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Stochastic cooperative games in

insurance and reinsurance
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Abstract

This paper shows how problems in ‘non life’-insurance and ‘non life’-reinsurance

can be modelled simultaneously as cooperative games with stochastic payoffs. Pareto

optimal allocations of the risks faced by the insurers and the insureds are determined.

It is shown that the core of the corresponding insurance games is nonempty. Moreover,

it is shown that specific core allocations are obtained when the zero utility principle is

used for calculating premiums. Finally, game theory is used to give a justification for

subadditive premiums.

KEYWORDS: (re)insurance, zero utility principle, cooperative game theory, Pareto
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1 Introduction

Classical actuarial theory has mainly focused on insurance problems from the insurer’s

point of view. Most of the attention is dedicated to the determination of an appropriate

premium for the insured risk. Obviously, the nature of the risk is a substantial factor in

this process. In this respect, there is an important difference whether the risk arises from

the ‘life’ or the ‘non life’ sector. For the first, there is a profusion of statistical data on the

expected remaining life available, which makes the calculation of an appropriate premium

relatively easy. For the latter, however, things are a bit more complicated. In ‘non life’

insurance the risk is not always easy to capture in a statistical framework. Therefore, several

premium calculation principles have been developed to serve this purpose, see for instance

Goovaerts, De Vylder and Haezendonck (1984).

These calculation principles, however, only take into account a part of the insurer’s

side of the deal. More precisely, they consider whether the premium is high enough to

cover the risk. Competition arising from the presence of other insurers on the one hand,

and the interests of the insured, on the other hand, are at least to a large extent ignored. It

is, of course, better to consider all these aspects in an insurance deal, since the premium

should not only be high enough to compensate the insurer for bearing the individual’s risk,

it should also be low enough so that an individual is willing to insure his risk (or a part of it)

for this premium. The economic models for (re)insurance markets, which were developed

from the 1960’s on (cf. Borch (1962a) and Bühlmann (1980), (1984)), consider indeed the

interests of both the insurers and the insureds. These models incorporate the possibility to

study problems concerning fairness, Pareto optimality and market equilibrium. Bühlmann

(1980), for example, shows that the Esscher calculation principle results in a Pareto optimal

outcome.

More recently, also game theory is used to model the interests of all parties in an

insurance problem. Cooperative game theory focuses on the gains arising in multi person

interactive decision situations when a part of the population decides to cooperate. The

primary concerns are which coalitions ultimately form and how to divide the gains among

the members of each coalition formed. This theory finds many applications in, for example,
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cost allocation (cf. Moulin (1988)) and combinatorial optimization problems (cf Tijs

(1992)). Cost allocation problems arise when several groups of people with possibly

different interests are involved in a joint project. The problem is then who pays what part of

the total costs. A well known example of such a problem was faced by the Tennessee Valley

Authority in the US during the 1930’s. Briefly spoken, this project was designed to control

the course of the Tennessee river. The problem was how the costs should be allocated

to the groups that benefited from the project (see Ransmeier (1942)). In combinatorial

optimization one can think of the construction of a network to connect households to an

electrical powerplant such that everybody is supplied with electricity. Problems that arise

here are which network to construct and how to allocate the costs of it.

Besides the applications just mentioned, cooperative game theory has been applied

in insurance problems. Especially when insurance companies incorporate subadditive

premiums, individuals can save on the premium if they decide to take a collective insurance

instead of an individual one. This situation is discussed in Alegre and Mercè Claramunt

(1995). Other applications of cooperative game theory in insurance can be found in Borch

(1962b) and Lemaire (1991).

Cooperative game theory, however, still has to establish itself as an appropriate tool

for exploring insurance problems. A reason for this is due to the inability of traditional

cooperative game theory to incorporate the uncertainties, which play such an important

role in insurance. Indeed, in classical theory the gains coalitions can obtain by cooperating

are assumed to be known with certainty. Recently, however, Suijs, Borm, De Waegenaere

and Tijs (1995) introduced a model, which overcomes this problem. They introduced

cooperative games, which allow that the gains coalitions can make are random variables.

This paper shows how the abovementioned game theoretical model can be applied to

examine problems in insurance. The model we introduce incorporates insurance of personal

losses as well as reinsurance of the portfolios of insurance companies. By cooperating with

insurance companies individual persons are able to transfer their future random losses to

the cooperating insurance companies. Thus, in doing so, individual persons conclude an

insurance deal. Similarly, by cooperating with other insurers an insurance company can

transfer (parts of) her insurance portfolio to the other insurers. So, the insurance company
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concludes a reinsurance deal.

In this model our attention is focused on Pareto optimal allocations of the risks, and

on the question which premiums are fair to charge for these risk exchanges. A Pareto

optimal allocation is such that there exists no other allocation which is better for all

persons and insurers taking part in the game. We show that there is essentially a unique

Pareto optimal allocation of risk. It will appear that this Pareto optimal allocation of the

risk is independent of the insurance premiums that are paid for these risk exchanges. For

determining fair premiums, we look at the ’core’ of the reinsurance game. A core allocation

divides the gains of cooperation in such a way that no subcoalition has an incentive to split

off. We show that the core is nonempty for insurance games. Moreover, we show that the

zero utility principle for calculating premiums (see Goovaerts, De Vylder and Haezendonck

(1984)) results in a core allocation.

The paper is organized as follows. In Section 2 we introduce insurance games. We

indicate which allocations are Pareto optimal and show that the core of reinsurance games

is nonempty. In particular, we prove that the zero utility principle for calculating premiums

results in a core allocation. In Section 3 we use game theory to explain why subaddi-

tive premiums are attractive for insurance companies. Finally, Section 4 provides some

concluding remarks.

2 Insurance games

This section models insurance problems as cooperative games with stochastic payoffs as

introduced in Suijs et al. (1995). We show that by cooperating, individuals and insurers can

redistribute their risks and, consequently, improve their welfare. First, we need to specify

the players of the game. A player can be one of two types. A player is either an individual

person or an insurer. The set of individual persons is denoted byNP and the set of insurers

is denoted by NI . Hence, the players of the game are denoted by the set NI [NP .

Next, all players are assumed to be risk averse expected utility maximizers. This means



5

that a player prefers one risk to another if the expected utility of the first exceeds the expected

utility of the latter. Note that insurers are also assumed to be risk averse. Furthermore,

we assume that the utility function for each player i 2 NI [ NP can be described by

ui(t) = �ie
��it, (t 2 IR), with �i < 0, �i > 0. Since �i < 0 and �i > 0 imply concavity

for the utility functions ui, we have that each player is risk averse. So, for each random

loss X this means that a player prefers receiving the expected loss E(X) with certainty to

receiving the random loss X . Moreover, the absolute measure of risk aversion for player i

is constant and equals �i. Hence, player i is more risk averse than player j if �i > �j . By

changing the signs of the parameters �i and �i the utility function becomes convex, and, as

a consequence, the player will be risk loving. Regarding the situations where one or more

risk neutral/loving insurers are involved we confine ourselves to a brief discussion later on.

Finally, note that since the utility functions are exponential that the expected utility of a

random loss X need not always exist. In this paper, however, we implicitly assume that the

risks are such that the expected utility exists.

To describe the future random losses of a player, we introduce the following notation.

Let fYk � Exp(�k)jk 2 Kg be a finite collection of independent exponentially distributed

random variables. These variables can be interpreted as describing the random losses that

could occur to individuals. They describe, for example, the monetary damages caused by

cars, bikes, fires, or other people. The loss Xi for player i then equals

Xi =
X
k2K

fikYk; (1)

where 0 � fik � 1 for all k 2 K. In particular we define Kj = fk 2 Kjfjk 6= 0g for

all j 2 NI [ NP . So, if player i is an insurer the loss Xi represents the loss of insurer

i’s portfolio. Moreover, the insurance portfolio Xi can be a combination of many random

losses. In fact, they are the fractions fik of the losses that individuals have insured at this

particular insurer. If player i is an individual person then Xi represents the random loss

this individual might want to insure. Note that the portfolios of different players may be

stochastically dependent, albeit in a very specific way. Indeed, an individual can insure

part of his loss at insurer i and another part of the same loss at insurer j.

Now, let us focus on the possibilities that occur when players decide to cooperate.
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Therefore, consider a coalition S of players. If the members of S decide to cooperate,

the total loss XS 2 L1(IR) of the coalition equals the sum of the individual losses of the

members of S, i.e., XS =
P

i2S Xi. Subsequently, the loss XS has to be allocated to the

members of S.

In allocating the loss XS we distinguish the following three cases. In the first case,

coalition S consists of insurers only. So, S � NI . Such a coalition is assumed to allocate

the loss XS in the following way. First, a coalition S allocates a fraction rij 2 [0; 1] of the

loss Xj of insurer j 2 S to insurer i 2 S. So, insurer i bears a total loss of
P

j2S rijXj ,

where rij 2 [0; 1] and
P

k2S rkj = 1. This is called proportional reinsurance. This part

of the allocation of XS for coalition S can be described by a matrix R 2 IRS�S
+ , where

rij represents the fraction insurer i bears of insurer j’s loss Xj . Second, the insurers are

allowed to make deterministic transfer payments. This means that each insurance company

i 2 S also receives an amount di 2 IR such that
P

j2S dj = 0. These transfer payments can

be interpreted as the aggregate premium insurers have to pay for the actual risk exchanges.

In the second case, coalition S consists of individual persons only. So, S � NP . Then

the gains of cooperation are assumed to be nil. That is, we do not allow any risk exchanges

between the persons themselves. For, that is what the insurers are for in the first place.

As a result, the only allocations (d;R) of XS which are allowed are of the form rii = 1

for all i 2 S and rij = 0 for all i; j 2 S with i 6= j. If, however, one wants to allow

risk exchanges by the individual persons then the resulting situation is similar to the case

where only insurance companies cooperate. Consequently, allocations can be described in

the same way.

In the third and last case, coalition S consists of both insurers and individual persons.

So, S � NI [ NP . Now cooperation can take place in two different ways. First, insurers

are allowed to exchange (parts of) their portfolios with other insurers. Second, individual

persons may transfer (parts of) their risks to insurers. Again, individual persons are not

allowed to exchange risks with each other. Moreover, we assume that insurers cannot

transfer (parts of) their portfolios to individuals.

Summarizing we can say that there a several restrictions on allocations. To be more

precise, denote by SI the set of insurers of coalition S, i.e., SI = S \NI , and by SP the set
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of individuals of coalition S, i.e., SP = S \ NP . Then an allocation (d;R) 2 IRS � IRS�S
+

is feasible for the coalition S if for all i 2 SP and all j 2 S with i 6= j it holds that rij = 0

and
P

i2S rij = 1 for all j 2 S. Finally, we denote byZ(S) the set of all feasible allocations

for S.

Example 2.1 Let NI = f1; 2g, NP = f4; 5g and K = f1; 2; 3; 4; 5g. So, there are five

independent exponentially distributed risks. Next, suppose that X1 = 1
3
Y1 + Y2, X2 =

1
3
Y1 + Y3, X4 = Y4 and X5 = Y5. Consider the coalition S = f1; 4; 5g. Then XS =

X1 + X4 + X5 = 1
3
Y1 + Y2 + Y4 + Y5. A feasible allocation for S is the following. Let

d = (3;�2;�1) and r11 = 1, r14 = 1
2
, r44 = 1

2
, r15 = 1

5
and r55 = 4

5
. Then insurer 1 receives

(d;R)1 = 3 � (X1 + 1
2
X4 + 1

5
X5) = 3 � ( 1

3
Y1 + Y2 + 1

2
Y4 + 4

5
Y5);

individual 4 receives

(d;R)4 = �2 � 1
2
X4 = �2� 1

2
Y4;

and individual 5 receives

(d;R)5 = �1 � 4
5
X4 = �1� 4

5
Y5:

So, individuals 4 and 5 pay a premium of 2 and 1, respectively, to insurer 1 for the insurance

of their losses.

In conclusion, an insurance game � with player set NI [ NP is described by the tuple

(NI [ NP ; (XS)S�NI[NP
; (ui)i2NI[NP

), where NI is the set of insurers, NP the set of

individuals, XS 2 L1(IR) the random loss for coalition S, and ui the utility function for

player i 2 NI [NP . Recall thatXS =
P

i2S Xi for all S � NI [NP and that all players are

constant absolute risk averse expected utility maximizers. The class of all such insurance

games with insurers NI and individuals NP is denoted by IG(NI ; NP ).

2.1 Pareto optimal distributions of risk

Since the preferences of both an individual and an insurer are described by means of a

utility function we can look at the deterministic (or certainty) equivalent of random payoffs
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for each of them. The deterministic equivalent of a random payoff is the amount of money

for which a player is indifferent between receiving the random payoff and receiving this

amount of money with certainty. For the utility functions considered in our model, we can

define the deterministic equivalent of a random payoff X by mi(X) = u�1i (E(ui(X)))

provided that the expected utility exists. Then for all these random payoffs X it holds that

E(ui(mi(X)) = ui(mi(X)) = E(ui(X)). Since the expected utilities equal each other,

player i is indifferent between the random payoff X and the deterministic payoff mi(X).

Moreover, for the insurance games introduced in this section the deterministic equivalent

is such that the results stated in Suijs and Borm (1996) can be applied. One of their results

concerns the Pareto optimality1 of an allocation. For insurance games this result reads as

follows.

Proposition 2.2 Let � 2 IG(NI ; NP ) and S � NI [NP . An allocation (d;R) 2 Z(S) is

Pareto optimal for coalition S if and only if

X
i2S

mi((d;R)i) = max
( ~d; ~R)2Z(S)

X
i2S

mi(( ~d; ~R)i): (2)

So, an allocation is Pareto optimal for coalitionS if and only if this allocation maximizes

the sum of the deterministic equivalents. To determine these allocations, we first need to

calculate the deterministic equivalent of an allocation (d;R) for S for player i 2 S.

Therefore, let S � NI [ NP and (d;R) 2 Z(S). The random loss coalition S has to

allocate equals XS =
P

i2S Xi. Given a feasible allocation (d;R) 2 Z(S), the random

payoff to player i 2 S equals

(d;R)i = di �
X
j2S

rijXj

if i 2 SI and

(d;R)i = di � riiXi

1An allocation (d;R) of the loss XS is Pareto optimal for coalition S if there exists no feasible allocation

( ~d; ~R) of XS such that each member of S is better off, i.e., E(ui(( ~d; ~R)i)) > E(ui((d;R)i)) for all i 2 S.
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if i 2 SP . Consequently, we have that the deterministic equivalent of (d;R)i equals2

mi((d;R)i) =

8><
>:

di +
P

k2K
1
�i
log

�
1� 1

�k
�iriifik

�
; if i 2 SP ;

di +
P

j2S

P
k2K

1
�i
log

�
1� 1

�k
�irijfjk

�
; if i 2 SI :

(3)

The sum of deterministic equivalences then equals

X
i2S

mi((d;R)i) =
X
i2SP

X
k2K

1
�i
log

�
1� 1

�k
�iriifik

�

+
X
i2SI

X
j2S

X
k2K

1
�i
log

�
1 � 1

�k
�irijfjk

�
: (4)

Hence the sum of deterministic equivalents is independent of the vector of transfer

payments d. Intuitively, this is quite clear. Indeed, an increase in di for player i implies

that dj decreases for at least one other player j since
P

h2S dh = 0. Consequently, Pareto

optimality is solely determined by the choice of the allocation risk exchange matrix R of

the random losses. In fact, the next theorem shows that there is a unique allocation risk

exchange matrix R� inducing Pareto optimality.

Theorem 2.3 Let � 2 IG(NI ; NP ) and S � NI [ NP . An allocation (d;R�) 2 Z(S) is

Pareto optimal for S if and only if

r�ij =

8>>>>>><
>>>>>>:

1
�iP

h2SI

1
�h

, if i; j 2 SI ;

1
�iP

h2SI[fjg
1
�h

, if i 2 SI [ fjg and j 2 SP ;

0 , otherwise:

PROOF: We have to show that R� is the unique solution of

max
X
i2SP

X
k2K

1
�i
log

�
1� 1

�k
�iriifik

�
+
X
i2SI

X
j2S

X
k2K

1
�i
log

�
1� 1

�k
�irijfjk

�

s.t.: rjj +
P

i2SI
rij = 1; for all j 2 SP ;P

i2SI
rij = 1; for all j 2 SI ;

rii � 0; if i 2 SP ;

rij � 0; if i 2 SI and j 2 S:

2The proof is stated in the Appendix.
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Since the objective function is strictly concave in rij for all relevant combinations of

i; j 2 S, it is sufficient to prove that R� solves this maximization problem. The Karush-

Kuhn-Tucker conditions3 tell us that this is indeed the case if there exists �j 2 IR (j 2 S),

�jj � 0 (j 2 SP ) and �ij � 0 (i 2 SI ; j 2 S) such that

P
k2Kj

�1
�k
fjk
� �jrjj

= �j � �jj ; for all j 2 SP ;

P
k2Kj

�1
�k
fjk
� �irij

= �j � �ij; for all i 2 SI and all j 2 S;

�iirii = 0; for all i 2 SP ;

�ijrij = 0; for all i 2 SI and all j 2 S:

Substituting r�ij gives �ij = 0 for all relevant combinations of i; j 2 S and

�j = �
P

k2Kj
fjk

�
�k �

fjkP
h2SI[fjg

1
�h

��1
; for all j 2 SP ;

�j = �
P

k2Kj
fjk

�
�k �

fjkP
h2SI

1
�h

��1
; for all j 2 SI :

Consequently, R� solves the maximization problem. 2

So, for a Pareto optimal allocation of a loss Xj within S one has to distinguish between

two cases. In the first case the index j refers to an insurer and in the second case j

refers to an individual. When Xj is the loss of insurer j 2 SI , the loss is allocated

proportionally to 1
�i

among all insurers in coalition S. When Xj is the loss of individual

j 2 SP , the loss is allocated proportionally to 1
�i

among all insurers in coalition S and

individual j himself. Note that by the feasibility constraints nothing is allocated to the

3 The Karush-Kuhn-Tucker conditions read as follows:

If f(x) = maxy f(y)

s.t. gk(y) � 0; k 2 K

gl(y) = 0; l 2 L

then there exist �k � 0 (8k 2 K) and �l 2 IR (8l 2 L) such that

rf(x) =
P

k2K �k � rgk(x) +
P

l2L �l � rgl(x)

�k � gk(x) = 0, for all k 2 K:

Moreover, if f is strictly concave and gk (k 2 K), gl (l 2 L) are convex then the reverse of the statement also

holds and the maximum is unique.
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other individuals. Moreover, the less risk averse a player is, the larger his share in the

risk will be. Furthermore, Pareto optimality does not depend on the parameters �k of the

losses Yk (k 2 K). Finally, remark that if only reinsurance of the insurance portfolios is

considered, that is, NP = ; then the Pareto optimal allocation coincides with the Pareto

optimal allocation of (re)insurance markets discussed in Bühlmann (1980).

Example 2.4 In this example all monetary amounts can be assumed to be in thousands

of dollars. Consider the following situation in automobile insurance with three insurance

companies and two individual persons. So, NI = f1; 2; 3g and NP = f4; 5g. The utility

function of each player can be described by ui(t) = e��it with �1 = 0:33, �2 = 0:1,

�3 = 0:25, �4 = 0:4 and �5 = 0:25, respectively. So insurer 2 is the least risk averse player

and individual 4 is the most risk averse player. Each insurance company bears the risk of all

the cars contained in its insurance portfolio. A car can be one of two types. The first type

corresponds to an average saloon car which generates relatively low losses. The second

type corresponds to an exclusive sportscar generating relatively high losses. Formally, the

monetary loss generated by a car is described by the exponential probability distribution

Exp(5) when it is of type 1 and by Exp(0:5) when it is of type 2. Thus the expected loss of

a type 1 car and a type 2 car equal $ 0:2 and $ 2, respectively.

The insurance portfolio of insurer 1 consists of 1800 cars of type 1 and 10 cars of type

2. For insurer 2 the portfolio consists of 900 cars of type 1 and 25 cars of type 2. Finally,

the portfolio of insurer 3 consists of 300 cars of type 1 and 90 cars of type 2. The expected

loss for insurer 1 then equals 1800 � 0:2 + 10 � 2 = $ 380. The expected losses for insurer

2 and 3 then equal $ 230 and $ 240, respectively. The two individual persons each possess

one car. Player 4’s car is of type 1 and player 5’s car is of type 2. So, the expected losses

are $ 0:2 and $ 2, respectively.
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Next, let Xi denote the loss of player i. If all players cooperate, the Pareto optimal risk

allocation matrix of the total random loss X1 +X2 +X3 +X4 +X5 equals

R� =

2
666666666664

3
17

3
17

3
17

6
39

3
21

10
17

10
17

10
17

20
39

10
21

4
17

4
17

4
17

8
39

4
21

0 0 0 5
39

0

0 0 0 0 4
21

3
777777777775
:

Consequently, a Pareto optimal allocation (d;R�) yields the payoffs

(d;R�)1 = d1 � 3
17
(X1 +X2 +X3)� 6

39
X4 � 3

21
X5;

(d;R�)2 = d2 � 10
17
(X1 +X2 +X3)� 20

39
X4 � 10

21
X5;

(d;R�)3 = d3 � 4
17
(X1 +X2 +X3)� 8

39
X4 � 4

21
X5;

(d;R�)4 = d4 � 5
39
X4;

(d;R�)5 = d5 � 4
21
X5:

The determination of the allocation risk exchange matrix is, of course, only one part

of the allocation. We still have to determine the vector of transfer payments d, that is, the

premiums that have to be paid. Although an allocation (d;R�) may be Pareto optimal for

any choice of d, not every d is satisfactory from a social point of view. An insurer will not

agree with insuring the losses of other players if he is not properly compensated, that is, if

he does not receive a fair premium for the insurance. Similarly, insurance companies and

individuals only agree to insure their losses if the premium they have to pay is reasonable.

Consequently, there is a conflict of interests; both insurance companies and individuals

want to pay a low premium for insuring their own losses, while insurance companies want

to receive a high premium for bearing the losses of other players. So the question remains

which premiums are reasonable? This is the subject of the next subsection.
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2.2 The core of insurance games

In our quest for fair premiums we look at core allocations of insurance games. The core

is one of the most important solution concepts in game theory. It is generally accepted by

game theorists that if the core is a nonempty set of allocations, then the allocation on which

the players agree should be a core allocation. The core contains allocations that induce a

form of stability for the coalition of all players involved. For a more general discussion of

the core we refer to Aumann (1961) and Scarf (1967). In the context of insurance games, an

allocation is a core allocation if there is no subcoalition that wants to part company with the

grand coalition NI [NP because this subcoalition can acheive a better allocation on their

own. Formally, this means that an allocation (d;R) of NI [ NP is a core allocation if for

each coalition S � NI [NP there exists no allocation ( ~d; ~R) for S such that each player i

prefers the payoff ( ~d; ~R)i to the payoff (d;R)i, i.e., E(ui(( ~d; ~R)i)) > E(ui((d;R)i)) for all

i 2 S. The set of all core allocations for a game � 2 IG(NI ; NP ) is denoted by Core(�).

Note that a core allocation is Pareto optimal forNI[NP . Hence, (d;R) 2 Core(�) implies

that the allocation risk exchange matrixR has the structure of the Pareto optimal allocation

risk exchange matrix R� as described in Theorem 2.3 with S = NI [ NP .

We will show that the core of an insurance game is nonempty. So, there always exists

an allocation of NI [NP which is stable in the sense described above. To prove this result,

we make use of the results stated in Suijs and Borm (1996).

First, we associate with each insurance game � 2 IG(NI ; NP ) a cooperative game

�� 2 IG(NI ; NP ) with deterministic payoffs. This means that the payoff of a coalition

in the game �� is a real number instead of a random variable. The game �� is called the

deterministic equivalent of �.

Let S � NI [ NP . The payoff xS of coalition S in the game �� is defined by

xS = max
(d;R)2Z(S)

X
i2S

mi((d;R)i): (5)

The payoff xS is based on Proposition 2.2, which states that an allocation is Pareto optimal

for S if and only if the sum of the corresponding deterministic equivalents equals xS . The

game �� is then described by �� = (NI [NP ; (xS)S�NI[NP
; (ui)i2NI[NP

). The following

result is a consequence of Theorem 3.1 in Suijs and Borm (1996).
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Proposition 2.5 Let � 2 IG(NI ; NP ) be an insurance game and let �� be its deterministic

equivalent. Then

Core(�) 6= ; if and only if Core(��) 6= ;:

Moreover, let (d;R) be an allocation of NI [ NP and let y 2 IRNI[NP be such that

mi((d;R)i) = yi for all i 2 NI [NP . Then

(d;R) 2 Core(�) if and only if y 2 Core(��):

So, to prove nonemptiness of the core of insurance games it is sufficient to prove that

the core of the corresponding deterministic equivalent is nonempty. Since y 2 Core(��)

if and only if
P

i2NI[NP
yi = xNI[NP

and
P

i2S yi � xS for all S � NI [ NP we can

apply the Bondareva Shapley Theorem to check nonemptiness of the core. Therefore, let

� : 2NI[NP ! IR+ be a map assigning to each coalition S � NI [ NP a nonnegative

number �(S). Such a map is called a balanced map if
P

S�NI[NP :i2S
�(S) = 1 for all

i 2 NI [ NP . The Bondareva Shapley Theorem applied to insurance games then reads as

follows (see Bondareva (1963) and Shapley (1967)).

Proposition 2.6 Let � 2 IG(NI ; NP ) and let �� be its deterministic equivalent. Then

Core(��) 6= ; if and only if for all balanced maps � : 2NI[NP ! IR+ it holds that

X
S�NI[NP

�(S)xS � xNI[NP
:

Theorem 2.7 Let � 2 IG(NI ; NP ). Then Core(�) 6= ;.

PROOF: First, recall thatKj = fk 2 Kjfjk 6= 0g for all j 2 NI[NP . Then forS � NI[NP

we have for all d 2 IRS that

xS =
X
i2S

mi((d;R
�)i)
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=
X
i2SI

X
j2SI

X
k2Kj

1
�i
log

0
BBB@1� 1

�k
fjk

X
h2SI

1
�h

1
CCCA +

X
i2SI

X
j2SP

X
k2Kj

1
�i
log

0
BBB@1 � 1

�k
fjk

X
h2SI[fjg

1
�h

1
CCCA+

X
i2SP

X
k2Ki

1
�i
log

0
BBB@1 � 1

�k
fik

X
h2SI[fig

1
�h

1
CCCA

=
X
i2SI

X
j2SI

X
k2Kj

1
�i
log

0
BBB@1� 1

�k
fjk

X
h2SI

1
�i

1
CCCA

+
X
j2SP

X
i2SI[fjg

X
k2Kj

1
�i
log

0
BBB@1� 1

�k
fjk

X
h2SI[fjg

1
�i

1
CCCA

=
X
j2SI

X
k2Kj

fjk

�k
log

0
BBB@1� 1

�k
fjk

X
h2SI

1
�h

1
CCCA

�k
fjk

X
h2SI

1
�h

+
X
j2SP

X
k2Kj

fjk

�k
log

0
BBB@1� 1

�k
fjk

X
h2SI[fjg

1
�h

1
CCCA

�k
fjk

X
h2SI[fjg

1
�h

; (6)

where the second equality follows from Theorem 2.3 and expression (4). Next, let

� : 2NI[NP ! IR+ be a balanced map. Then

X
S�NI[NP

�(S)xS =
X

S�NI[NP

X
j2SI

X
k2Kj

�(S)
fjk

�k
log

0
BBB@1 � 1

�k
fjk

X
h2SI

1
�h

1
CCCA

�k
fjk

X
h2SI

1
�h

+
X

S�NI[NP

X
j2SP

X
k2Kj

�(S)
fjk

�k
log

0
BBB@1 � 1

�k
fjk

X
h2SI[fjg

1
�h

1
CCCA

�k
fjk

X
h2SI[fjg

1
�h

�
X

S�NI[NP

X
j2SI

X
k2Kj

�(S)
fjk

�k
log

0
BBB@1 � 1

�k
fjk

X
h2NI

1
�h

1
CCCA

�k
fjk

X
h2NI

1
�h
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+
X

S�NI[NP

X
j2SP

X
k2Kj

�(S)
fjk

�k
log

0
BBB@1 � 1

�k
fjk

X
h2NI[fjg

1
�h

1
CCCA

�k
fjk

X
h2NI[fjg

1
�h

=
X
j2NI

X
S�NI[NP :j2S

�(S)
X
k2Kj

fjk

�k
log

0
BBB@1� 1

�k
fjk

X
h2NI

1
�h

1
CCCA

�k
fjk

X
h2NI

1
�h

+
X
j2NP

X
S�NI[NP :j2S

�(S)
X
k2Kj

fjk

�k
log

0
BBB@1� 1

�k
fjk

X
h2NI[fjg

1
�h

1
CCCA

�k
fjk

X
h2NI[fjg

1
�h

=
X
j2NI

X
k2Kj

fjk

�k
log

0
BBB@1 � 1

�k
fjk

X
h2NI

1
�h

1
CCCA

�k
fjk

X
h2NI

1
�h

+
X
j2NP

X
k2Kj

fjk

�k
log

0
BBB@1 � 1

�k
fjk

X
h2NI[fjg

1
�h

1
CCCA

�k
fjk

X
h2NI[fjg

1
�h

= xNI[NP

where the inequality follows from Lemma A.1 with c = 0 and the third equality follows

from
P

S�NI[NP :j2S
�(S) = 1 for all j 2 NI [NP . Applying Proposition 2.5 and Propo-

sition 2.6 then completes the proof. 2

Example 2.8 Consider the situation described in Example 2.4. In order to calculate the

deterministic equivalent of this insurance game, note that since fjk = 1 for all k 2 Kj and

all j 2 NI we have

xS =
X
j2SI

X
k2Kj

0
@X
i2SI

1
�i

1
A log

 
1 �

1

�k
P

i2SI
1
�i

!
+

X
j2SP

X
k2Kj

0
@ X
i2SI[fjg

1
�i

1
A log

 
1�

1

�k
P

i2SI[fjg
1
�i

!
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for all S � NI [ NP (cf. expression (6)). Hence, we get

xf1g = 1800 � 3 log (1� 1
5�3
) + 10 � 3 log (1� 1

0:5�3
) = �405:52:

Similarly, one can calculate the value xS for each coalition S. These values are presented

in Table 1.

S xS S xS S xS

f1g �405:52 f2; 5g �239:77 f2; 3; 4g �490:11

f2g �237:61 f3; 4g �311:28 f2; 3; 5g �492:03

f3g �311:08 f3; 5g �313:38 f2; 4; 5g �239:97

f4g �0:21 f4; 5g �2:98 f3; 4; 5g �313:58

f5g �2:77 f1; 2; 3g �869:53 f1; 2; 3; 4g �869:73

f1; 2g �620:21 f1; 2; 4g �620:41 f1; 2; 3; 5g �871:63

f1; 3g �661:65 f1; 2; 5g �622:34 f1; 2; 4; 5g �622:14

f1; 4g �405:72 f1; 3; 4g �661:85 f1; 3; 4; 5g �664:06

f1; 5g �407:88 f1; 3; 5g �663:86 f2; 3; 4; 5g �492:23

f2; 3g �489:91 f1; 4; 5g �408:08 f1; 2; 3; 4; 5g �871:83

f2; 4g �237:81

TABLE I: The deterministic equivalent ��.

The core of this game is then defined by

Core(��) = fy 2 IR5j
5X

j=1

yj = �871:83; 8S�NI[NP
:
X
i2S

yi � xSg:

Next, note that for a Pareto optimal allocation (d;R�) of NI we have that

m1((d;R
�)1) = d1 � 153:77;

m2((d;R
�)2) = d2 � 512:59;

m3((d;R
�)3) = d3 � 205:04;

m4((d;R
�)4) = d4 � 0:03;

m5((d;R
�)5) = d5 � 0:40:

Next, take d0 = (�229:65; 278:33;�46:81;�0:17;�1:70). Then the resulting payoffs

equal mi((d
0; R�)i)i2f1;2;3;4;5g = (�383:42;�234:26;�251:85;�0:20;�2:10). It is easy
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to check that this allocation is in the core of the deterministic equivalent ��. Hence,

(d0; R�) 2 Core(�).

So, since the core is nonempty, we know that if all players cooperate then there exist

allocations such that this cooperation is stable. Moreover, from the Pareto optimality of a

core allocation it follows that the allocation risk matrix is uniquely determined. A similar

argument, however, does not hold for the alloction transfer payments (i.e., the premiums that

have to be paid). Since the number of core allocations will mostly be infinite, the number of

premiums resulting in a core allocation will also be infinite. Consequently, the insurers still

have to agree on the premiums that have to be paid. A possibility is considering existing

premium calculation principles and check if they result in core allocations for insurance

games. This approach is elaborated in the next subsection.

2.3 The zero utility principle

Premium calculation principles indicate how to determine the premium for a certain risk. In

the past, various of these principles were designed, for example, the net premium principle,

the expected value principle, the standard deviation principle, the Esscher principle, and

the zero utility principle (cf. Goovaerts, De Vylder and Haezendonck (1984)). In this

section we focus on the zero utility principle. A premium calculation principle determines

a premium �i(X) for individual i for bearing the risk X . The zero utility principle assigns

a premium �i(X) to X such that the utility level of individual i, who bears the risk X ,

remains unchanged when the wealthwi of this individual changes towi+�i(X)�X . Since

individuals are expected utility maximizers this means that the premium �i(X) satisfies

ui(wi) = E(ui(wi + �i(X) �X)). Note that the premium of the risk X depends on the

individual who bears this risk and his wealth wi.

Now, let us return to insurance games and utilize the zero utility principle to determine

the allocation transfer payments d 2 IRNI[NP . At first this might seem difficult since

the zero utility principle requires initial wealths wi which do not appear in our model

of insurance games. The assumption of constant absolute risk aversion, however, yields

that the zero utility principle is independent of these initial wealths wi. To see this, let
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� 2 RG(NI ; NP ) be an insurance game. Since utility functions are exponential we can

rewrite the expression ui(wi) = E(ui(wi + �i(X) �X)) as follows

wi = u�1i (E(ui(wi + �i(X)�X))) = wi + �i(X) + u�1i (E(ui(�X))):

Hence, �i(X) = �u�1i (E(ui(�X))) = �mi(�X) which indeed is independent of the

wealth wi. Given this expression we can calculate the premium individuals receive for the

risk they bear. For this, recall that for the Pareto optimal allocation risk exchange matrix

R� we have

r�ij =

8>>>>>><
>>>>>>:

1
�iP

h2SI

1
�h

, if i; j 2 SI ;

1
�iP

h2SI[fjg
1
�h

, if i 2 SI [ fjg and j 2 SP ;

0 , otherwise:

Consequently, the risk that insurer i bears equals
P

j2NI[NP
r�ijXj . The premium he should

receive for bearing this risk according to the zero utility principle equals

�i(
X

j2NI[NP

r�ijXj) = �i(
X

j2NI[NP

X
k2K

r�ijfjkYk)

= �mi(�
X

j2NI[NP

X
k2K

r�ijfjkYk)

= �
X

j2NI[NP

X
k2K

1
�i
log

�
1 � 1

�k
�ir

�

ijfjk
�

= �
X
j2NI

X
k2Kj

1
�i
log

0
BBB@1� 1

�k
fjk

X
h2NI

1
�h

1
CCCA

�
X
j2NP

X
k2Kj

1
�i
log

0
BBB@1� 1

�k
fjk

X
h2NI[fjg

1
�h

1
CCCA ;

where the third equality follows from expression (3) with di = 0.

Note that for these type of games the zero utility principle satisfies additivity, that is,

�i(
P

j2NI[NP
r�ijXj) =

P
j2NI[NP

�i(r
�

ijXj). As a consequence, we let the premium that

insurer i has to pay for reinsuring the fraction r�ji of his own portfolioXi at insurer j, equal
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the premium that insurer j wants to receive for bearing this risk, that is,

�j(r
�

jiXi) = �mj(�
X
k2K

r�jifikYk) = �
X
k2Ki

1
�j
log

0
BBB@1� 1

�k
fik

X
h2NI

1
�h

1
CCCA :

Then the premium insurer i receives in aggregate equals

X
j2NI[NP

�i(r
�

ijXj) �
X
j2NI

�j(r
�

jiXi):

Similarly, the premium that individual i 2 NP has to pay for insuring his loss at insurer

j equals the zero utility premium that this insurer wants to receive for bearing this risk.

Hence, individual i pays insurer j an amount

�j(r
�

jiXi) = �
X
k2Ki

1
�j

log

0
BBB@1 � 1

�k
fik

X
h2NI[fig

1
�h

1
CCCA :

Because individuals are not allowed to bear (part of) the risk of any other individual/insurer

he does not receive any premium. So in aggregate he receives

�
X
j2NI

�j(r
�

jiXi):

Since

X
i2NI

0
@ X
j2NI[NP

�i(r
�

ijXj) �
X
j2NI

�j(r
�

jiXi)

1
A � X

i2NP

X
j2NI

�j(r
�

jiXi) = 0;

the zero utility principle yields an allocation transfer payments vector d0 where

d0i =
X

j2NI[NP

�i(r
�

ijXj) �
X
j2NI

�j(r
�

jiXi)

= �
X
j2NI

X
k2Kj

1
�i
log

0
BBB@1� 1

�k
fjk

X
h2NI

1
�h

1
CCCA �

X
j2NP

X
k2Kj

1
�i
log

0
BBB@1 � 1

�k
fjk

X
h2NI[fjg

1
�h

1
CCCA

+
X
j2NI

X
k2Ki

1
�j

log

0
BBB@1� 1

�k
fik

X
h2NI

1
�h

1
CCCA (7)
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for all i 2 NI and

d0i = �
X
j2NI

�j(r
�

jiXi) =
X
j2NI

X
k2Ki

1
�j

log

0
BBB@1 � 1

�k
fik

X
h2NI[fig

1
�h

1
CCCA (8)

for all i 2 NP .

Example 2.9 Consider again the situation described in Example 2.4. Applying the zero

utility principle gives for insurer 1

d01 = �1200 � 3 log (1 � 1
5�17

)� 115 � 3 log (1 � 1
0:5�17

)� 1 � 3 log (1� 2
5�39

)

�1 � 3 log (1 � 1
0:5�21

) + 1800 � 10 log (1� 1
5�17

) + 10 � 10 log (1 � 1
0:5�17

)

+1800 � 4 log (1 � 1
5�17

) + 10 � 4 log (1 � 1
0:5�17

)

= 42:60 + 43:18 + 0:03 + 0:30 � 213:02 � 12:52 � 85:21 � 5:01

= �229:65:

Similarly, we get for insurers 2 and 3 and individuals 4 and 5

d02 = 248:52 + 125:17 + 0:10 + 1:00 � 31:95 � 9:39 � 42:60 � 12:52 = 278:33

d03 = 127:81 + 17:53 + 0:04 + 0:40 � 10:65 � 33:79 � 35:50 � 112:65 = �46:81

d04 = �0:03 � 0:10 � 0:04 = �0:17

d05 = �0:3 � 1:00 � 0:40 = �1:70:

So, d0 = (�229:65; 278:33;�46:81;�0:17;�1:70). From Example 2.8 we know that the

resulting allocation (d0; R�) is in the core of the game.

In Example 2.9 it is seen that the allocation corresponding to the zero utility principle

is a core allocation. The next theorem shows that this is not a coincidence.

Theorem 2.10 Let � 2 RG(NI ; NP ). If d0 is the vector of transfer payments determined

by the zero utility premium calculation principle andR� is the Pareto optimal risk exchange

matrix then (d0; R�) 2 Core(�).
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PROOF: By Proposition 2.5 it is suffices to show that (mi((d
0; R�)i))i2NI[NP

2 Core(��).

Hence, we must show that
P

i2S mi((d
0; R�)i) � xS for all S � NI [NP . Since for i 2 NI

it holds that
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= �
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=
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we have for S � NI [ NP that

X
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X
i2SI
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= xS;

where the inequality follows from Lemma A.1 with c = 0. 2

Example 2.11 Consider the insurance game introduced in Example 2.4. Now, let us take

a closer look at the changes in insurer 1’s utility when the allocation (d0; R�) is realized.

In the initial situation insurer 1 bears the risk X1 of his own insurance portfolio. The

deterministic equivalent of X1 equals

m1(X1) = 1800 � 3 log (1� 1
5�3
) + 10 � 3 log (1 � 1

0:5�3
) = �405:52:

To allocate the total risk in a Pareto optimal way, insurer 1 bears the fraction r�12 = 3
17

of the

risk X2 of insurer 2. For this risk he receives a premium �1( 3
17
X2) determined by the zero

utility principle. From the definition of the zero utility calculation principle it follows that
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m1(X1 + 3
17
X2 � �1( 3

17
X2)) = �405:52. So insurer 1’s welfare does not change when he

insures a part of the risk of insurer 2. A similar argument holds when he insures a part of

the risks of the other players. Hence

m1(X1 � 3
17
X2 + �1( 3

17
X2)� 3

17
X3 + �1( 3

17
X3)

� 6
39
X4 + �1( 6

39
X4)� 3

21
X5 + �1( 3

21
X5)) = �405:52:

The increase in insurer 1’s welfare arises only from the risks 10
17
X1 and 4

17
X1 he transfers to

insurers 2 and 3, respectively. Indeed,

m1( 3
17
� �2( 1017X1)� �3( 4

17
X1) +X1 � 3

17
X2 + �1( 3

17
X2)� 3

17
X3 + �1( 3

17
X3) � 6

39
X4

+�1( 6
39
X4)� 3

21
X5 + �1( 3

21
X5)) = m1((d

0; R�)1) = �229:65 > �405:52:

The situation described in the example above is subsistent in the definition of the zero

utility principle. This means that the welfare of an insurer always remains the same when

he bears the risk of someone else in exchange for the zero utility principle based premium.

An increase in welfare only arises when he transfers (a part of) his own risk to someone

else. Consequently, the insurers’ welfare does not increase when individuals insure their

losses. Hence, the insurers’ incentives to insure the individuals’ losses is low. To increase

these incentives it may be better to utilize other premium calculation principles. One could,

for example, consider subadditive premiums. In the next section we give another reason

why it could be desirable that insurance companies employ subadditive premiums.

3 Subbaditivity for collective insurances

In the insurance games defined in the previous section individual persons are not allowed to

cooperate; they cannot redistribute the risk amongst themselves. Looking at the individuals’

behaviour in everyday life, this is a justified assumption. People who want to insure

themselves against certain risks do so by contacting insurance companies, pension funds

etc. We show, however, that when this restriction is abandoned then the mere fact that
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risk exchanges could take place between individuals implies that insurance companies have

incentives to employ subadditive premiums. Whether or not such risk exchanges actually

do take place is not important. As a consequence, collective insurances become cheaper

for the individuals.

LetNP be the set of individuals. A premium calculation principle� is called subadditive

if for all subsets S; T � NP with S \ T = ; it holds that �(XS) + �(XT ) � �(XS[T ).

Here, XS denotes the total loss of the coalition S. So, it is attractive for the individuals to

take a collective insurance, since this reduces the total premium they have to pay.

Next, consider a game with player set NP only where the individuals are allowed

to redistribute their risks. This situation can be described by an insurance game � 2

IG(NP ; ;). So, the individuals NP can now insure their losses among each other. Thus,

� = (NP ; (XS)S�NP
; (ui)i2NP

). Then we can associate with� the deterministic equivalent

�� = (NP ; (xS)S�NP
; (ui)i2NP

), with

xS = max
(d;R)2Z(S)

X
i2S

mi((d;R)i);

for all S � NP . Note that this maximum is attained for Pareto optimal allocations (d;R�)

for coalition S. For this game, the value xS can be interpreted as the maximum premium

coalition S wants to pay for the insurance of the total risk XS . To see this, suppose that the

coalition S can insure the loss XS for a premium �(XS) that exceeds the valuation of the

risk XS , that is, ��(XS) < xS . Then for each allocation y 2 IRS of the premium��(XS)

there exists an allocation ( ~d;R�) 2 Z(S) such that E(ui(( ~d;R
�)i)) > ui(yi) for all i 2 S.

Indeed, let (d;R�) 2 Z(S) be such that
P

i2S mi((d;R
�)i) = xS . Define

~di = di �mi((d;R
�)i) + yi + 1

jSj
(xS + �(XS)) ;

for all i 2 S. Then by the linearity of mi in ~di (cf. expression (3)) we have for all i 2 S

that

mi(( ~d;R
�)i) = yi + 1

jSj
(xS + �(XS)) > yi:

Hence, the members of S prefer the allocation ( ~d;R�) of XS to an insurance of XS and

paying the premium �(XS). Consequently, they will not pay more for the insurance of the
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risk XS than the amount �xS. The next theorem shows that this maximum premium �xS

is subadditive, i.e., �xS � xT � �xS[T , or equivalently, xS + xT � xS[T , for all disjoint

subcoalitions S and T of NP .

Theorem 3.1 Let S; T � NP such that S \ T = ;. Then

xS + xT � xS[T :

PROOF: Define for all S � NP , all j 2 NP , and all k 2 K

ajk(S) =
�k
fjk

X
h2S

1
�h
:

Recall from expression (6) that

xS=
X
j2S

X
k2Kj

fjk

�k
log

0
BB@1� 1

�k
fjk

X
h2S

1
�h

1
CCA

�k
fjk

X
h2S

1
�h

=
X
j2S

X
k2Kj

fjk

�k
log

 
1�

1

ajk(S)

!ajk(S)

;

for all S � NP . Now, take S; T � NP such that S \ T = ;. We have to show that

xS + xT � xS[T .

xT[S � xS � xT =

=
X

j2(T[S)

X
k2Kj

fjk

�k
log(1� 1

ajk(T[S)
)ajk(T[S) �

X
j2S

X
k2Kj

fjk

�k
log(1 � 1

ajk(S)
)ajk(S)

�
X
j2T

X
k2Kj

fjk

�k
log(1� 1

ajk(T )
)ajk(T )

=
X
j2S

X
k2Kj

�
fjk

�k
log(1� 1

ajk(T[S)
)ajk(T[S) �

fjk

�k
log(1� 1

ajk(S)
)ajk(S)

�
+

X
j2T

X
k2Kj

�
fjk

�k
log(1� 1

ajk(T[S)
)ajk(T[S) � fjk

�k
log(1 � 1

ajk(T )
)ajk(T )

�

=
X
j2S

X
k2Kj

fjk

�k
log

��
1 � 1

ajk(T[S)

�ajk(T[S) � ajk(S)

ajk(S)�1

�ajk(S)�
+

X
j2T

X
k2Kj

fjk

�k
log

��
1 � 1

ajk(T[S)

�ajk(T[S) � ajk(T )

ajk(T )�1

�ajk(T )�

=
X
j2S

X
k2Kj

fjk

�k
log

��
1 � 1

ajk(T )+ajk (S)

�ajk(T )+ajk(S) � ajk(S)

ajk(S)�1

�ajk(S)�
+

X
j2T

X
k2Kj

fjk

�k
log

��
1 � 1

ajk(T )+ajk (S)

�ajk(T )+ajk(S) � ajk(T )

ajk(T )�1

�ajk(T )�
� 0;
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where the second and the fourth equality follow from S \T = ; and the inequaltiy follows

from Lemma A.2 which says that

�
1� 1

ajk(T )+ajk (S)

�ajk(T )+ajk(S) � ajk(S)

ajk(S)�1

�ajk(S)
� 1;

and

�
1� 1

ajk(T )+ajk (S)

�ajk(T )+ajk(S) � ajk(T )

ajk(T )�1

�ajk(T )
� 1: 2

Recall that insurers do not benefit from insuring the risks of the individuals when

utilizing the additive zero utility principle; this premium calculation principle yields the

lowest premium for which insurers still want to exchange risks with the individuals (cf.

Example 2.11). So, from a social point of view, it might be best to adopt a middle course

and look for premiums where both insurers and individuals benefit from the insurance

transaction. Interesting questions then remaining are: are these premiums additive or

subadditive and do they yield core allocations?

4 Concluding Remarks

In this paper (re)insurance problems are modelled as cooperative games with stochastic

payoffs. In fact, we defined a game that dealt with both the insurance and the reinsurance

problem simultaneously. We showed that there is only one allocation risk exchange matrix

yielding a Pareto optimal distribition of the losses and that a core allocation results when

insurance premiums are calculated according to the zero utility principle. Moreover, we

explained why subadditive premium calculation principles might be attractive to use for

insurance companies.

An issue only briefly mentioned in this paper concerns the insurers’ behaviour. What

if an insurer is risk neutral or risk loving instead of risk averse? Thus, there is at least

one insurer whose utility function is linear or of the form ui(t) = �ie
��it (t 2 IR) with

�i > 0, �i < 0. Although the proofs are not provided here, most of the results presented

in this paper still hold for these situations. This means that the corresponding games have

nonempty cores and that the zero utility principle still yields a core allocation. The result
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that does change is the Pareto optimal allocation of the risk. The allocations that are Pareto

optimal when all insurers are risk averse are not Pareto optimal anymore when one or more

insurers happen to be risk loving. In fact, they are the worst possible allocations of the

risk one can think of. In that case, allocating all the risk to the most risk loving insurer

is Pareto optimal. This would actually mean that only one insurance company is needed,

since other insurance companies will ultimately reinsure their complete portfolios at this

most risk loving insurer.

We conclude with some topics for further research. Maybe most interesting is consid-

ering problems in ‘life’-insurance instead of ‘non life’-insurance, which was the subject

of this research. Other topics concern the premium calculation principles: are there other

premium calculation principles than the zero utility principle that result in core allocations?

Or, the other way around, can game theory lead to new premium calculation principles?
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Appendix

Lemma A.1 Let

f(x) =

�
1 �

1

x+ c

�x+c

for x > 1 and c � 0. Then f is a non decreasing function in x.

PROOF: The result follows from

df(x)

dx
=

�
1�

1

x+ c

�x+c � 1

x+ c� 1
+ log

�
1�

1

x+ c

��

=

�
1�

1

x+ c

�x+c � 1

x+ c� 1
+ log

�
x+ c� 1

x+ c

��

�

�
1�

1

x+ c

�x+c � 1

x+ c� 1
+ 1�

x+ c

x+ c� 1

�

=
�
1�

1

x+ c

�x+c � 1

x+ c� 1
�

1

x+ c� 1

�
= 0;

where the inequality follows from log(x) � 1 � 1
x

for x > 1. 2

Lemma A.2 Let

f(x) =

�
x

x� 1

�x �
1 �

1

x+ c

�x+c

for x > 1 and c � 0. Then f is a non increasing function with f(x) � 1 for all x > 1.

PROOF: Since limx!1 f(x) = e�1e1 = 1 it is sufficient to prove that f is non increasing in

x. This follows from

df(x)

dx
=

�
x

x� 1

�x �
1�

1

x+ c

�x+c
��

�1

x� 1
+ log

�
1 +

1

x� 1

�
+

1

x+ c� 1
+ log

�
1�

1

x+ c

��
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and

�1

x� 1
+ log

�
1 +

1

x� 1

�
+

1

x+ c� 1
+ log

�
1�

1

x+ c

�
=

=
�1

x� 1
+ log

�
1 +

1

x� 1

�
+

1

x+ c � 1
+ log

�
x+ c� 1

x+ c

�

=
x� 1 � (x+ c� 1)

(x� 1)(x+ c� 1)
+ log

 
x(x+ c� 1)

(x� 1)(x+ c)

!

=
�c

(x� 1)(x+ c� 1)
+ log

 
x2 + cx� x

x2 + cx� x� c

!

=
�c

(x� 1)(x+ c� 1)
+ log

�
1 +

c

x2 + cx� x� c

�

�
�c

(x� 1)(x+ c� 1)
+

c

x2 + cx� x� c

=
�c

(x� 1)(x+ c� 1)
+

c

(x� 1)(x+ c)
� 0;

where the first inequality follows from log(1 + x) � x and the second inequality follows

from x > 1 and c � 0. 2

PROOF OF EXPRESSION (3): Let i 2 S. Then

mi((d;R)i) = u�1i

0
@E(ui(di �

X
j2S

rijXj))

1
A

= � 1
�i
log

�
1
�i
E(�ie

��i(di�
P

j2S
rijXj)))

�
= � 1

�i
log

�
E
�
e��idie

�i
P

j2S

P
k2K

rijfjkYk
��

= � 1
�i
log

0
@e��idi Y

j2S

Y
k2K

E(e�irijfjkYk )

1
A

= � 1
�i
log(e��idi)� 1

�i

X
j2S

X
k2K

log
�
E(e�irijfjkYk)

�

= di � 1
�i

X
j2S

X
k2K

log
�
E(e�irijfjkYk)

�

= di � 1
�i

X
j2S

X
k2K

log

�Z
1

0
�ke

�t(�k��irijfjk)dt

�
;

where the fourth equality follows from the independence of the random losses Yk ,

(k 2 K). Since we implicitly assumed that the expected utility exists, we must have
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that �k � �irijfjk > 0 for all j 2 S and all k 2 K. Then

mi((d;R)i) = di � 1
�i

X
j2S

X
k2K

log

 
�k

�k � �irijfjk

!

= di +
X
j2S

X
k2K

�1
�i
log

 
1

1 � 1
�k
�irijfjk

!

= di +
X
j2S

X
k2K

1
�i
log

�
1 � 1

�k
�irijfjk

�
:

Using rij = 0 for all i 2 SP and all j 2 S with i 6= j gives the desired result. 2
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