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Stochastic cooperative gamesin

Insurance and reinsurance

JEROEN SuliJst ANJA DE WAEGENAERE! PETER BORM!

Abstract

This paper shows how problemsin ‘non life’ -insurance and ‘ non life -reinsurance
can be modelled simultaneously as cooperative games with stochastic payoffs. Pareto
optimal alocations of the risks faced by the insurers and the insureds are determined.
Itisshownthat the core of the corresponding insurance gamesisnonempty. Moreover,
it is shown that specific core allocations are obtained when the zero utility principleis
used for calculating premiums. Finally, game theory is used to give ajustification for

subadditive premiums.

KEYWORDS: (re)insurance, zero utility principle, cooperative game theory, Pareto

optimality, core.
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1 Introduction

Classical actuarial theory has mainly focused on insurance problems from the insurer’s
point of view. Mot of the attention is dedicated to the determination of an appropriate
premium for the insured risk. Obvioudly, the nature of the risk is a substantial factor in
this process. In this respect, there is an important difference whether the risk arises from
the ‘life’ or the ‘non life' sector. For the first, there is a profusion of statistical data on the
expected remaining life available, which makes the cal culation of an appropriate premium
relatively easy. For the latter, however, things are a bit more complicated. In ‘non life
insurancetherisk isnot alwayseasy to capturein astatistical framework. Therefore, several
premium cal culation principles have been devel oped to serve this purpose, see for instance
Goovaerts, De Vylder and Haezendonck (1984).

These calculation principles, however, only take into account a part of the insurer’s
side of the deal. More precisely, they consider whether the premium is high enough to
cover the risk. Competition arising from the presence of other insurers on the one hand,
and the interests of the insured, on the other hand, are at least to a large extent ignored. It
is, of course, better to consider all these aspects in an insurance deal, since the premium
should not only be high enough to compensate the insurer for bearing the individual’srisk,
it should also be low enough so that anindividual iswilling to insure hisrisk (or apart of it)
for this premium. The economic models for (re)insurance markets, which were devel oped
from the 1960's on (cf. Borch (1962a) and Buhlmann (1980), (1984)), consider indeed the
interests of both the insurers and the insureds. These models incorporate the possibility to
study problems concerning fairness, Pareto optimality and market equilibrium. Buhlmann
(1980), for exampl e, shows that the Esscher cal culation principleresultsin aPareto optimal
outcome.

More recently, aso game theory is used to model the interests of al parties in an
insurance problem. Cooperative game theory focuses on the gains arising in multi person
interactive decision situations when a part of the population decides to cooperate. The
primary concerns are which coalitions ultimately form and how to divide the gains among

the membersof each coalition formed. Thistheory finds many applicationsin, for example,



cost alocation (cf. Moulin (1988)) and combinatorial optimization problems (cf Tijs
(1992)). Cogt alocation problems arise when severa groups of people with possibly
differentinterestsareinvolvedin ajoint project. The problemisthenwho payswhat part of
thetotal costs. A well known example of such aproblem wasfaced by the Tennessee Valley
Authority in the US during the 1930’s. Briefly spoken, this project was designed to control
the course of the Tennessee river. The problem was how the costs should be allocated
to the groups that benefited from the project (see Ransmeier (1942)). In combinatorial
optimization one can think of the construction of a network to connect households to an
electrical powerplant such that everybody is supplied with electricity. Problemsthat arise
here are which network to construct and how to allocate the costs of it.

Besides the applications just mentioned, cooperative game theory has been applied
in insurance problems. Especially when insurance companies incorporate subadditive
premiums, individuals can save on the premium if they decideto take acollective insurance
instead of an individual one. This situation is discussed in Alegre and Merce Claramunt
(1995). Other applications of cooperative game theory in insurance can be found in Borch
(1962b) and Lemaire (1991).

Cooperative game theory, however, still has to establish itself as an appropriate tool
for exploring insurance problems. A reason for this is due to the inability of traditional
cooperative game theory to incorporate the uncertainties, which play such an important
roleininsurance. Indeed, in classical theory the gains coalitions can obtain by cooperating
are assumed to be known with certainty. Recently, however, Quijs, Borm, De Waegenaere
and Tijs (1995) introduced a model, which overcomes this problem. They introduced
cooperative games, which alow that the gains coalitions can make are random variables.

This paper shows how the abovementioned game theoretical model can be applied to
examine problemsininsurance. The model weintroduceincorporatesinsurance of personal
losses aswell asreinsurance of the portfoliosof insurance companies. By cooperating with
insurance companies individual persons are able to transfer their future random losses to
the cooperating insurance companies. Thus, in doing so, individual persons conclude an
insurance deal. Similarly, by cooperating with other insurers an insurance company can

transfer (parts of) her insurance portfolio to the other insurers. So, the insurance company



concludes areinsurance dedl.

In this model our attention is focused on Pareto optimal allocations of the risks, and
on the question which premiums are fair to charge for these risk exchanges. A Pareto
optimal allocation is such that there exists no other allocation which is better for all
persons and insurers taking part in the game. We show that there is essentially a unique
Pareto optimal alocation of risk. It will appear that this Pareto optimal allocation of the
risk isindependent of the insurance premiums that are paid for these risk exchanges. For
determiningfair premiums, we look at the’ core’ of the reinsurancegame. A coreallocation
divides the gains of cooperation in such away that no subcoalition has an incentive to split
off. We show that the core is nonempty for insurance games. Moreover, we show that the
zero utility principlefor calculating premiums (see Goovaerts, De Vylder and Haezendonck
(1984)) resultsin acore alocation.

The paper is organized as follows. In Section 2 we introduce insurance games. We
indicate which allocations are Pareto optimal and show that the core of reinsurance games
isnonempty. In particular, we provethat the zero utility principlefor calculating premiums
results in a core alocation. In Section 3 we use game theory to explain why subaddi-
tive premiums are attractive for insurance companies. Finaly, Section 4 provides some

concluding remarks.

2 Insurancegames

This section models insurance problems as cooperative games with stochastic payoffs as
introducedin Suijset al. (1995). We show that by cooperating, individualsand insurerscan
redistribute their risks and, consequently, improve their welfare. First, we need to specify
the players of the game. A player can be one of two types. A player is either an individual
person or an insurer. The set of individual personsisdenoted by Vp and the set of insurers
is denoted by N;. Hence, the players of the game are denoted by the set N; U Np.

Next, al players are assumed to berisk averse expected utility maximizers. Thismeans



that aplayer prefersonerisk to another if the expected utility of thefirst exceedsthe expected
utility of the latter. Note that insurers are al'so assumed to be risk averse. Furthermore,
we assume that the utility function for each player : € N; U Np can be described by
u;(t) = fie™, (t € R), with 3; < 0, a; > 0. Since 3; < 0 and «;; > 0 imply concavity
for the utility functions «;, we have that each player isrisk averse. So, for each random
loss X thismeans that a player prefers receiving the expected loss £( X') with certainty to
receiving the random loss X. Moreover, the absolute measure of risk aversion for player :
is constant and equals ;. Hence, player « ismorerisk averse than player j if o; > «;. By
changing the signs of the parameters 3; and «; the utility function becomes convex, and, as
a consequence, the player will be risk loving. Regarding the situations where one or more
risk neutral/loving insurers are involved we confine ourselves to a brief discussion later on.
Finally, note that since the utility functions are exponential that the expected utility of a
randomloss X need not alwaysexist. Inthispaper, however, weimplicitly assume that the
risks are such that the expected utility exists.

To describe the future random losses of a player, we introduce the following notation.
Let {Y, ~ Exp(ur)|k € K} beafinite collection of independent exponentially distributed
random variables. These variables can be interpreted as describing the random losses that
could occur to individuals. They describe, for example, the monetary damages caused by
cars, bikes, fires, or other people. Theloss X; for player : then equals

X =Y fuY (@)

kex

where 0 < f;, < 1foral k£ € K. In particular we define K; = {k € K|f;, # 0} for
al j € N;U Np. So, if player ¢ is an insurer the loss X; represents the loss of insurer
's portfolio. Moreover, the insurance portfolio X; can be a combination of many random
losses. In fact, they are the fractions f;;. of the losses that individuals have insured at this
particular insurer. If player 7 is an individual person then X; represents the random loss
this individual might want to insure. Note that the portfolios of different players may be
stochastically dependent, albeit in a very specific way. Indeed, an individual can insure
part of hislossat insurer  and another part of the same loss at insurer ;.

Now, let us focus on the possibilities that occur when players decide to cooperate.



Therefore, consider a coalition S of players. If the members of S decide to cooperate,
the total loss Xs € L'(R) of the codlition equals the sum of the individual losses of the
members of 5, i.e, Xs = > ;c5 X;. Subsequently, the loss X5 has to be allocated to the
members of S.

In alocating the loss X5 we distinguish the following three cases. In the first case,
coalition S consists of insurersonly. So, S C N;. Such acoalition is assumed to allocate
theloss X5 in the following way. First, acoalition S alocatesafractionr;; € [0, 1] of the
loss X; of insurer j € Stoinsurer: € S. So, insurer : bearsatotal lossof 3. 5 ri; X,
where r;; € [0,1] and 3", cs7x; = 1. Thisis called proportional reinsurance. This part
of the allocation of X5 for codlition S can be described by a matrix B € R3*®, where
r;; represents the fraction insurer : bears of insurer j’sloss X;. Second, the insurers are
allowed to make deterministic transfer payments. This meansthat each insurance company
¢ € S alsoreceivesanamount d; € R suchthat ;.5 d; = 0. These transfer payments can
be interpreted as the aggregate premium insurers have to pay for the actual risk exchanges.

In the second case, coalition S consists of individual personsonly. So, S C Np. Then
the gains of cooperation are assumed to benil. That is, we do not allow any risk exchanges
between the persons themselves. For, that is what the insurers are for in the first place.
As areault, the only allocations (d, R) of Xg which are alowed are of theform r;; = 1
foral: e Sandr; = 0forali:j € S with: # j. If, however, one wants to alow
risk exchanges by the individual persons then the resulting situation is similar to the case
where only insurance companies cooperate. Consequently, allocations can be described in
the same way.

In the third and last case, codlition S consists of both insurers and individual persons.
So, S € N;yU Np. Now cooperation can take place in two different ways. First, insurers
are allowed to exchange (parts of) their portfolioswith other insurers. Second, individual
persons may transfer (parts of) their risks to insurers. Again, individual persons are not
allowed to exchange risks with each other. Moreover, we assume that insurers cannot
transfer (parts of) their portfoliosto individuals.

Summarizing we can say that there a several restrictions on alocations. To be more

precise, denote by S; the set of insurersof coalition S, i.e., S; = S N Ny, and by Sp the set



of individuals of coalition 5, i.e, Sp = S N Np. Thenan dlocation (d, ) € R” x R}*®
isfeasible for the coalition S if foral : € Spandal j € S with: # j it holdsthat r;; = 0
andy ,csri; = 1foralj € S. Finally, wedenoteby 7 (.5) the set of all feasibleallocations
for S.

Example2.1 Let N; = {1,2}, Np = {4,5} and K = {1,2,3,4,5}. So, there are five
independent exponentially distributed risks. Next, suppose that X; =1Y; + Y3, Xy =
Y1 4+ Y;, Xy = Y, and X5 = Y;. Consider the coalition S = {1,4,5}. Then Xs =
Xi 4+ Xa+ X5 =11+ Y5 4+ Yy + V5. A feasible alocation for S is the following. Let
d=(3,-2,—1)andry; = 1,74 =L, ryg =1, 75 =L andrss =%. Theninsurer 1 receives
(d,R)1 = 3 —(Xy +4Xy +1X5) =3 — (31 + Y2 +1Y5 +4Y5),
individual 4 receives
(d, R)4 - —2 —%X4 - —2 —%3/4,
and individual 5 receives

(d,R)s = —1—-1Xy=—-1-1Y;

So, individuals4 and 5 pay apremiumof 2 and 1, respectively, toinsurer 1 for theinsurance

of their losses.

In conclusion, an insurance game I" with player set N; U Np is described by the tuple
(N1 U Np, (Xs)scn,unp, (Ui )ien,uny ), Where Ny is the set of insurers, Np the set of
individuals, Xs € L'(R) the random loss for coalition S, and u, the utility function for
playeri € N;U Np. Recall that X = 3,5 X; foral S € N;UNp andthat al playersare
constant absolute risk averse expected utility maximizers. The class of al such insurance

games with insurers N; and individuals Np isdenoted by /G/( N, Np).

2.1 Paretooptimal distributions of risk

Since the preferences of both an individual and an insurer are described by means of a

utility function we can look at the deterministic (or certainty) equivalent of random payoffs



for each of them. The deterministic equivalent of arandom payoff is the amount of money
for which a player is indifferent between receiving the random payoff and receiving this
amount of money with certainty. For the utility functions considered in our model, we can
define the deterministic equivalent of a random payoff X by m;(X) = u; ' (E(u:(X)))
provided that the expected utility exists. Then for all these random payoffs X it holds that
E(ui(m;(X)) = wi(m;(X)) = F(u;(X)). Since the expected utilities equal each other,
player ¢ isindifferent between the random payoff X and the deterministic payoff m,;(.X).
Moreover, for the insurance games introduced in this section the deterministic equivalent
is such that the results stated in Suijs and Borm (1996) can be applied. One of their results
concerns the Pareto optimality! of an allocation. For insurance games this result reads as

follows.

Proposition 2.2 LetI' € IG(N;, Np) and S C Ny U Np. Andlocation (d, R) € Z(S) is
Pareto optimal for coalition S if and only if

> mi((d,R);) = _max Zmz((cz,f{)z) (2

i€s (d,R)€Z(S) ;es

So, anallocationisPareto optimal for coalition S if and only if thisallocation maximizes
the sum of the deterministic equivalents. To determine these allocations, we first need to
calculate the deterministic equivalent of an allocation (d, R) for S for player : € S.
Therefore, let S C Ny U Np and (d, R) € Z(S). The random loss coalition S has to
dlocate equals X = 3 ,.¢ X;. Given afeasible allocation (d, R) € Z(S), the random
payoff to player : € S equals

(d,R); =d; — Z rii X
JjES

if: € Syand

(d,R); = d; —ryX;

!Analocation (d, R) of theloss X g isPareto optimal for codition S if there exists no feasible alocation
(d, R) of X such that each member of S isbetter off, i.e, E(u;((d, R);)) > E(u;((d, R);)) fordl i € S.



if : € Sp. Consequently, we have that the deterministic equivalent of (d, R); equals’
di + Y pex 2 log (1 —j—koéimfik) , ific Sp,

di + 3 jes Xrex a%log (1 —j—koémjfjk) , ifie Sy

The sum of deterministic equivalences then equals

Zmi((dv R);) = Z Z L log (1 —j—koéiriifik)

1€ES 1€Sp kek

+> > > Zlog (1 —,f—kofmjfjk) : (4)

1€Sr JES keK

mi((d, R);) = {

Hence the sum of deterministic equivalents is independent of the vector of transfer
payments d. Intuitively, thisis quite clear. Indeed, an increase in d; for player : implies
that d; decreases for at |least one other player j since }_, .5 d, = 0. Consequently, Pareto
optimality is solely determined by the choice of the allocation risk exchange matrix R of
the random losses. In fact, the next theorem shows that there is a unique alocation risk
exchange matrix R* inducing Pareto optimality.

Theorem 2.3 LetI' € IG(N;, Np) and S C Ny U Np. Anallocation (d, R*) € Z(S) is
Pareto optimal for S if and only if

1
= Jifi, g€ 5;
ZEGSI 1 ’ ’

ap

= s ifie S u{j}andj € Sp,
heSTU{j} ap

0 , otherwise.

PROOF: We have to show that i* is the unique solution of

max Z Z a% 10g (1 —Ml—kozirﬁfik) + Z Z Z a% 10g (1 —;—kairijfjk)

1€Sp kEX 1€ST JES ke
St 714+ Yies,mi; = 1, foralje Sp,
Sies, iy = 1, fordlje Sy,
ri;, > 0, ifie Sp,
ri; > 0, ifteSrandj € S.

2The proof is stated in the Appendix.
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Since the objective function is strictly concave in r;; for al relevant combinations of
1,7 € S, itis sufficient to prove that 2* solves this maximization problem. The Karush-
Kuhn-Tucker conditions’ tell us that thisisindeed the case if thereexists \; € R (j € 5),
vi; >0 €Sp)andy; >0 (i €Sy, 5 € S)suchthat

Ykex, TE =g = A~ v, foralje Sp,
n iTii
f]k Ty
ViiTii = 0, forall: e Sp,
ViiTij = 0, foral: ¢ St and a“j € S.

Substituting r; gives v;; = 0 for all relevant combinationsof ¢, ; € S and

-1
Ai = = Xkex, Jir (Mk - Z:fjikL) , foralj € Se,
heSpu{s} O‘ﬁl
Aj = = Lkex; Jir (Mk - Z:fjikL) ; forall j € 51
heSy ap
Consequently, R* solves the maximization problem. O

So, for aPareto optimal allocation of aloss X; within S one hasto distinguish between
two cases. In the first case the index ; refers to an insurer and in the second case j
refers to an individual. When X is the loss of insurer j € Sy, the loss is allocated

proportionally to L among all insurersin coalition S. When X isthe loss of individual

1
j € Sp, theloss is alocated proportionally to .. among all insurers in coalition S and

individual ;j himself. Note that by the feasibility constraints nothing is allocated to the

3 The Karush-Kuhn-Tucker conditionsread as follows:
If f(x) = max, f(y)
st. gi(y) <0, keK
a(y) =0, el
thenthereexist v, > 0 (Vk € K)and \; € R (V! € L) such that

Vi) = ZkeK vi - V() + ZleL A= Vagi(z)
vp-gr(x) = 0,foradlk e K.

Moreover, if fisstrictly concave and g;. (k € K), ¢; (I € L) are convex then the reverse of the statement a so
holds and the maximum is unique.
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other individuals. Moreover, the less risk averse a player is, the larger his share in the
risk will be. Furthermore, Pareto optimality does not depend on the parameters 1, of the
losses Yy, (k € K). Finally, remark that if only reinsurance of the insurance portfoliosis
considered, that is, Np = () then the Pareto optimal allocation coincides with the Pareto

optimal allocation of (re)insurance markets discussed in Buhlmann (1980).

Example 2.4 In this example all monetary amounts can be assumed to be in thousands
of dollars. Consider the following situation in automobile insurance with three insurance
companies and two individua persons. So, N; = {1,2,3} and Np = {4,5}. The utility
function of each player can be described by w;(t) = ¢~ with a; = 0.33, az = 0.1,
as = 0.25, ay = 0.4 and as = 0.25, respectively. Soinsurer 2 istheleast risk averse player
and individual 4 isthe most risk averse player. Each insurance company bearstherisk of all
the cars contained in its insurance portfolio. A car can be one of two types. The first type
corresponds to an average saloon car which generates relatively low losses. The second
type corresponds to an exclusive sportscar generating relatively high losses. Formally, the
monetary loss generated by a car is described by the exponential probability distribution
Exp(5) whenitisof type 1 and by Exp(0.5) when it isof type 2. Thus the expected |oss of
atypel car and atype2 car equal $0.2 and $ 2, respectively.

The insurance portfolio of insurer 1 consists of 1800 cars of type 1 and 10 cars of type
2. For insurer 2 the portfolio consists of 900 cars of type 1 and 25 cars of type 2. Findly,
the portfolio of insurer 3 consists of 300 cars of type 1 and 90 cars of type 2. The expected
loss for insurer 1 then equals 1800 - 0.2 + 10 - 2 = $380. The expected losses for insurer
2 and 3 then equal $ 230 and $ 240, respectively. The two individual persons each possess
one car. Player 4’s car is of type 1 and player 5's car is of type 2. So, the expected |osses

are$0.2 and $ 2, respectively.
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Next, let X, denotethe loss of player :. If al players cooperate, the Pareto optimal risk
allocation matrix of the total randomloss X; + X, + X5 + X, + X5 equals

S Sl
S Sl
S Sl
38 Ble
R B

R =

[
[
[
[

H
S
-
S
-
S
w
ro|°°
W
=

jam)

w
@l‘ﬂ

o O
o O
o O
jam)

[

[§)
=

Consequently, a Pareto optimal alocation (d, R*) yields the payoffs

d,R)y = d—2(X1+ X+ X3) —5Xs —2 X5,

17

d,R")y = dy —2(Xy + X5 + X3) —2X, —2X5,

1

(d. ")
(d. ")
(d, )3 = ds—£(X1+ Xo+ X5) =5 X, — £ X5,
(d,R")s = di—5Xa,

(d. ")

d,R* 5 — d5 —%X5.

The determination of the allocation risk exchange matrix is, of course, only one part
of the allocation. We still have to determine the vector of transfer payments d, that is, the
premiumsthat have to be paid. Although an alocation (d, R*) may be Pareto optimal for
any choice of d, not every d is satisfactory from a social point of view. An insurer will not
agree with insuring the losses of other playersif heis not properly compensated, that is, if
he does not receive a fair premium for the insurance. Similarly, insurance companies and
individuals only agree to insure their losses if the premium they have to pay is reasonable.
Consequently, there is a conflict of interests; both insurance companies and individuals
want to pay alow premium for insuring their own losses, while insurance companies want
to receive a high premium for bearing the losses of other players. So the question remains

which premiums are reasonable? This is the subject of the next subsection.
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2.2 Thecoreof insurance games

In our quest for fair premiums we look at core alocations of insurance games. The core
is one of the most important solution concepts in game theory. It is generally accepted by
gametheoriststhat if the coreisanonempty set of allocations, then the allocation on which
the players agree should be a core allocation. The core contains alocations that induce a
form of stability for the coalition of all playersinvolved. For a more general discussion of
the corewerefer to Aumann (1961) and Scarf (1967). Inthe context of insurance games, an
allocationisacoreallocation if thereisno subcoalition that wantsto part company with the
grand coalition NV; U Np because this subcoalition can acheive a better alocation on their
own. Formally, this means that an allocation (d, R) of N; U Np isacore alocation if for
each coalition S C N; U Np there exists no alocation (cZ, R) for S such that each player ;
prefersthe payoff (d, R); tothe payoff (d, R);,i.e., E(u;((d, R):)) > E(u:((d, R);)) for al
¢ € S. Theset of all core allocationsfor agamel’ € IG/(Ny, Np) isdenoted by Core(T).
Notethat acoreallocationis Pareto optimal for N;U Np. Hence, (d, R) € Core(l') implies
that the allocation risk exchange matrix R hasthe structure of the Pareto optimal allocation
risk exchange matrix R* as described in Theorem 2.3 with .S = N; U Np.

We will show that the core of an insurance game is nonempty. So, there always exists
an allocation of N; U Np whichisstablein the sense described above. To prove thisresult,
we make use of the results stated in Suijs and Borm (1996).

First, we associate with each insurance game I' € IG(N;, Np) a cooperative game
Ar € IG(Ny, Np) with deterministic payoffs. This means that the payoff of a coalition
in the game Ar isarea number instead of a random variable. The game Ar is called the
deterministic equivalent of I".

Let S C N;U Np. The payoff x5 of coadlition S in the game Ar is defined by

The payoff x5 is based on Proposition 2.2, which states that an alocation is Pareto optimal
for S if and only if the sum of the corresponding deterministic equivalents equals xs. The
game Ar isthendescribed by Ar = (N;U Np, (2s)scn,unp, (4i)ien;uny ). Thefollowing

result is a consequence of Theorem 3.1 in Suijs and Borm (1996).
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Proposition 2.5 LetI' € /G/(N;, Np) beaninsurancegameand let A beitsdeterministic
equivalent. Then

Core(T') # 0 if and only if Core(Ar) # 0.

Moreover, let (d, R) be an alocation of N; U Np and let y € RM“N* be such that
mz((d, R)Z) =Y foral: ¢ NrU Np. Then

(d,R) € Core(I') ifandonly if y € Core(Ar).

So, to prove nonemptiness of the core of insurance games it is sufficient to prove that
the core of the corresponding deterministic equivalent is nonempty. Sincey € Core(Ar)
if and only if >;cn,un, i = Tnun, @ Y iesy; > ag foral S C Ny U Np we can
apply the Bondareva Shapley Theorem to check nonemptiness of the core. Therefore, let
A 2NiVNe R be a map assigning to each coalition S C N; U Np a nonnegative
number A(.S). Such amap is caled a balanced map if >~ s n,un,p0es A(S) = 1 for al
i € Ny U Np. The Bondareva Shapley Theorem applied to insurance games then reads as
follows (see Bondareva (1963) and Shapley (1967)).

Proposition 2.6 Let I' € IG(N;, Np) and let A be its deterministic equivalent. Then
Core(Ar) # 0 if and only if for all balanced maps A : 2V“N* — R, it holds that

Z A(S)es < anuNp-

SCN;UNp

Theorem 2.7 LetI' € IG(Ny, Np). Then Core(T') # 0.

PrROOF: First, recall that K; = {k € K|f;x # 0} foral j € N;UNp. ThenforS C N;UNp
we havefor al d € R® that

rs =Y mi((d, R");)

1€S
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1
= Y > Y tlog|l——=—|+
i€S; jES; kek, T Z L
€S,
o> D Alogll - ! —I-ZZ _log 1—;
i€S; jeSp hek, ﬁ Z + | icsp kex, L Z L
Sru{i} heSu{i}
1
= 22 > Algfl-———
i€S; jES; kek, T Z L
€S,
1
+> > jz: Jog |1 — —————
JESP ieSTU{j} kEK; ﬁ a%
heSru{s}
s BN
fik ap
heS;
= Lk log | 1 — ———
]gj kg}g f_k Z
€S,
i Z o
2 >l 1 Y ©)
+ Zklog |1 — —————— 7
j€Sp keK, f—’“ Z L
Sru{s}

where the second equality follows from Theorem 2.3 and expression (4). Next, let
A 2NUNE R, be abalanced map. Then

HE 1
Fik ap
1 heS;
_ f
Yo MSes= ) Z > A(S)7E log 1_M_k Z o
SCN;UNp SCN;UNp jEST kE}CJ fik ap
€Sy
My
Fik ap
1 hGSIU{]}
+od 2 Mg |1 -
SCNrUNp €SP kEK; ﬁ Z
U{J}
M
f

hEN]

D DD D B el R v

1
: HE 1
SCN;UNp jEST kE}CJ Fik Z ap,
ENy
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Mg E 1
Fik ap

! heNTU{;}
f]k -
o o R I
SCN;UNp jESP kE}CJ Fik Ap
heNTU{;}
HE 1
Fik ap
1 heEN;
— Fik -
ST T ST s 1m e
]EN] SCN]UNPZJES kE}CJ f]k ap
hEN]
Hi 1
Fik Z _%h
! heNTU{;}
ANS) S dtlogp |1 ——
D S S o I s
JENp SCNiUNp:jeS kE}CJ f]k ap,
heNTU{j}
Hi 1
Fik ap
hEN]
o o T
, Hk B Z N
]EN]kE}CJ f]k ap
hEN]
Hi 1
f]k Z ) Qp
1 heNIU{]}
f]kl
IElog |1 = — =
‘|‘4Z > #log S o
]ENpkE}CJ f]k ap,
heNTU{;}
xN]UNP

where the inequality follows from Lemma A.1 with ¢ = 0 and the third equality follows
from > g n,unpes AS) = 1 foral j € Ny U Np. Applying Proposition 2.5 and Propo-

sition 2.6 then completes the proof. O

Example 2.8 Consider the situation described in Example 2.4. In order to calculate the
deterministic equivalent of this insurance game, note that since f;, = 1 foral k& € K; and

al j € Ny wehave

o ol o L e

. .
Jj€Sp kek; \ieS;u{j} Hk ZZGSIU{J} o




foral S C N;yU Np (cf. expression (6)). Hence, we get

21y = 1800 - 3log (1 —&) + 10 - 3log (1 — 1) = —405.52.

Similarly, one can calculate the value = s for each coalition S. These values are presented

in Table 1.

‘ S g S g S g
{1} —405.52 {2,5} —239.77 {2,3,4} —490.11
{2} —237.61 {3,4} —311.28 {2,3,5} —492.03
{3} —311.08 (3,5} —313.38 {2,4,5} —239.97
{4} —0.21 {4,5} —2.98 {3,4,5} —313.58
{5} —2.77 {1,2,3} —869.53 || {1,2,3,4} —869.73
{1,2} —620.21 {1,2,4} —620.41 || {1,2,3,5} —871.63
{1,3} —661.65 {1,2,5} —622.34 || {1,2,4,5} —622.14
{1,4} —405.72 {1,3,4} —661.85 || {1,3,4,5} —664.06
{1,5} —407.88 {1,3,5} —663.86 || {2,3,4,5) —492.23
12,3} —489.91 {1,4,5} —408.08 || {1,2,3,4,5} —871.83
{2,4} —237.81

TABLE |: The deterministic equivalent Ar-.

The core of this game isthen defined by

5
Core(Ar) = {y € ]R5| Zyj = —871.83, Yscn,un, : Zyi > xg}.

j=1 i€s

Next, note that for a Pareto optimal allocation (d, R*) of N; we have that

mi((d, R*)1) = di — 153.77,
ma((d, B)2) = dy —512.50,
ma((d, B)s) = ds — 205.04,
ma((d, R)s) = dy—0.03,
ms((d, R)s) = ds —0.40,

Next, take d° = (—229.65,278.33, —46.81,—0.17, —1.70). Then the resulting payoffs
equal m;((d°, R*);)ic1 2345 = (—383.42, —234.26, —251.85, —0.20, —2.10). It is easy
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to check that this allocation is in the core of the deterministic equivalent Ar. Hence,
(d°, R*) € Core(T).

So, since the core is nonempty, we know that if all players cooperate then there exist
allocations such that this cooperation is stable. Moreover, from the Pareto optimality of a
core dlocation it follows that the allocation risk matrix is uniquely determined. A similar
argument, however, doesnot hold for the alloctiontransfer payments(i.e., the premiumsthat
haveto be paid). Sincethe number of core allocationswill mostly beinfinite, the number of
premiumsresulting in acore allocation will also beinfinite. Consequently, theinsurers still
have to agree on the premiums that have to be paid. A possibility is considering existing
premium calculation principles and check if they result in core allocations for insurance

games. This approach is elaborated in the next subsection.

2.3 Thezeroutility principle

Premium cal cul ation principlesindicate how to determinethe premiumfor acertainrisk. In
the past, various of these principleswere designed, for example, the net premium principle,
the expected value principle, the standard deviation principle, the Esscher principle, and
the zero utility principle (cf. Goovaerts, De Vylder and Haezendonck (1984)). In this
section we focus on the zero utility principle. A premium calculation principle determines
apremium 7;(X) for individual  for bearing therisk X. The zero utility principle assigns
apremium 7;(X) to X such that the utility level of individual ¢, who bears the risk X,
remains unchanged when the wealth w; of thisindividual changesto w; + #,(X)— X. Since
individuals are expected utility maximizers this means that the premium =,(.X) satisfies
ui(w;) = E(u(w; + 7(X) — X)). Note that the premium of the risk X depends on the
individual who bearsthisrisk and his wealth w;.

Now, let us return to insurance games and utilize the zero utility principle to determine
the allocation transfer payments d € R™YNr, At first this might seem difficult since
the zero utility principle requires initial wealths w; which do not appear in our model
of insurance games. The assumption of constant absolute risk aversion, however, yields

that the zero utility principle is independent of these initial wealths w;. To see this, let
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I' € RG(Ny, Np) be an insurance game. Since utility functions are exponential we can

rewrite the expression u;(w;) = E(u;(w; + 7;(X) — X)) asfollows

wi = ui (E(ui(wi + 7(X) = X)) = wi + 7 X) +ui (E(ui( = X))).

K3

Hence, m:(X) = —u; ' (F(u;(—X))) = —m;(—X) which indeed is independent of the
wealth w;. Given this expression we can calculate the premium individuals receive for the
risk they bear. For this, recall that for the Pareto optimal allocation risk exchange matrix

R* we have
1
2 ifi e s
Z}{esji 5 I
rh=1 2 LificS;u{j}and; € Sp,

ZheSIU{J} ap
0 , otherwise.

Consequently, therisk that insurer : bearsequals y ;¢ v, 75;X;- The premium he should
receive for bearing thisrisk according to the zero utility principle equals

(> riXy) = oml Yo > rhfaY)

JENTUNp JENTUNp keX

= —mi(— Y D rifaYa)

JENTUNpP keEX

SHE ZaLilog (1 —;—kairfjfjk)

JENTUNpP keX

— - Y Yalr|1- =
, i P Z 4
]EN]kE}CJ f]k ap
hEN]
1
- > Y tlog|l- ———"r|,
JENP keK Tin Z an
RENU{;}

where the third equality follows from expression (3) with d; = 0.
Note that for these type of games the zero utility principle satisfies additivity, that is,
T X jen,uny 5 X)) = Yienun, Ti(r5X;). As aconsequence, we let the premium that

insurer ¢ hasto pay for reinsuring the fraction »*; of his own portfolio X; at insurer j, equal
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the premium that insurer ; wantsto receive for bearing thisrisk, that is,

1
(5 X)) = —my(= Yo rfaYe) = = D Hlog [ 1 - ——=—
kex keK; Tir E: ay
heNT

Then the premium insurer : receives in aggregate equals
o mlrpXy) = D m(riXo).
JENTUNp JENT
Similarly, the premium that individual : € Np hasto pay for insuring his loss at insurer
j equals the zero utility premium that this insurer wants to receive for bearing this risk.

Hence, individual : paysinsurer ; an amount

1
m(r5X) == > Llog [1 - ———=——
! keKs D D
heNU{i}
Because individualsare not allowed to bear (part of) therisk of any other individual/insurer
he does not receive any premium. So in aggregate he receives
JENT

Since

Z(Z Wz'(rijj)—ZWﬂX) >, D X)) =0,

i€N7 \JEN;UNp JENT tENp JENT

the zero utility principle yields an allocation transfer payments vector d° where

=Y m(r5X;) — Y (X

JENUNP JENT

S S log |1 ! S Y Lol !

= —_ Og _—_— Og —
JENT keK, e >4 a JENp kek, # Z =
heEN; ENTU{j}
1

+ 3N o |1 e o
JENT EEK; Fix ay,
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foral: e N;and

y 1
B=- X m5X) = X X dlog |1 s ®
JEN; JENT kEK,; i Z ap
heNu{:}

foral: € Np.

Example 2.9 Consider again the situation described in Example 2.4. Applying the zero

utility principle gives for insurer 1

& = —1200-3log (1 — ) — 115 - 3log (1 —2-) — 1 - 3log (1 —2.)

T Bar

0.5-21 5 0.5-17
1

—1-3log (1 —-2_) + 1800 - 10log (1 — 2.) + 10 - 10log (1 — 1)
+1800 - 4log (1 — &) + 10 - 4log (1 — i)

0.5

= 42.60 4+ 43.18 4 0.03 + 0.30 — 213.02 — 12.52 — 85.21 — 5.01
= —229.65.

Similarly, we get for insurers2 and 3 and individuals 4 and 5

d9 = 248.52 4+ 125.17 4+ 0.10 + 1.00 — 31.95 — 9.39 — 42.60 — 12.52 = 278.33
dy =127.81 +17.53 + 0.04 + 0.40 — 10.65 — 33.79 — 35.50 — 112.65 = —46.81
d} = —0.03 —0.10 — 0.04 = —0.17

d? = —0.3 —1.00 — 0.40 = —1.70.

So, d° = (—229.65,278.33, —46.81, —0.17, —1.70). From Example 2.8 we know that the

resulting alocation (d°, R*) isin the core of the game.

In Example 2.9 it is seen that the allocation corresponding to the zero utility principle

isacoreallocation. The next theorem shows that this is not a coincidence.

Theorem 2.10 LetT' € RG(Ny, Np). If d° isthe vector of transfer payments determined
by the zero utility premium calculation principleand k* isthe Pareto optimal risk exchange
matrix then (d°, R*) € Core(T).
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PrROOF: By Proposition 2.5 it is sufficesto show that (m;((d°, B*);))ien,un, € Core(Ar).
Hence, we must show that 3=, ¢ m,((d°, R*);) > x5 foral S C N;UNp. Sincefori € N;
it holds that

mi((d°, R");) =

1 1
= > Y tlogfl-—c=—|-> > tlog|l - —
JENT kEK; ' }3_2 Z al_h JENP kEK; ' Z_IZ Z a
heNT heN7U{j}
2 2 Ao |1 — =
]ENIkEIC, H W
hEN]
15 50 ST [ERRIE P b DS ] [ I
JEN] kek, T > a | ieNp kex, D DR
heNT heN;u{j}
1
Y Y g |1 — L
! J Hi 1
JENT kEK; Fin ay,
hEN]
my s
1 heEN;
T ey
hEN]
and for: € Np that
m;((d°, R*);) =
1 1
= 3> Y slog|l-—ca—|[+> Llog|l - —c—
JEN; kek; D DR v oy L
heN;u{i} heNu{i}
P N
jeNTU{) kek: D DR

heN7U{i}
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fik ap

1 heNyu{i}
P meo Y
heNyu{i}
we havefor S € Ny U Np that
w2
1 heEN;
Smil(d B = XY frog |1 -
i€s i€S1 keK; Fik Z ap
hEN]
D DI
1 heNyu{i}
+ Z Z JiJog | 1 — ——————
iesp hers meo Y
heNyu{i}
Hi 1
fik ap,
1 heS;
> Z Z fikJog | 1 — ———
€57 kEK; o Z_IZ Z O“1_h
hES]
D DI
1 hesSyu{i}
F Y oy | - = 25
i€Sp keK; oy L
hesSyu{i}
where the inequality follows from LemmaA.1 with ¢ = 0. O

Example 2.11 Consider the insurance game introduced in Example 2.4. Now, let us take
acloser look at the changes in insurer 1's utility when the alocation (d°, R*) is redlized.
In the initial situation insurer 1 bears the risk X; of his own insurance portfolio. The

deterministic equivalent of X, equals

my(X1) = 1800 - 3log (1 —L) + 10 - 3log (1 — L) = —405.52,

1
5:3

To allocate the total risk in a Pareto optimal way, insurer 1 bears the fractionr;, =2 of the
risk X, of insurer 2. For thisrisk he receives a premium 7, ( 2 X>) determined by the zero

utility principle. From the definition of the zero utility calculation principleit follows that
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my(Xy +2Xo — m(2X,)) = —405.52. Soinsurer 1's welfare does not change when he
insures a part of the risk of insurer 2. A similar argument holds when he insures a part of

the risks of the other players. Hence

mi(Xy —&Xs 4+ (2 X2) =2 X5 + m(X5)
— £ Xy + m(5Xy) =5 X5 + m(£X5)) = —405.52.

Theincreaseininsurer 1’swelfarearisesonly fromtherisks 12 X; and £ X hetransfersto

insurers 2 and 3, respectively. Indeed,

mi(E — (8 X)) —m(£X0) + X1 =2 X+ m(2Xy) —£ X3 +mi(3X3) —5 X,
—|—7T1(%X4) —23—1X5 + 7T1(23—1X5)) == ml((dO,R*)l) = —229.65 > —405.52.

The situation described in the example above is subsistent in the definition of the zero
utility principle. This means that the welfare of an insurer always remains the same when
he bears the risk of someone elsein exchange for the zero utility principle based premium.
An increase in welfare only arises when he transfers (a part of) his own risk to someone
else. Consequently, the insurers welfare does not increase when individuals insure their
losses. Hence, the insurers’ incentivesto insure the individuals' lossesislow. To increase
these incentivesit may be better to utilize other premium cal culation principles. One could,
for example, consider subadditive premiums. In the next section we give another reason

why it could be desirable that insurance companies employ subadditive premiums.

3 Subbaditivity for collective insurances

In the insurance games defined in the previous section individual persons are not allowed to
cooperate; they cannot redistributetherisk amongst themselves. Looking at theindividuals
behaviour in everyday life, this is a justified assumption. People who want to insure
themselves againgt certain risks do so by contacting insurance companies, pension funds
etc. We show, however, that when this restriction is abandoned then the mere fact that
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risk exchanges could take place between individual simpliesthat insurance companies have
incentives to employ subadditive premiums. Whether or not such risk exchanges actually
do take place is not important. As a consequence, collective insurances become cheaper
for the individuals.

Let Np betheset of individuals. A premium calculation principle = iscalled subadditive
if for al subsets S, 7" C Np with S N7 = § it holdsthat =(Xs) + #(X7) > 7(Xsur).
Here, X s denotesthe total loss of the coalition S. So, it is attractive for the individuals to
take a collective insurance, since this reduces the total premium they have to pay.

Next, consider a game with player set Np only where the individuals are allowed
to redistribute their risks. This situation can be described by an insurance game I' ¢
IG(Np,0). So, theindividuals Np can now insure their losses among each other. Thus,
I'=(Np,(Xs)scnp, (4)ien, ). Thenwecan associate with I' the deterministic equivalent

Ar = (Np,(xs)scnp, (Ui )ieny ), With

= 7 dvRiv
Ts (d%gg(s);m(( )i)

foral S C Np. Notethat this maximum is attained for Pareto optimal alocations (d, £*)
for coalition S. For this game, the value x5 can be interpreted as the maximum premium
coalition S wantsto pay for the insurance of thetotal risk Xs. To seethis, suppose that the
coalition S can insure the loss Xs for a premium = ( X5 ) that exceeds the valuation of the
risk X, thatis, —x(Xs) < 5. Then for each alocation y € R® of the premium —7(Xs)
there exists an alocation (d, R*) € Z(S) such that E(u;((d, R*);)) > wi(y;) foral i € S.
Indeed, let (d, R*) € Z(5) besuchthat ~,.¢ m;((d, B*);) = xs. Define

di = d; —m;((d, R");) + yi +& (vs + 7(X5s)),

forall ; € S. Then by the linearity of m, in d; (cf. expression (3)) we havefor al i € S
that

mi((d, B);) = yi +i (25 + 7(Xs)) > i

Hence, the members of S prefer the allocation (cZ, R*) of X to an insurance of Xg and

paying the premium = ( X s). Consequently, they will not pay more for the insurance of the
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risk Xs than theamount —zs. The next theorem shows that this maximum premium —z 5

is subadditive, i.e., —xs — z7 > —xsur, OF equivaently, zs + 7 < xsur, for al digoint

subcodlitions S and 1" of Np.

Theorem 3.1 Let S, 7 C Np suchthat SN7T = (. Then

rs+axr < xsuT.

PrOOF: Defineforal S C Np,dlj € Np,anddl k € K

=P
Fik

a;k(.5)

> &
ap”

hes

Recall from expression (6) that

(ES—Z Z Jik log 1—W
ap

JES kKEK;

1

Fik
hes

Yy fmog(1_

JES kEK;

a;k(.5)

)a]k(S)

foral S C Np. Now, take S,7 C Np suchthat SNT = (. We have to show that

rs +xr < Tsur.

TTus —Ls —XT =

= Y X el

JE(TUS) kK,

-T 5 flosl

JET kEK,;

- L ¥ (s

JES kEK;

Z Z (fﬂk log(1

JET keK;

1 a]k TUS

— s

1 )a]k(T)
a;k(T)

1 )a]k(TUS)

a k(TUS)

1 )a]k(TUS)

a k(TUS)

]k(TUS)
]k(TH'a]k(s))

k(T)+a k(s))

)a]k(TUS) (

)a]k(TUS) (

- Z 2 Jog|(1 e

JES kEK;

ajk(S)—l

)a]k(S)
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where the second and the fourth equality follow from S N'7T" = () and theinequaltiy follows
from Lemma A.2 which says that

>1

— Y

(1 . ] )ajk(T)‘l'aJk(S) ( a;5(5) )%k(s)
ajk(T)+a;p(5) a;(S)-1
and

)ajk(T)"'aJk(S)( ay,(T) )a]k(T)

ajk(T)—l

> 1. O

_ 1
(1 a]k(T)‘I'a]k(s)

Recall that insurers do not benefit from insuring the risks of the individuals when
utilizing the additive zero utility principle; this premium calculation principle yields the
lowest premium for which insurers still want to exchange risks with the individuals (cf.
Example 2.11). So, from a social point of view, it might be best to adopt a middle course
and look for premiums where both insurers and individuals benefit from the insurance
transaction. Interesting questions then remaining are: are these premiums additive or

subadditive and do they yield core alocations?

4 Concluding Remarks

In this paper (re)insurance problems are modelled as cooperative games with stochastic
payoffs. In fact, we defined a game that dealt with both the insurance and the reinsurance
problem simultaneously. We showed that there is only one allocation risk exchange matrix
yielding a Pareto optimal distribition of the losses and that a core allocation results when
insurance premiums are calculated according to the zero utility principle. Moreover, we
explained why subadditive premium calculation principles might be attractive to use for
insurance companies.

An issue only briefly mentioned in this paper concerns the insurers behaviour. What
if an insurer is risk neutral or risk loving instead of risk averse? Thus, there is at least
one insurer whose utility function is linear or of the form w,(¢) = g;e=** (¢ € R) with
B; > 0, a; < 0. Although the proofs are not provided here, most of the results presented
in this paper still hold for these situations. This means that the corresponding games have

nonempty cores and that the zero utility principle still yields a core allocation. The result
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that does change isthe Pareto optimal alocation of therisk. The allocationsthat are Pareto
optimal when all insurersarerisk averse are not Pareto optimal anymore when one or more
insurers happen to be risk loving. In fact, they are the worst possible allocations of the
risk one can think of. In that case, allocating all the risk to the most risk loving insurer
is Pareto optimal. This would actually mean that only one insurance company is needed,
since other insurance companies will ultimately reinsure their complete portfolios at this
most risk loving insurer.

We conclude with some topics for further research. Maybe most interesting is consid-
ering problems in ‘life’ -insurance instead of ‘non life' -insurance, which was the subject
of this research. Other topics concern the premium calculation principles. are there other
premium cal cul ation principlesthan the zero utility principlethat result in core allocations?

Or, the other way around, can game theory lead to new premium calculation principles?
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Appendix
LemmaA.l Let
o= ()"

forz > 1 andc¢ > 0. Then f isanon decreasing functionin z.

ProoF: The result follows from

M - (1_:1;—1|—c)x+c z+c—1

dx (
1 Tte 1 z+c—1
= 1 — | _
( :1;—|—c) (x—l—c—1+0g< T+ c ))

1 \“te 1 z+c
() ()
T+ c z+c—1 z4+c—1
1 \%te 1 1
- () ) -
T+ c z+c—1 z4+c—1
where the inequality followsfromlog(z) > 1 —1 forx > 1. O
LemmaA.2 Let

o= () -

forz > 1 andc¢ > 0. Then f isanonincreasing functionwith f(x) > 1 foral « > 1.

PrROOF: Sincelim,_., f(z) = e~'e! = 1 itissufficient to provethat f isnonincreasing in
x. Thisfollowsfrom

- () ()

(e (e ) o e ()
z—1 o8 z—1 z+c—1 o8 T+ c
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and

z—1

1 (1+ 1)+ L (1 1)—
o8 z z4+c—1 o8 x+e)

-1
— 1 1 z+c—1

= | 1 1 —_—
1+Og<+x—1)+x—|—c—1+og< r+ec )

T —

_ x—l—(x+c—1)+1og( :1;(:1;—|—c—1))

(x—1)(x+ec—1) (x —=1)(x+¢)

_ —cC —|—10g( :1;2—|—c:1;—:1; )
(x—1)(x4+ec—1) 22 4ecxr—a—c
—c
- (:1;—1)(:1;—|—c—1)+10g<1+x2+c:1;—:1;—c)
< —c N c
T o (e—1)(z+c—1) a?Hecx—a-—c
—c c

= Gt Taonerg =0

where the first inequality follows fromlog(1 4 =) < « and the second inequality follows

froma > 1andc > 0.

PROOF OF EXPRESSION (3): Letz € S. Then

mi((d, R);) = ui! (E(ui(di—z;gw)(j)))

= —dlog (E(Ae O Doem )
= —Llog (E (e_a"d"ea"zjes 2kex ”Jfﬂkyk))

— _a%.log (e—aidi H H E(eaim]f]kYk))

JESkEK
= —2log(e™ ™) =1 3" 3" log (B (e )
l l JES kEKX
= di—L+) > log (E(eai”ﬂfﬂkyk))
l JESkEK
= di—%) > log (/Oo ﬂke‘t(“k‘“i”ﬂfﬂk)dt) :
' jeskek 0

a

where the fourth equality follows from the independence of the random losses Y,

(k € K). Since we implicitly assumed that the expected utility exists, we must have



31

that . — avri; ;s > 0 fordl j € Sandall k € K. Then

mi(d, R):) = di = Y 3 log (u—ﬂ—)

JjES kEK azrljf]k
1
PP
jeskek L —Lairi; fik

= dZ + Z Z a%log (1 —to&ﬂ“ijf]‘k) .

JES ke

Usingr;; = 0foral: e Spandal j € Swith: # j givesthe desired result.
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