consistent solution concept. Furthermore, note that B�(M)

supports the costs of all e�cient spanning trees for M . To provide a characteri-
zation of B� we use the following lemma which is an adaptation of lemma 3.6 in
Feltkamp et al. (1994a).

Lemma 2 Let ' be a solution concept on M which satis�es cost e�ciency

and leaf-consistency and let  be a solution concept on M which satis�es non-

emptiness, e�ciency and converse leaf-consistency. Then

'(M) �  (M) 8M 2 M:

Proof. The proof uses induction in the number of agents. First, let

hN [f�g; E;wi 2 M be such that jN j = 1. Then, by non-emptiness and cost e�-

ciency of  and cost e�ciency of ' we have '(N [f�g; E;w) �  (N [f�g; E;w).

Now, let k 2 IN, k � 2. Assume '(M) �  (M) for all M 2 M with jN j = k � 1
and let M 2 M be such that jN j = k. Assume '(M) 6= ; and let x 2 '(M).

By cost e�ciency there exists an e�cient spanning tree hN [ f�g; T i such thatP
i2N xi = w(T ). By leaf-consistency of ' and the induction hypothesis it follows

that

x�i 2 '((N n fig) [ f�g; E�i; w) �  ((N n fig) [ f�g; E�i; w)

for all i 2 N which are leafs in hN [ f�g; T i. So, by converse leaf-consistency of
 we conclude that x 2  (M). 2
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Theorem 3 B� is the unique solution concept on M which satis�es non-empti-

ness, cost e�ciency, leaf-consistency and converse leaf-consistency.

Proof. By Proposition 1 it follows that B� satis�es the properties. Next, let �

denote a solution concept which satis�es non-emptiness, cost e�ciency, leaf-con-

sistency and converse leaf-consistency. Let M 2 M. Then by Lemma 2 we have

�(M) � B�(M) and B�(M) � �(M). 2

Moreover, the four properties: non-emptiness, cost e�ciency, leaf-consistency and

converse leaf-consistency are logically independent. First, consider the solution

concept given by �(M) = ; for allM 2 M. Apart from non-emptiness it satis�es

the properties. Second, notice that the solution concept de�ned by �(M) =

(w(E); : : : ; w(E)) for all M = hN [ f�g; E;wi 2 M satis�es non-emptiness,

leaf-consistency and converse leaf-consistency but not cost e�ciency. Third, let

�(M) = fx 2 (IRm
+ )

N j
X
i2N

xi 2 Eff(M)g 8M 2 M:

�(M) satis�es non-emptiness, cost e�ciency and converse leaf-consistency but

is not leaf-consistent. Finally, we consider the solution concept de�ned for all
M 2 M by

�(M) = fx 2 B�(M) j
X
i2N

xi �L

X
i2N

yi;8y 2 B�(M)g (1)

where �L denotes the lexicographic order on IRm. (Let x; y 2 IRm. Then x �L y

if and only if x = y or there exists a k 2 f1; : : : ;mg such that xt = yt for
t = 1; : : : ; k�1 and xk < yk.) Notice that � satis�es non-emptiness, cost e�ciency
and leaf-consistency but that it is easy to �nd a cest problemM = hN[f�g; E;wi

for which �(M) does not coincide with B�(M). Hence, by Theorem 3 , � does

not satisfy converse leaf-consistency.

3.2 Bird Allocations Based on Utilitarianism

Consider a multiple criteria cest problem M = hN [ f�g; E;wi 2 M. Since

f
P

i2N xi j x 2 B�(M)g = Eff(M) we have that B�(M) generally contains

several elements. By using a complete order R on the edge set (i.e. eRf or fRe
for all e; f 2 E and R is re
exive and transitive) which satis�es unanimity we

get �R(M) � ��(M) for all M 2 M. Moreover, it will be possible to �nd a cest
problemM for which �R(M) � ��(M). Thus, �R is a re�nement of ��. Further,

if BR satis�es cost e�ciency, BR constitutes a re�nement of B�.
We will consider two complete orders on the edge set which both satisfy

unanimity. They are well-studied within social choice theory and are based on

respectively the classical utilitarian principle and the Nash principle.

11



For each cest problem M = hN [ f�g; E;wi 2 M the order based on the

classical utilitarian principle, �(w), is de�ned by

8e; f 2 E : e�(w)f ,
mX
t=1

wt(e) �
mX
t=1

wt(f):

The order based on the Nash principle, �(w), is de�ned only if w(e) > 0 for all

e 2 E. However, if this is the case then �(w) is given by

8e; f 2 E : e�(w)f ,
mY
t=1

wt(e) �
mY
t=1

wt(f):

Notice that a well-de�ned order derived from the Nash principle is equivalent

to the order obtained from the classical utilitarian principle where a logarithmic

transformation is performed on each cost component.

The next theorem provides characterizations of both orders discussed above.
The theorem is stated in the framework of multiple criteria cest problems. A
proof of the �rst statement has been given by d'Aspremont and Gevers (1977) in

the setting of social choice theory. For the last part see Moulin (1988), Theorem
2.3.

Theorem 4 Let M = hN [ f�g; E;wi 2 M with jN j � 2. Let R denote a

complete order on the edge set E. Then

� R satis�es unanimity, neutrality, zero-independence and independence if

and only if

8e; f 2 E : eRf , e�f:

� Assume w(e) > 0 for all e 2 E. Then, R satis�es unanimity, neutrality,

scale-independence and independence if and only if

8e; f 2 E : eRf , e�f:

It is an immediate consequence of Theorem 4 that there does not exist a com-

plete order on the edge set which satis�es unanimity, neutrality, scale- and zero-

independence and independence.
A Bird-rule can be de�ned with respect to each of the orders, � and �, since

they both satisfy unanimity. We will denote these two Bird-rules by respectively
B� and B�. The following lemma gives an equivalent de�nition of B�.

Lemma 5 Let M 2 M. Then

B�(M) = ��(M)

= f(w((pT (1); 1)); : : : ; w((pT (n); n))) j T 2 argminT2TN

mX
t=1

wt(T )g:
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Proof. Let T 2 argminT2TN
Pm
t=1 wt(T ) and notice that T can be found by a

greedy algorithm applied to the mcst problem hN [f�g; E;wi where the cost for

each edge e 2 E is de�ned by w(e) =
Pm

t=1wt(e). It follows from the de�nition

of � and ��(M) that

��(M) = f(w((pT (1); 1)); : : : ; w((pT (n); n))) j T 2 argminT2TN

mX
t=1

wt(T )g:

By the de�nition of B� we have B�(M) � ��(M). Furthermore, for each T 2 TN

with
Pm

t=1wt(T ) minimal it holds that there does not exist any element in TN
which costs dominate w(T ). Therefore, B�(M) = ��(M). 2

For �� and B� it can be shown in a similar way that B�(M) � ��(M) =

f(w((pT (1); 1)); : : : ; w((pT (n); n))) j T 2 argminT2TN
Qm
t=1wt(T )g for each M 2

M where w(e) > 0 for all e 2 E.

In the following we will concentrate on B�. To achieve a characterization of
B� based on the introduced properties we �rst show that B� does not satisfy

scale-independence and converse leaf-consistency.

Example 1, continued.

Let M denote the cest problem corresponding to �gure 1. Then B�(M) =
f((2; 4); (4; 2); (3; 2))g.

Now, let a = (1; 3). Then, B�(N [ f�g; E; a � w) = f((2; 12); (6; 3); (3; 6))g 6=

f(a � (2; 4); a � (4; 2); a � (3; 2))g. We conclude that B� does not satisfy scale-
independence.

Next, consider the tree hN [ f�g; T i = hN [ f�g; f(�; 3); (1; 3); (1; 2)gi. It is
easy to see that hN [ f�g; T i is e�cient. Let x = ((2; 4); (3; 4); (3; 2)) and henceP

i2N xi = w(T ). The only leaf in hN [f�g; T i is node 2 and B�(f1; 3; �g; E
�2; w)

= f((2; 4); (3; 2))g = f(x1; x3)g. It follows that B� does not satisfy converse leaf-

consistency since x 62 B�(M).

However, B� satis�es most of the listed properties for a solution concept on M
as it is stated in the following proposition. A proof can be given by means of
Lemma 5.

Proposition 6 B� satis�es non-emptiness, cost e�ciency, anonymity, neutral-

ity, zero-independence and leaf-consistency.

It follows from Theorem 4 and Proposition 6 that B� is consistent with respect
to neutrality, zero-independence and unanimity. Furthermore, it is easy to see

that B� is consistent w.r.t. anonymity. Thus, B� is a consistent solution concept.

Next, since B� is leaf-consistent and cost e�cient and B� satis�es non-
emptiness, cost e�ciency and converse leaf-consistency (Propositions 1 and 6)

Lemma 2 shows that B�(M) � B�(M) for all M 2 M. Furthermore, it is easy
to �nd a cest problemM for which B�(M) � B�(M). Thus, B� is a re�nement
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of B�. To give a characterization of B� we describe the notion of maximality

and the so-called tree-additivity property. A solution concept, �, on M is called

maximal with respect to a list of properties, if � satis�es the various properties

and if the cost allocations for every solution concept onM that satis�es the same

properties are included in the cost allocations obtained by �. Secondly, a solution

concept, �, on M is said to satisfy tree-additivity if the following holds for all

pairs M = hN [ f�g; E;wi, M = hN [ f�g; E;wi 2 M.

If there exists an x 2 �(M) and a y 2 �(M) for which
P

i2N xi = w(T ) andP
i2N yi = w(T ) for a spanning tree hN [ f�g; T i, then there exists a z 2 (IRm

+ )
N

such that

z 2 �(N [ f�g; E;w + w) and
X
i2N

zi = (w + w)(T ):

Tree-additivity states that if a spanning tree supports a solution for two di�erent

cost-functions then it should also support a solution for the cest problem where
the two cost-functions are added together.

Theorem 7 B� is the maximal solution concept on M which satis�es non-emp-

tiness, cost e�ciency, neutrality, leaf-consistency and tree-additivity.

Proof. It follows from Proposition 6 that B� satis�es non-emptiness, e�ciency,

neutrality and leaf-consistency. In order to prove that B� satis�es tree-additivity
letM = hN [ f�g; E;wi, M = hN [ f�g; E;wi 2 M be such that there exists an
x 2 B�(M), a y 2 B�(M) and a spanning tree hN [ f�g; T i for which

P
i2N xi =

w(T ) and
P

i2N yi = w(T ). Let z; z 2 (IRm
+ )

N be de�ned by zi = w((pT (i); i)) and
zi = w((pT (i); i)) for all i 2 N . Then,

P
i2N [zi + zi] = w(T ) + w(T ). Moreover,

we have by Lemma 5

mX
t=1

[wt(T ) + wt(T )] = min
~T2TN

mX
t=1

wt( ~T ) + min
~T2TN

mX
t=1

wt( ~T ) � min
~T2TN

mX
t=1

(wt( ~T ) + wt( ~T ))

and thus z + z 2 B�(N [ f�g; E;w + w).
Next, let � denote a solution concept which satis�es the �ve properties. It

su�ces to prove that �(M) � B�(M) for allM 2 M. The proof uses induction in

the number of agents. First, letM = hN [f�g; E;wi 2 M be such that jN j = 1.
Then, by non-emptiness and cost e�ciency of �(M) we get �(M) = fw((�; 1))g.

From the de�nition of B� we have B�(M) = fw((�; 1))g. Thus, �(M) = B�(M).
Secondly, let k 2 IN. Assume �(M) � B�(M) for all M = hN [ f�g; E;wi 2 M

with jN j = k � 1. Let M = hN [ f�g; E;wi 2 M be such that jN j = k. By
non-emptiness of � we have a x 2 �(M). We will show that x 2 B�(M). There

exists an e�cient spanning tree hN [ f�g; T i for which
P

i2N xi = w(T ) since
� satis�es cost e�ciency. Let i 2 N denote a leaf in hN [ f�g; T i. Then, by

leaf-consistency of � and the induction hypothesis we have

x�i 2 �((N n fig) [ f�g; E�i; w) � B�((N n fig) [ f�g; E�i; w) (2)
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and
P

j2Nnfigxj = w(T \ E�i). Therefore, xi = w((pT (i); i)). Moreover, by (2)

and the de�nition of B� there exists a spanning tree h(N n fig) [ f�g; bT i such
that xj = w((pbT (j); j)) for all j 2 N n fig. Now, let T 2 TN be de�ned by

T = f(pT (i); i)g [
bT . Notice that

P
j2N xj = w(T ) = w(T ). By Lemma 5 it

su�ces to show that

X
j2N

mX
t=1

wt((pT (j); j)) = min
T2TN

mX
t=1

wt(T )

or equivalent, see Ahuja, Magnanti and Orlin (1993), Theorem 13.1, that for each

edge e in the tree hN[f�g; T i no edge f exists such that
Pm

t=1wt(f) <
Pm

t=1wt(e)

and hN [f�g; (T nfeg)[ffgi is a spanning tree. So, assume that there exists an

e 2 T and an f 2 E n T with
Pm
t=1 wt(f) <

Pm
t=1wt(e) and ffg [ (T n feg) 2 TN .

For s = 1; : : : ;m let the permutation �[s] on f1; : : : ;mg be de�ned by

�[s](t) =

(
t+ s� 1 if t+ s � m+ 1:
t+ s�m� 1 if t+ s > m+ 1:

Notice that

mX
s=1

w�[s](e) = (
mX
t=1

wt(e); : : : ;
mX
t=1

wt(e)) > (
mX
t=1

wt(f); : : : ;
mX
t=1

wt(f)):

By neutrality of � it follows (x
�[s]
1 ; : : : ; x�[s]n ) 2 �(N [ f�g; E;w�[s]) for s =

1; : : : ;m. Also
Pn
i=1 x

�[s]
i = w�[s](T ) for each s 2 f1; : : : ;mg, so by tree-addi-

tivity of � there exists a z 2 �(N [ f�g; E;
Pm

s=1w
�[s]) for which

P
j2N zj =Pm

s=1 w
�[s](T ). This leads to a contradiction with the cost e�ciency of �. 2

In the following we will show that the di�erent properties mentioned in The-

orem 7 are logically independent. First, notice that the two solution concepts
discussed immediately after Theorem 3 satisfy the �ve di�erent properties ex-
cept respectively non-emptiness and e�ciency. Secondly, consider the solution
concept de�ned for all M = hN [ f�g; E;wi 2 M by

�(M) = fx 2 (IRm
+ )

N
j
X
i2N

xi = w(T ); T 2 argminT2TN

mX
t=1

wt(T )g:

It can be shown that � satis�es non-emptiness, e�ciency, neutrality and tree-
additivity. However, � is not leaf-consistent. Thirdly, notice that the solution

concept de�ned by (1) satis�es the �ve properties used in Theorem 7 except
neutrality. Finally, by Proposition 1 we have that B� satis�es non-emptiness,

e�ciency, neutrality and leaf-consistency. However, B� does not satisfy tree-

additivity.
Though B� is the maximal solution concept, it is not the only solution concept

that satis�es the �ve properties used in Theorem 7. Regard for example the
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following one. Let M = hN [ f�g; E;wi 2 M and �(M) be the allocation in
B�(M) that is supported by the eventually unique spanning tree with the least
maximal degree among the trees which edge sets occur in T�(M). If more than
one spanning tree has this least maximal degree �(M) consists of the allocations
in B�(M). Formally,

�(M) =

8<: fx 2 B�(M) j
X
i2N

xi = w(T )g if argminT2T�(M)maxi2N[f�g dT (i) = fTg

B�(M) otherwise

where dT (i) denotes for each i 2 N [ f�g the degree of node i in hN [ f�g; T i,

i.e. the number of edges in the spanning tree hN [ f�g; T i which are incident

to node i. We have �(M) � B�(M) for all M 2 M. Moreover, � satis�es the

properties listed in Theorem 7 and one can �nd a multiple criteria cest problem

hN[f�g; E;wi for which �(N[f�g; E;w) is strictly included inB�(N[f�g; E;w).

Hence, the �ve properties do not de�ne a unique solution concept.

We will not discuss B� into detail. Our statement considers the discrepancy
between the order � and the related rule B�. By means of Example 1 it is easy
to see that B� does not satisfy cost e�ciency, though unanimity is a property of
�. Thus, B� is not consistent w.r.t. unanimity and by Theorem 4 we conclude
that B� is not a consistent solution concept. On the other hand, B� does satisfy
anonymity, neutrality and scale-independence and it is consistent w.r.t. these

properties since � satis�es the corresponding properties.

Example 1, continued.

Let M denote the multiple criteria cest problem associated with �gure 1. It is
easy to see that B�(M) = f((1; 6); (6; 1); (3; 2))g. Now, let x 2 B�(M). Then, we
have

P
i2N xi = (10; 9) > (9; 8) = w((1; 3)) + w((�; 3)) + w((2; 3)). We conclude

that B� does not satisfy cost e�ciency.

4 Stability of cost allocations

The aim of this section is to present two stability conditions for cost allocation
rules on multiple criteria cest problems and to show that the Bird-rule based on

unanimity provides stable cost allocations. A cost allocation is said to be stable if

no coalition of agents can improve upon its payment by constructing a spanning
tree on its own. Several stability conditions can be de�ned since one can have

various interpretations of an improvement within the multiple criteria framework.
A set of cost allocations which satisfy a given collection of stability conditions is

called a core.
We will consider two core concepts: the Cartesian product core (CPC) and

the stable outcome core (SOC).
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4.1 The Cartesian Product Core

The Cartesian product core of a cest problem M = hN [ f�g; E;wi 2 M is

generated by the cores of the related single criterion mcst problems. For each

criterion t 2 f1; : : : ;mg the related mcst problem Mt is de�ned as the problem

hN [f�g; E;wti where wt(e) = (w(e))t for all e 2 E. It represents the problem in

which all the attention is focussed on the t'th criterion. With regard to the t'th

criterion the cost by which a non-empty coalition of agents, S � N , can build its

own spanning tree is given by

cMt(S) = minfwt(T ) j hS [ f�g; T i is a spanning treeg. It has been proved by

Granot and Huberman (1981) that each mcst problem has a non-empty core.

The core of Mt is de�ned by

Core(Mt) = fy 2 IRN
+ j
X
i2N

yi = cMt(N);
X
i2S

yi � cMt(S) 8S � N;S 6= ;g:

Core(Mt) is the set of cost allocations for the t'th criterion by which no coalition

can improve upon its payment of the criterion by constructing its own network.
The Cartesian product core for M , denoted CPC(M), is de�ned by

CPC(M) =
Qm
t=1 Core(Mt)

= fx 2 (IRm
+ )

N j (xti)i2N 2 Core(Mt) for all t 2 f1; : : : ;mgg:

Clearly, CPC(M) is non-empty for each M 2 M. For cost allocations which

belong to the Cartesian product core no coalition can improve upon its payment
in any of the criteria. Hence, no coalition has an incentive to split and strive for
its own spanning tree. Moreover, the Cartesian product core is related to the so-
called multicriteria core de�ned for multicriteria n-person games in characteristic
function form by Bergstresser and Yu (1977).

Next, assume m � 2 and consider two di�erent criteria, s; t 2 f1; : : : ;mg.
Since the set of e�cient spanning trees by which the t'th criterion is minimized
might di�er considerable from the set by which the s'th criterion is minimized,
there may not exists a spanning tree with an edge set T such that wt(T ) = cMt(N)

and ws(T ) = cMs(N). In particular a Cartesian product core allocation may not

cover the cost of any spanning tree in the network. We have, however,

Proposition 8 Let M = hN [ f�g; E;wi 2 M and x 2 CPC(M). Then, x

covers the costs of a connected and spanning subnetwork on N [ f�g if and only

if there exists a spanning tree hN [ f�g; T i with an edge set T 2 TN by which all

the criteria are minimized, simultaneously.

Proof. Let T 2 TN be such that w(T ) � w(T ) for all T 2 TN . Thus, w
t(T ) �

wt(T ) for all T 2 TN and for all criteria t = 1; : : : ;m. So wt(T ) = cMt(N) =P
i2N x

t
i for t = 1; : : : ;m. 2
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The Cartesian product core is a natural solution concept for multiple criteria

problems but Proposition 8 re
ects its major drawback. For multiple criteria cest

problems it only provides cost allocations which cover the costs of a connected

and spanning subnetwork if the problem has non-con
icting criteria.

4.2 The Stable Outcome Core

The Cartesian product core takes the valuation of the di�erent criteria into ac-

count separately. The stable outcome core on the other hand is a solution concept

based on stability for each coalition of agents where all the criteria are taken into

account. Let M = hN [f�g; E;wi 2 M and assume m � 2. The stable outcome

core, SOC(M), is de�ned as the set of allocations x 2 (IRm
+ )

N for which

� There exists an e�cient spanning tree with edge set T 2 TN such thatP
i2N xi = w(T ).

� For all non-empty coalitions S � N there does not exist a spanning tree
hS [ f�g; T i such that w(T ) �

P
i2S xi and w(T ) 6=

P
i2S xi.

A related version of the stable outcome core can be found in the literature on

multi-commodity games, see Derks and Tijs (1986) and Nouweland, Aarts and
Borm (1989).

A stable outcome core allocation covers the costs of a spanning and connected
subnetwork with node set N [ f�g. Furthermore, the last statement in the de�-
nition implies that an arbitrary coalition cannot improve upon its cost allocation

in a criterion by constructing a network of its own without increasing its payment
of at least one other criterion.

In order to show that the Bird-rule based on unanimity B� provides stable
outcome core allocations for each problemM 2 M we need the following lemma.
A proof can be found in Granot and Huberman (1981).

Lemma 9 For all T 2 TN and each spanning tree hS [ f�g;Di, where S � N ,

S 6= ;: the graph hN [ f�g;D [ T n f(pT (i); i) j i 2 Sgi is a spanning tree.

Replacing, in a given tree with edge set T 2 TN , for all agents i 2 S the edges to

their predecessors by the edges of a spanning tree hS [ f�g;Di yields a spanning

tree with edge set in TN .

The main result of this section is the following theorem.

Theorem 10 B�(M) � SOC(M) for each M 2 M.

Proof. Let M = hN [ f�g; E;wi 2 M and let x 2 B�(M). By the de�nition of

B� and Proposition 1 there exists an e�cient spanning tree with edge set T 2 TN

such that xi = w((pT (i); i)) for all i 2 N . So,
P

i2N xi = w(T ).

18



Suppose that there exists a non-empty coalition S � N such that
P

i2S xi is

dominated by the cost of a spanning tree hS [ f�g;Di. Hence, w(D) �
P

i2S xi
and w(D) 6=

P
i2S xi. By Lemma 9 it follows T = D[T nf(pT (i); i) j i 2 Sg 2 TN .

Moreover

w(T ) =
X
i2N

xi =
X

i2NnS

w((pT (i); i)) +
X
i2S

xi �
X

i2NnS

w((pT (i); i)) + w(D) = w(T )

and in a similar way it follows w(T ) 6= w(T ). This contradicts the cost e�ciency

of T . 2

An immediate consequence of Theorem 10 is the non-emptiness of the stable

outcome core. Moreover, if there for a cest problem M 2 M exists a spanning

tree with node set N [ f�g by which all the criteria are minimized, it can be

proved in a similar way that B�(M) � CPC(M). In such a case we also have

that CPC(M) � SOC(M).

5 Conclusion

In this paper we have studied the cost allocation problem which arises when a

group of users, which are concerned with the allocation of multiple costs, have to
be connected to a common source. The reason for doing so was at least twofold.
First of all, by taking a number of various objectives into consideration a more
detailed description of the cost allocation problem is obtained. Secondly, it was
shown that �ndings from social choice theory and cooperative game theory can

be used to analyze a multiple criteria combinatorial optimization problem. The
relationship between the properties of, respectively, orders on the edge set and of
cost allocations was studied by means of characterizations of social welfare func-
tions based on utilitarianism. The stability of cost allocations was investigated
using core concepts from cooperative game theory.

An implementation of a cost allocation rule into Kruskal's algorithm (Kruskal,
1956), that consist of a method of adding `cheap' edges, not constructing cycles,
without the obligation to have a connected set of edges in each step, requires
assumptions on the division of the cost of the added edge among the agents

in the two joined components. Feltkamp (1994b) presented some ideas in this

setting for real-valued cost functions. This approach and the possibility to start

with other orders, how to choose these and to characterize the resulting rules, as

well as a study of strategic properties of cost allocation rules for cest problems
are topics for further research.
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