Tilburg University

Demand management in Multi-Stage Distribution Chain

de Kok, T.; Janssen, F.B.S.L.P.

Publication date:
1996

Link to publication in Tilburg University Research Portal

Citation for published version (APA)
de Kok, T., \& Janssen, F. B. S. L. P. (1996). Demand management in Multi-Stage Distribution Chain. (CentER Discussion Paper; Vol. 1996-39). Operations research.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Demand Management in multi-stage distribution chain

A.G. de Kok ${ }^{1}$ and F.B.S.L.P. Janssen ${ }^{2}$

Abstract

In this paper we discuss demand management problems in a multi-stage distribution chain. We focus on distribution chains where demand processes have high variability due to a few large customer orders. We give a possible explanation, and suggest two simple procedures that help to smooth demand. It is shown that these procedures yield stock reductions of $40 \%-50 \%$ in practical situations. The quantitative results are based on the analysis of the underlying model related to the two procedures proposed, called large order overflow, applicable if the supplying organization executes a multi-stage distribution chain, and delivery splitting, applicable to any situation.

1. Introduction.

Since Forrester's Industrial Dynamics (1961) a lot has been published on the control of multi-stage logistics chains. The problems signalled by Forrester with respect to amplification of demand fluctuations upstream in the logistic chain have been understood widely and Material Requirements Planning (MRP), see, for example, Orlicky (1975), and Distribution Requirements Planning (DRP), for example. Martin (1990), systems are used throughout industry to eliminate this amplification as much as possible. Yet a closer look reveals that these systems typically operate within industrial and retail organizations, but seldom, if ever, across different organizations in the logistics chain. Although it is claimed by various authors, such as Martin (1990), that the tight coupling of MRP systems of end product manufacturers with DRP systems of component manufacturers should solve or at least alleviate these problems, it is still rare that such an approach is implemented.

This paper focuses on the management of the supply chain across the organization of a supplier of fast moving consumer goods and the organizations of its customers, that is, power

[^0]retailers, wholesalers and retailers. The study presented in the paper is motivated by one of the authors' 10 -year experience at a European electronics manufacturer supplying the global market. The case material presented originates from an internal consulting project in the Consumer Electronics Division of this company. During these years a number of projects were started aimed at implementing integrated supply chain management in Europe. The major steps taken were the establishment of a European sales and marketing organization with tight control on the local sales organization, and the implementation of European Distribution Centers when appropriate, for example, for audio products manufactured in the Far-East.

One of the major problems concerning operational control of the supply chain was the so-called 'big order' issue. The company was regularly confronted with unexpected big orders for particular products. At the same time, investigations at their customers showed that their demands were relatively stable. Apparently the stable consumer demand was changed into erratic customer demand at the interface of the supplier and its customers. Based on the empirical research it was found that the major reason for the erratic behavior of the customer demand was due to large lot sizes caused by both the supplier's sales men and the customers' buyers: the sales men needed the large lot sizes of particular products in order to achieve their monthly sales budgets, while the buyers waited for discounts associated with these large lot sizes in order to maximize their sales turnover with the given purchasing budget.

In this paper we address this problem mainly from the supplier's point of view. The supplier's supply chain consists of a factory, a Regional Distribution Center (RDC), and local sales organizations with local stock. We model this supply chain as a two-echelon divergent system. To take into account the customers perspective, we make economic trade offs. The main idea is to smooth demand at the local sales organizations by offering different customer service conditions for large orders and small orders. This may be at the expense of the customer. Yet we claim that the savings made by the supplier are of such a magnitude that this provides funding for discounts to customers to stimulate the acceptance of a differentiated customer service policy. It is our belief that differentiated customer service policy, based on the capabilities of the supplier and the customers requirements, substantially reduces the
total supply chain costs. This belief is based on a number of recent master's thesis projects at various industrial companies in the Netherlands, and the customer service strategy of the Consumer Electronics company defined for the European market based on their successful customer service strategy in the USA, which yielded substantial reduction in supply chain costs, while increasing market share.

A lot of research has been devoted to supply chain management in the last five years, Lee and Billington $(1992,1993)$. Their research is based on a methodology similar to our research: a combination of empirical research and the applications of quantitative models. Another related paper by Vastag et al. (1994) gives a general overview of the costs involved in the management of supply chains. The literature on quantitative modelling of supply chains is huge. For an excellent overview of the research in this area until 1992 we refer to Graves et al. (1993). It should be noted that the research reviewed in Graves et al. (1993) is focused on minimization of total costs, consisting of holding, ordering, and penalty costs. Other research focused on cost minimization subject to service level constraints. Papers based on the latter approach are Lagodimos (1992), Lagodimos and Anderson (1989), De Kok (1990), and De Kok and Verrijdt (1995). In this paper we also focus on cost minimization subject to service level constraints. A subject related to our work is risk pooling as described in Eppen and Schrage (1981), and Jönsson and Silver (1987). Risk pooling arises in our situation when we reroute large customer orders to the RDC to stabilize demand at the stock points of the sales organizations. The economic theory on discount policies, as discussed in Silver and Peterson (1985) and Tersine (1994), is not the subject of research in this paper. Merely we would like to draw attention to the impact of discount policies on demand variability and to give an estimate of the cost reduction caused by employing a strategy aimed at stabilizing customer demand. This cost reduction can be used to give discounts to customers that operate according to the service strategy of the supplier.

We have argued that the problem of erratic demand is caused by ordering policies, which can be considered to be non-rational from an inventory management point of view. Yet, these policies may be quite rational from the perspective of short term cost minimization or
other incentives. Because we advocate a long-term perspective, we follow the line of thought advocated in the Just In Time literature (e.g. Hall (1983)), where all waste should be avoided. Apparently such non-rational policies increase the amount of stock held in the supply chains, which is counterproductive from a long-term perspective.

The paper is organized as follows. In section 2 we present a two-echelon model of the supply chain under consideration. Furthermore, we introduce the demand process, the lead time structure, and the cost structure on which the trade offs are made. In section 3 we exploit the two-echelon supply chain structure to divert large orders from local stockpoints to the RDC. We show the effect on overall supply chain costs, subject to a service level constraint. In section 4 we concentrate on a particular local stockpoint only. We discuss the effect of so-called delivery splitting (the delivery of large orders in consecutive smaller lots to the customer) on the costs of the sales organization. In section 5 we summarize our conclusions in relation to the case and discuss further research.

2. Model description

To illustrate the effects of large order overflow and delivery splitting we consider a twoechelon distribution chain. The supply chain consists of a factory supplying a regional distribution center (RDC), possibly near the factory, and N local stockpoints (LSP), wherefrom customers demand is satisfied (see Figure 1). Typically, the RDC holds seasonal stocks and replenishes the local stockpoints.

In this paper we do not take into account seasonal demand processes, and therefore we ignore the seasonal stock.

The lead time from factory to RDC, denoted by L_{F}, represents the sum of planning lead time, production and distribution lead time between a (Far-East) factory and a (European) RDC. The transportation lead times between the RDC and the LSP's are assumed to be identical, and are denoted by L_{R}. We assume that all stockpoints have compound Poisson demand processes. More specifically, the customers arrive according to a Poisson process

Figure 1: Supply chain with RDC and local stockpoints
with rate $\lambda_{i}(i=1, \ldots, N)$. Let D denote the demand of an arbitrary customer. We assume the demands per customer are independent and identically distributed non-negative random variables with distribution function $F_{D}($.$) . The mean and standard deviation of the demand$ size D is denoted by $I E D$ and $\sigma(D)$ respectively. Furthermore, we denote the coefficient of variation of D by c_{D}, that is, $c_{D}=\frac{\sigma(D)}{E(D)}$. The coefficient of variation is a measure for the variability of demand. Often it is assumed that if $c_{D}<1$, then demand is stable and if $c_{D}>1$, then demand is erratic. Note that the Poisson process assumption has been shown to hold in most practical situations with regard to customer arrival streams (for example. Tijms (1994)).

The replenishments at the RDC as well as the LSP's are controlled by (s, Q) policies, that is, when the inventory position (physical stock minus backlog plus on order) drops below the reorder point s we order a multiple of Q, such that the inventory position after ordering is between s and $s+Q$. As a service performance measure the P_{2} service measure (often denoted as the fill rate) is used: the long-run fraction of demand delivered directly from shelf, see for example Silver and Peterson (1985), Tijms and Groenevelt(1984). Demands which can not be delivered directly from shelf are backordered. The aim is to minimize the costs incurred in the supply chain subject to a P_{2} service level constraint.

The purpose of this paper is to analyze the cost differences of the proposed demand management policies. Therefore, we need specifications for the costs that are dependent of these policies, which are: the costs of carrying items in inventory, the ordering or setup costs, and the transportation costs. We assume that the carrying costs are proportional to the average inventory level in the distribution chain, where the costs of having one item stocked for one time unit is identical along the supply chain, and is denoted by h ($\$$ / time unit). Assuming constant carrying cost along the supply chain is based on the fact that once a product has been completed the material value remains constant while further distributing through the supply chain. The ordering costs are fixed per replenishment (that is independent of the size of the replenishment), and are denoted by A_{R} at the RDC and A_{L} at the LSP's. We assume that transportation costs are independent of the transportation size, and are denoted by T_{R} at the RDC and T_{L} at the LSP's. This is typically the case for transportation of fast moving goods, where mostly Full (mixed) Truck Loads (FTL) are guaranteed.

3. Rerouting large orders to upstream stockpoints; large order overflow.

In general, a stockpoint in a multi-echelon distribution chain satisfies all customers that arrive at that particular stockpoint, where customers are defined as the external customers as well as replenishment orders of downstream stockpoints in the distribution chain. However, in case large order overflow is applied, customers with large demand are not satisfied by the stockpoint at which they arrive, but by an upstream stockpoint. Thus for each stockpoint a maximal customer order quantity Q_{c} and an alternative source τ is defined such that customers with demand larger than Q_{c} are satisfied by source τ. Note that the case in which large order overflow is not allowed can be identified by the situation where Q_{c} is equal to ∞. However, re-routing orders to another source implies in most cases increasing lead times of customers with large demand. On the other hand, the number of internal replenishments decreases. Of course it may not be easy to persuade customers to accept this new regime. It
may be needed to give a discount for the customers' willingness to collaborate. How much discount can be given depends on the cost savings realized. An alternative approach to neutralize the increasing lead times is faster transportation. This also results in a trade off between the costs of fast transportation and the costs savings due to large order overflow, that is savings of holding costs.

In our numerical experiment we consider 10 local stockpoints (LSP). The lead time from factory to RDC, L_{F}, equals 40 days and the lead times between the RDC and the LSP's, L_{R}, are equal to 3 days. For sake of simplicity we assume that all stockpoints have an identical demand process, with arrival rate 1 customer each day, an expected demand (IED) equal to 100 , and the coefficient of variation c_{D} is equal to $\sqrt{3}$. The value for the coefficient of variation is based on an extensive analysis of about 10.000 consumer electronics products. We varied the P_{2} service measure between $0.90,0.95$ and 0.99 . Furthermore, we assumed that the reorder quantity Q is 10 and 5 days of demand at the RDC and the LSP's, respectively.

Given this information about the distribution chain, we determine the control policies that yield a prespecified P_{2} service measure for both the RDC and the LSP's, see Appendix 1. We used a heuristic method to find the control variables. The heuristic is analogously to the approach followed by van der Heijden (1992), who analyzed divergent logistic networks with local (R, S) inventory control. The two key elements in his approach are the decomposition of the multi-echelon distribution chain into single echelon inventory models, and the calculation of the replenishment order delay due to stockouts at upstream stockpoints. Discrete event simulation is used to compute the following performance measures, which will be used to evaluate the possible benefit of large order overflow:

- $X:=$ the average cumulative stocks at the LSP's and the RDC;
- $\beta:=$ the actual service level averaged over the LSP's and RDC;
- $N:=$ the transportation frequency between the RDC and LSP's plus the number of diverted customers per time unit.

Note that the service at the RDC is also incorporated in β, because diverted customers will
be served by the RDC. In the simulation experiment we sampled 20 runs of 50.000 time units (corresponding to 500.000 customers each run). For each of the performance measures, defined as above, the average value and the corresponding 95% confidence interval over the 20 runs are tabulated in Appendix 2. Moreover we used a mixture of Erlang distributions to sample the demand size (see Tijms(1994) pp. 358).

In Figure 2 we show the average cumulative stock needed to guarantee a target customer service level of $90 \%, 95 \%$ and 99% for various values of Q_{c}. Figure 3 illustrates the relative stock savings $\left(\left(X(\infty)-X\left(Q_{c}\right)\right) / X(\infty) \times 100 \%\right)$.

Figure 2: Average cumulative stock needed with large order overflow.

Figure 3: Relative stock reduction with large order overflow.

The average cumulative stock needed, in the distribution chain which is not controlled by large order overflow, to guarantee a prespecified P_{2} service level of $90 \%, 95 \%$ and 99% is about 16, 21 and 30 days demand respectively (horizontallines in figure 2). We notice that by diverting large orders to the RDC if demands are larger than 3 times the average customer order size the cumulative stock needed to guarantee a service level of $90 \%, 95 \%$ and 99% equals 9,11 and 16 days of demand respectively. By taking Q_{c} equal to the average customer order size we apparently discriminate between small and large orders leading to
relative cumulative stock savings of about 50%.
The analysis reveals another important point. Without large order overflow we need very high stocks to maintain a 99% service level, as is usually proposed as a standard in the Operations Management literature. In practice we find such high stocks unacceptable from an economic point of view. Thus one accepts a lower service level or one applies procedures such as large order overflow or delivery splitting, which is discussed in the next section. Such procedures (and others) are applied on an ad hoc basis, especially in situations where stockouts are likely to occur in the near future. However, this usually comes as a surprise to the customer. We advocate the routine use of such procedures, where customers know the conditions, and target stock levels are set taking into account the benefits of the differentiated procedures. Notice, that the stock needed in case $\beta=0.99$ and $Q_{c}=200$ equals the stock needed when $\beta=0.90$ and $Q_{c}=\infty$, i.e. in case customers with demands larger than 2 times the average demand are diverted to the RDC, a service of 99% can be realized with stock required to guarantee a service of 90% in case large order overflow is not applied.

It is clear that large order overflow decreases the average stock on hand enormously. Moreover, the number of internal deliveries due to replenishment orders of downstream stockpoints decrease. In fact the total amount shipped between the RDC and LSP's decreases with an amount which equals the total amount shipped from the RDC directly to the customers. Notice that the number of shipments to customers remain the same. It is clear that for riguorous treatment of the model we need to incorporate the safety stock at the customers. As motivated before we assume that the consequences for the customers are neutralized by discounts for customers accepting this new regime of large order overflow.

In order to make the proper trade offs we now introduce the Differential Total Relevant Costs (DTRC) which is defined as the difference between the total relevant costs in the situations with or without large order overflow. In the DTRC we need to incorporate the transportation cost between the RDC and LSP's and between the RDC and external customers, the holding costs and the possible extra ordering costs. Hence, the situation is considered that the customers which are diverted have extra ordering costs $A_{R}-A_{L}$ and extra
transportation costs T_{R}. Then recall the definition of X and N which are obviously functions of Q_{c}. Then $\operatorname{DTRC}\left(Q_{c}\right)=h\left(X(\infty)-X\left(Q_{c}\right)\right)+A\left(N(\infty)-N\left(Q_{c}\right)\right.$), where h denotes the stock keeping costs per time unit and $A:=A_{R}-A_{L}+T_{R}$.

The profitability then depends on the transportation-holding cost ratio TH , where $\mathrm{TH}=\frac{A}{h}$. It is clear that for large TH-ratios large order overflow is not profitable, whereas for small TH-ratios the opposite holds. In figure 4 we illustrate the DTRC for $\beta=0.99$ where we varied the TH-ratio. The indifference curves give good insight in profitability of large order overflow.

Figure 4: TRC as function of the TH-ration

For example, in case $Q_{c}=300, A=500$ the holding costs decrease by 1186 ($\$ /$ day), where the transportation costs increase by 570 , hence the overall profit is $\$ 615$ each day. Moreover, the curves can be used as a graphical aid in determining the optimal Q_{c}.

4. Delivery splitting.

In this section we analyze the effect of delivery splitting on average physical stock, customer service level, and delivery frequencies. We restrict ourself to the analysis of a single local stockpoint (LSP). The large order overflow procedure aims at reducing variability of demand to be satisfied from local stockpoints. Indeed, supply chain stocks are dramatically reduced by this procedure. Yet, the customer orders are all shipped in one lot. This is likely to cause high stocks at the customers. Therefore we propose the following procedure which
may induce a beneficial result for both supplier and customers. Determine a maximum shipment lot Q_{s} and an intershipment time T for consecutive lots of the same customer order. Then large demands will not be deliverd in one single batch, even in case the inventory level is sufficiently large. The customer receives only a limited quantity, Q_{s}, at a time. If the demand size is larger than Q_{s}, starting at the demand epoch, an amount of Q_{s} is delivered in a number of shipments which are T time units apart. Consequently all quantities are equal to Q_{s} except possibly the last. For example, when a customer arrives at time t, with demand of size D, results in the following delivery scheme for that customer:

$$
\left\{\begin{array}{lll}
\text { deliver } Q_{s} & \text { on epoch } & t+j T \tag{1}\\
\text { deliver } D-n Q_{s} & \text { on epoch } & t+n T
\end{array} \quad(j=0, \ldots, n-1)\right.
$$

where $n:=\max \left\{m \in I N \mid m Q_{s} \leq D\right\}$.
In practice, situations occur in which delivery splitting is not feasible, for example, when large orders are required immediately. However, in the situations where quantity discounts generate the large customer demand sizes, delivery splitting is especially suitable. Note, that the case in which delivery splitting in not allowed we set Q_{s} equal to ∞. The focus of delivery splitting is to reduce the variance in the demand process and to achieve stock reductions at the customers as a by-product, for the reduction of the inventory at the customers see Chiang and Chiang (1996).

Closely related to delivery splitting is the concept of order splitting (see, for example, Sculli and Wu (1981) and Lau and Lau (1994)). Order splitting, however, primarily aims at reducing of lead time uncertainties by splitting the replenishment orders over more than one supplier, and is therefore a lead time management strategy. Hong and Hayya (1992) give a chronological summary of the literature about order splitting. The papers about order splitting stress the trade off between the increase in delivery costs and the decrease in holding costs, which is also an important issue when delivery splitting is applied.

To quantify the effects of delivery splitting we use simulation. We specified the distribution function of the demand size $F_{D}($.$) as a mixture of Erlang distributions, as in the case of large$ order overflow. The simulation experiments are composed of 25 runs of 100.000 time units to guarantee a 95% confidence interval of maximal 1% of the actual service level. We consider

240 cases as follows. The average customer demand size (IED) is fixed at 50 , the coefficient of variation of the customer demand size $\left(c_{D}\right)$ varies as 1,2 and 4 to emphasize the high variability in demand. The average number of customer orders per day (λ) is equal to 1 . The lead time of replenishment orders from the RDC to the LSP (L) varies between 10 and 20 days. The replenishment order quantity is equal to 1000 for all cases. The target customer service level is varied between 0.90 and 0.99 . The intershipment time T is varied between $0.3,0.5,1$ and 1.5 times the lead time. The maximal lot size of a shipment $\left(Q_{s}\right)$ is varied between $0.5,1,2$ and 4 times the average customer demand (see Appendix 3 for detailed specification). We used a heuristic method to find the control variables. The key elements in this heuristic are expressions for the arrival intensity of the splitted deliveries, and the first two moments of the sizes of such splitted deliveries. For a more detailed description of the heuristic see Janssen et al. (1995)). Discrete event simulation is used to compute the following performance measures:

- $X:=$ the average physical stock at the LSP;
- $\beta:=$ the actual service level at the LSP;
- $N:=$ the delivery frequency to the customer per unit of time.

Figure 5: Stock reductions obtained by delivery splitting.

In figure 5 we show the relative stock reductions obtained by delivery splitting, expressed in the percentage of the stock on hand that is needed when no delivery splitting is applied. To be more precise the figure represents the quantity $\left(X(\infty)-X\left(Q_{s}\right)\right) / X(\infty) \times 100 \%$. We conclude that for c_{D} relatively small ($c_{D}=1$) delivery splitting does not reduce the average stock on hand much. However, for c_{D} large we notice the enormous stock reductions that can be obtained by delivery splitting.

On the other hand the delivery frequency increases, and thereby possibly the transportation costs. Hence, to make a trade off between applying delivery splitting or not we need to include the transportation costs, as was the case for order splitting. Because the number of customer demands remains the same we need not include the ordering costs at the LSP. We again consider the Differential Total Relevant Costs (DTRC) which is now defined as the difference between the total relevant costs in the situations using delivery splitting or not. Then $\operatorname{DTRC}\left(Q_{s}\right)=h\left(X(\infty)-X\left(Q_{s}\right)\right)+A\left(N(\infty)-N\left(Q_{s}\right)\right)$, where $A:=T_{R}$. The profitability of delivery splitting depends on the ratio A / h. Figure 6 illustrates DTRC ($\$ /$ day) where h is fixed at $0.2 \$ /$ unit/day and A is varied as $15,30, \ldots, 150$.

If the ratio A / h is high, delivery splitting is not profitable at all. On the other hand when the ratio A / h is small, delivery splitting is indeed profitable. To investigate the profitability
of delivery splitting for practical situations and to evaluate a number of scenarios we need a fast method to calculated $D T R C$. We refer to Janssen et al.(1995) for such a method.

So far we considered a replenishment policy which is only based on the inventory position, that is, physical inventory level plus stock on order minus backorders. However, in case delivery splitting is applied, explicit knowledge about the occurrences of future deliveries of the splitted orders is available. This knowledge could be used to improve the performance of the inventory system. To compare the effectiveness of using information about future deliveries we analyzed the same 240 cases as above. Again we used a heuristic method (Janssen et al.(1995)) to find the control parameters, whereas discrete event simulation is used to compute the performance measures (see Appendix 4). In figure 7 we present the relative stock reductions obtained by delivery splitting in case we use information about future deliveries over the stock reductions obtained by delivery splitting without using information about future deliveries. To be more precise the figure represents the quantity $\left(X\left(Q_{s}\right)-X_{i}\left(Q_{s}\right)\right) /\left(X(\infty)-X\left(Q_{s}\right)\right) \times 100 \%$ where X_{i} denotes the average stock on hand level with delivery splitting using information about future deliveries explicitly.

Figure 7: Additional stock reductions obtained by using information about future deliveries

It is clear that the additional stock reductions are dependent of Q_{s}. Actually, we conjecture
that there exists a Q_{s} for which the additional stock reductions are maximal. The additional stock reduction increase for small Q_{s} because of the increasing amount known to be delivered during the lead time (the number of deliveries within the lead time remains the same but the quantity per delivery increases). Thus the information about future deliveries is used more effectively. On the other hand, for large Q_{s} the total amount known to be delivered during the lead time decreases, because the number of future deliveries decreases. In deciding whether to implement delivery splitting with or without using the information about future deliveries a trade off has to be made between the additional stock on hand savings and the extra cost due to a more complex replenishment strategy.

5. Conclusions.

In this paper we discussed the problem of demand management in a multi-stage distribution chain. We argued the organizational causes for high demand variations in intermediate stages, in spite of stable end-customer demand. This effect is another example of Forrester's findings (1961), yet it differs from the usual interpretation of Forrester's conclusions, which are more related to batch sizing and information delays (see Silver and Peterson (1985)). We discussed ways of resolving the problems caused by these high variations; our discussion was based on the insight that both supplier and customer benefit from stability of the demand process at intermediate stages by stock reduction. We introduced and analyzed two simple procedures that could be applied in the order processing systems. We emphasize that the resulting procedures are customer-oriented; hence the procedures chosen are product-customer dependent. Our analysis showed the large impact of the two procedures from the point of view of the supplying stage.

We consider the two proposed procedures as powerfull tools for management to decrease variablities in demand and therefore decrease safety stocks. In that sense we deliberately used the notion of demand management, which is pro-active, as opposed to inventory management. Further research is required with respect to the implementation of the procedures and the validation of our stock savings predictions. Yet these predictions are in accordance with the
savings reported by companies that implemented DRP-systems with Available-To-Promise capabilities. This constitutes another subject of further research, that is, the relation of the demand management procedures defined in this paper and the ATP-capability.

References

Anderson, E.J. and Lagodimos, A.G., 1989. "Service levels in single stage MRP systems with demand uncertainty". Enginering cost \& Production Economics, vol. 17, 125-133.

Chiang C. and Chiang W., 1996 "Reducing inventory costs by order splitting in sole sourcing environment". Journal of Operational Research Society, vol. 47, 446-456.

Eppen, G. and Schrage, L., 1981. "Centralized ordering policies in a multi-warehouse system with random lead times and random demand". Management Science, vol. 16, 51-67.

Forrester, J.W., 1961. Industrial Dynamics. M.I.T. Press, Cambridge Massachusetts.
Janssen, F.B.S.L.P.,Kok, A.G. de and Van der Duyn Schouten, F.A., 1995 . "Approximations for the delivery splitting model". CentER discussion paper 9584, Tilburg University.

Jönsson, H. and Silver, E.A., 1987. "Analysis of two-echelon inventory control system with complete redistribution". Management Science, vol. 33, 215-227.

Graves, S.C., Rinnooy Kan, A.H.G. and Zipkin, P.H., 1994. Logistics of production and inventory. Elsevier, Amsterdam.

Hall, R.W., 1983. Zero Inventories. Dow Jones-Irwin, Homewood.

Hong, J.D. and Hayya, J.C., 1992. "Just-in-time purchasing: Single or multiple sourcing?". International Journal of Production Economics, vol. 27, 175-181.

Kok, A.G. DE, 1987. "Production-Inventory control models: Algorithms and approximations". CWI-tract 30, CWI Amsterdam.

Kok, A.G. De, 1990. "Hierarchical production planning for consumer goods". European Journal Operational Research, vol. 45, 55-69.

Kok, A.G. de and Verrijdt, J.H.C.M., 1995. "Distribution planning for a divergent Nechelon network without intermediate stocks under service restrictions". International Journal of Production Economics, vol. 38, 225-243.

Lagodimos, A.G., 1992. "Multi-echelon service models for inventory systems under different rationing policies". International Journal of Production Research, vol. 30, 939-958.

Lee, H.L. and Billington, C., 1992"Managing supply chain inventory: pitfalls and opportunities". Sloan Management Review, vol. 33, 65-73.

Lee, H.L. and Billington, C., 1993 "Material management in decentralized supply chains". Operations Research, vol. 41, 835-847.

Lau, H.S. and Lau, A.H., 1994. "Coordinating two suppliers with offsetting lead time and price performance". Journal of Operations Management, vol. 11, 327-337.

Martin, A.J., 1990. Distribution Resource Planning. Oliver Wight Ltd. Publications, 2-nd ed., Essex Junction.

Orlickey, J., 1975. Material Requirements Planning. McGraw Hill, New York.

Sculli, D. and Wu, S.Y. 1981. "Stock control with two suppliers and normal lead times". Journal of Operational Research Society, vol. 32, 1003-1009.

Silver, E.A. and Peterson, R., 1985. Decision Systems for Inventory Management and Production Planning. Wiley, New York.

Tersine, R.J. 1994. Priciples of inventory and materials management. Prentice-Hall, 4-ed, New Jersey.

Tijms, H.C. and Groenevelt, H., 1984. "Simple approximations for the reorder point in periodic and continuous review (s, S) inventory systems with service level constraints". European Journal of Operational Research, vol. 17, 175-190.

Timms, H.C., 1994. Stochastic Models: An Algorithmic Approach. Wiley, Chichester.

Vastag, G., Kasarda, J.D. and Boone, T., 1994. "Logistical support for manufacturing agility in global markets". International Journal of Operations $\&$ Production management, vol. 14, 73-85.

Appendix 1: Control parameters for the 2-echelon inventory model with large order overflow.

$Q_{\text {max }}$	β	0.90		0.95		0.99	
	RDC	41593	10000	43438	10000	46893	10000
	LDC	75	57	93	57	135	57
100	RDC	41635	10000	43480	10000	46935	10000
	LDC	136	107	168	107	243	107
200	RDC	41720	10000	43565	10000	47099	10000
	LDC	234	175	290	175	425	175
300	RDC	41808	10000	43693	10000	47306	10000
	LDC	336	238	418	238	613	238
400	RDC	41937	10000	43862	10000	47554	10000
	LDC	436	296	543	296	797	296
500	RDC	42026	10000	44031	10000	47803	10000
	LDC	526	345	653	345	961	345
600	RDC	42154	10000	44159	10000	48011	10000
	LDC	603	384	750	384	1102	384
700	RDC	42241	10000	44286	10000	48178	10000
	LDC	668	415	830	415	1221	415
800	RDC	42297	10000	44371	10000	48303	10000
	LDC	722	438	897	438	1319	438
900	RDC	42371	10000	44455	10000	48427	10000
	LDC	765	455	952	455	1398	455
1000	RDC	42375	10000	44498	10000	48470	10000
	LDC	801	468	995	468	1463	468
∞	RDC	42462	10000	44586	10000	48637	10000
	LDC	892	500	1125	500	1674	500

Appendix 2: Performance measures for the 2-echelon inventory model with large order overflow.

$Q_{\max }$	β	0.90			0.95			0.99		
50	X	7108	[6399	, 7817]	9489	9408	9570]	13295	13225	13365]
	N	5.87	[5.87	, 5.88]	5.87	[5.87	, 5.88]	5.87	[5.87	,5.88]
	β	0.9034	[0.9030	,0.9039]	0.9557	[0.9554	,0.9559]	0.9941	[0.9940	,0.9942]
100	X	7934	[7474	, 8393]	10204	[10149	, 10258]	13954	[13303	, 14606]
	N	4.43	[4.43	, 4.44]	4.43	[4.43	, 4.44]	4.44	[4.43	, 4.44]
	β	0.9039	[0.9034	,0.9044]	0.9552	[0.9549	,0.9555]	0.9935	[0.9934	,0.9936]
200	X	9103	[9018	, 9188]	11053	[10398	, 11708]	15848	[15184	, 16513]
	N	3.47	[3.47	, 3.48]	3.47	[3.47	, 3.47]	3.47	[3.47	, 3.48]
	β	0.9037	[0.9032	,0.9043]	0.9544	[0.9541	,0.9547]	0.9934	[0.9933	,0.9935]
300	X	10152	[10075	, 10228]	12705	[12644	, 12766]	18276	[18180	, 18372]
	N	2.94	[2.94	, 2.94]	2.94	[2.93	, 2.94]	2.94	[2.94	, 2.94]
	β	0.9046	[0.9041	,0.9051]	0.9545	[0.9542	,0.9548]	0.9932	[0.9931	,0.9933]
400	X	11207	[11113	, 11302]	14053	[13983	, 14123]	20248	[20184	, 20311]
	N	2.58	[2.58	, 2.58]	2.58	[2.58	, 2.58]	2.58	[2.58	, 2.59]
	β	0.9061	[0.9056	,0.9066]	0.9552	[0.9549	,0.9555]	0.9932	[0.9931	,0.9933]
500	X	12081	[12004	, 12157]	14923	[14262	, 15585]	22117	[21987	, 22247]
	N	2.34	[2.34	, 2.34]	2.34	[2.34	, 2.34]	2.34	[2.34	, 2.35]
	β	0.9076	[0.9071	,0.9081]	0.9559	[0.9557	,0.9561]	0.9933	[0.9932	,0.9934]
600	X	12652	[11995	, 13309]	16342	[16236	, 16447]	23355	22695	, 24015]
	N	2.18	[2.18	, 2.18]	2.18	[2.18	, 2.18]	2.18	[2.18	, 2.18]
	β	0.9087	[0.9082	,0.9092]	0.9562	[0.9559	,0.9564]	0.9933	[0.9932	,0.9934]
700	X	13291	[12630	, 13952]	16757	[16055	, 17459]	24602	[23941	, 25262]
	N	2.06	[2.06	, 2.07]	2.06	[2.06	, 2.07]	2.07	[2.06	, 2.07]
	β	0.9093	[0.9089	,0.9097]	0.9523	[0.9445	,0.9601]	0.9931	[0.9931	,0.9932]
800	X	14241	[14147	, 14335]	18021	[17960	, 18082]	26012	25923	, 26100]
	N	1.99	[1.98	, 1.99]	1.99	[1.98	, 1.99]	1.99	[1.99	, 1.99]
	β	0.9100	[0.9095	,0.9105]	0.9564	[0.9560	,0.9567]	0.9930	[0.9929	,0.9931]
900	X	14395	[13735	, 15054]	18567	[18445	, 18689]	26943	[26855	, 27031]
	N	1.93	[1.93	, 1.93]	1.93	[1.93	, 1.93]	1.93	[1.93	, 1.93]
	β	0.9098	[0.9094	,0.9103]	0.9563	[0.9560	,0.9567]	0.9928	[0.9927	,0.9929]
1000	X	15032	[14942	, 15123]	18662	[17996	, 19328]	27664	27564	, 27764]
	N	1.89	[1.89	, 1.89]	1.89	[1.89	, 1.89]	1.89	[1.89	, 1.89]
	β	0.9101	[0.9096	,0.9107]	0.9559	[0.9556	,0.9562]	0.9926	[0.9925	,0.9927]
∞	X	16278	[16177	, 16378]	20676	[20555	, 20797]	30135	[30008	, 30262]
	N	1.80	[1.80	, 1.80]	1.80	[1.80	, 1.80]	1.80	[1.80	, 1.80]
	β	0.9048	[0.9044	,0.9052]	0.9517	[0.9514	,0.9520]	0.9900	[0.9898	,0.9901]

Appendix 3 : Performance measures for delivery splitting without using information about future deliveries

		$\mathrm{L}=10$						$L=20$					
		$\beta=0.90$			$\beta=0.99$			$\beta=0.90$			$\beta=0.99$		
T	Qs	$c_{D}=1$	$c_{D}=2$	$c_{D}=4$									
		533	769	1652	930	1469	3442	1115	1404	2381	1619	2299	4534
	∞	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
		543	783	1672	932	1469	3433	631	928	1926	1118	1801	4039
$0.3 L$	25	259	142	67	496	343	226	601	370	221	897	620	419
		2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6100
		453	437	424	683	631	578	485	455	431	771	698	621
	50	403	279	132	719	582	364	873	618	339	1269	994	625
		1.5800	1.6900	1.7500	1.5800	1.6900	1.7500	1.5800	1.6900	1.7500	1.5800	1.6900	1.6900
		496	492	453	804	788	678	554	540	476	937	906	754
	100	492	472	285	862	923	680	1041	944	583	1506	1497	1058
		1.1500	1.2800	1.3500	1.1500	1.2800	1.3500	1.1500	1.2800	1.3500	1.1500	1.2800	1.2800
		526	598	552	887	1038	941	603	688	614	1054	1228	1079
	200	523	644	613	918	1242	1326	1102	1226	1051	1599	1952	1878
		1.0200	1.1000	1.1600	1.0200	1.1000	1.1600	1.0200	1.1000	1.1600	1.0200	1.1000	1.1000
		538	701	805	923	1287	1508	624	832	931	1105	1541	1743
$0.5 L$	25	528	723	1090	928	1402	2234	1112	1365	1680	1614	2196	3000
		1.0000	1.0200	1.0600	1.0000	1.0200	1.0600	1.0000	1.0200	1.0600	1.0000	1.0200	1.0200
		541	749	1199	930	1414	2331	629	906	1393	1115	1716	2694
	50	186	98	49	379	261	189	458	282	186	699	484	357
		2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6100
		437	427	420	623	584	555	454	436	424	687	631	589
	100	342	205	99	616	444	283	756	481	275	1101	778	502
		1.5800	1.6900	1.7500	1.5800	1.6900	1.7500	1.5800	1.6900	1.7500	1.5800	1.6900	1.6900
		476	461	439	743	694	617	519	489	451	853	779	671
	200	468	377	199	818	742	488	995	780	439	1435	1231	791
		1.1500	1.2800	1.3500	1.1500	1.2800	1.3500	1.1500	1.2800	1.3500	1.1500	1.2800	1.2800
		516	543	497	8.57	900	779	586	609	531	1013	1048	875
L	25	520	578	437	912	1107	952	1095	1118	791	1587	1765	1405
		1.0200	1.1000	1.1600	1.0200	1.1000	1.1600	1.0200	1.1000	1.1600	1.0200	1.1000	1.1000
		536	658	669	918	1176	1177	621	771	751	1097	1405	1354
	50	528	706	867	928	1366	1792	1112	1334	1377	1614	2136	2441
		1.0000	1.0200	1.0600	1.0000	1.0200	1.0600	1.0000	1.0200	1.0600	1.0000	1.0200	1.0200
		541	736	1012	930	1383	1928	629	886	1164	1115	1669	2215
	100	115	60	32	267	194	157	317	207	152	505	370	301
		2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6100
		424	420	418	571	550	538	432	424	420	612	582	564
	200	261	143	75	485	330	229	601	365	230	882	597	419
		1.5800	1.6900	1.7500	1.5800	1.6900	1.7500	1.5800	1.6900	1.7500	1.5800	1.6900	1.6900
		452	440	430	670	620	580	479	454	437	750	679	621
$1.5 L$	25	420	276	139	735	556	352	907	605	337	1302	953	598
		1.1500	1.2800	1.3500	1.1500	1.2800	1.3500	1.1500	1.2800	1.3500	1.1500	1.2800	1.2800
		497	490	462	804	764	670	555	531	480	938	870	734
	50	511	476	286	894	910	642	1079	949	567	1559	1481	992
		1.0200	1.1000	1.1600	1.0200	1.1000	1.1600	1.0200	1.1000	1.1600	1.0200	1.1000	1.1000
		532	594	557	904	1019	908	614	679	607	1078	1200	1023
	100	528	665	609	928	1272	1254	1112	1266	1027	1614	2006	1785
		1.0000	1.0200	1.0600	1.0000	1.0200	1.0600	1.0000	1.0200	1.0600	1.0000	1.0200	1.0200
		541	707	799	929	1301	1438	629	842	906	1115	1565	1654
	200	109	56	31	260	191	155	311	203	150	498	366	299
		2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6500	2.5400	2.6100	2.6100
		419	417	417	564	546	536	426	421	419	605	577	561

In each cel the top, the middle and the bottom elements denote the reorder point calculated
by the method described in Janssen et al. (1995), the associated delivery frequency and the average stock position, respectively.

Appendix 4 : Performance measures for delivery splitting using information about future deliveries

		$\mathrm{L}=10$						$\mathrm{L}=20$					
		$\beta=0.90$			$\beta=0.99$			$\beta=0.90$			$\beta=0.99$		
T	Qs	$c_{D}=1$	$c_{D}=2$	$c_{D}=4$									
	∞	$\begin{gathered} 533 \\ 1.0000 \\ 543 \end{gathered}$	$\begin{gathered} 769 \\ 1.0000 \\ 783 \\ \hline \end{gathered}$	$\begin{gathered} 1652 \\ 1.0000 \\ 1672 \end{gathered}$	$\begin{gathered} 930 \\ 1.0000 \\ 932 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1469 \\ 1.0000 \\ 1469 \end{gathered}$	$\begin{gathered} 3442 \\ 1.0000 \\ 3433 \end{gathered}$	$\begin{gathered} 1115 \\ 1.0000 \\ 631 \end{gathered}$	$\begin{gathered} 1404 \\ 1.0000 \\ 928 \end{gathered}$	$\begin{gathered} 2381 \\ 1.0000 \\ 1926 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1619 \\ 1.0000 \\ 1118 \\ \hline \end{gathered}$	$\begin{gathered} 2299 \\ 1.0000 \\ 1801 \end{gathered}$	$\begin{gathered} 4534 \\ 1.0000 \\ 4039 \end{gathered}$
$0.3 L$	25	$\begin{gathered} 477 \\ 2.5400 \\ 486 \end{gathered}$	500 2.6100 508	$\begin{gathered} 513 \\ 2.6400 \\ 522 \end{gathered}$	$\begin{gathered} 766 \\ 2.5400 \\ 766 \\ \hline \end{gathered}$	812 2.6100 813	$\begin{gathered} 835 \\ 2.6400 \\ 836 \end{gathered}$	$\begin{gathered} 1025 \\ 2.5400 \\ 537 \end{gathered}$	$\begin{gathered} 1056 \\ 2.6100 \\ 569 \end{gathered}$	$\begin{gathered} 1072 \\ 2.6500 \\ 582 \\ \hline \end{gathered}$	$\begin{gathered} 1389 \\ 2.5400 \\ 889 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1448 \\ 2.6100 \\ 950 \\ \hline \end{gathered}$	$\begin{gathered} 1480 \\ 2.6100 \\ 980 \end{gathered}$
	50	$\begin{gathered} 504 \\ 1.5800 \\ 514 \end{gathered}$	571 1.7000 580	$\begin{gathered} 621 \\ 1.7400 \\ 631 \end{gathered}$	846 1.5800 846	981 1.7000 980	$\begin{gathered} 1067 \\ 1.7500 \\ 1065 \end{gathered}$	$\begin{gathered} 1069 \\ 1.5800 \\ 583 \end{gathered}$	$\begin{gathered} 1156 \\ 1.7000 \\ 668 \end{gathered}$	$\begin{gathered} 1218 \\ 1.7500 \\ 728 \end{gathered}$	$\begin{gathered} \hline 1498 \\ 1.5800 \\ 998 \end{gathered}$	$\begin{gathered} \hline 1670 \\ 1.6900 \\ 1171 \end{gathered}$	$\begin{gathered} \hline 1780 \\ 1.6900 \\ 1284 \end{gathered}$
	100	$\begin{gathered} 519 \\ 1.1600 \\ 531 \end{gathered}$	653 1.2900 663	806 1.3500 813	$\begin{gathered} 897 \\ 1.1600 \\ 897 \end{gathered}$	$\begin{gathered} 1180 \\ 1.2800 \\ 1180 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1447 \\ 1.3500 \\ 1448 \end{gathered}$	$\begin{gathered} \hline 1096 \\ 1.1600 \\ 611 \end{gathered}$	$\begin{gathered} 1268 \\ 1.2800 \\ 785 \end{gathered}$	$\begin{gathered} \hline 1450 \\ 1.3500 \\ 966 \end{gathered}$	1570 1.1600 1071	$\begin{gathered} \hline 1916 \\ 1.2800 \\ 1417 \end{gathered}$	$\begin{gathered} \hline 2250 \\ 1.2800 \\ 1753 \end{gathered}$
	200	$\begin{gathered} 527 \\ 1.0200 \\ 538 \end{gathered}$	$\begin{gathered} 712 \\ 1.1000 \\ 726 \end{gathered}$	$\begin{gathered} 1075 \\ 1.1600 \\ 1088 \end{gathered}$	$\begin{gathered} 922 \\ 1.0200 \\ 923 \end{gathered}$	$\begin{gathered} \hline 1340 \\ 1.0900 \\ 1341 \end{gathered}$	$\begin{gathered} \hline 2012 \\ 1.1600 \\ 2013 \end{gathered}$	$\begin{gathered} 1109 \\ 1.0200 \\ 625 \end{gathered}$	$\begin{gathered} 1349 \\ 1.1000 \\ 868 \end{gathered}$	$\begin{gathered} \hline 1766 \\ 1.1600 \\ 1286 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1606 \\ 1.0200 \\ 1107 \end{gathered}$	$\begin{gathered} \hline 2117 \\ 1.1000 \\ 1616 \end{gathered}$	$\begin{gathered} \hline 2905 \\ 1.1000 \\ 2408 \end{gathered}$
$0.5 L$	25	$\begin{gathered} 528 \\ 1.0000 \\ 541 \end{gathered}$	$\begin{gathered} 737 \\ 1.0200 \\ 752 \end{gathered}$	1360 1.0600 1376	928 1.0000 929	$\begin{gathered} \hline 1423 \\ 1.0200 \\ 1426 \end{gathered}$	$\begin{gathered} \hline 2691 \\ 1.0600 \\ 2691 \end{gathered}$	$\begin{gathered} 1112 \\ 1.0000 \\ 630 \end{gathered}$	$\begin{gathered} 1390 \\ 1.0200 \\ 914 \end{gathered}$	$\begin{gathered} \hline 2091 \\ 1.0700 \\ 1612 \end{gathered}$	1614 1.0000 1115	$\begin{gathered} \hline 2231 \\ 1.0200 \\ 1734 \end{gathered}$	$\begin{gathered} \hline 3634 \\ 1.0200 \\ 3135 \end{gathered}$
	50	$\begin{gathered} 449 \\ 2.5400 \\ 457 \end{gathered}$	454 2.6100 462	$\begin{gathered} 456 \\ 2.6400 \\ 466 \end{gathered}$	$\begin{gathered} 697 \\ 2.5400 \\ 697 \end{gathered}$	$\begin{gathered} 709 \\ 2.6100 \\ 709 \\ \hline \end{gathered}$	$\begin{gathered} 714 \\ 2.6400 \\ 716 \end{gathered}$	$\begin{gathered} 984 \\ 2.5400 \\ 496 \end{gathered}$	$\begin{gathered} 991 \\ 2.6100 \\ 502 \end{gathered}$	$\begin{gathered} 994 \\ 2.6400 \\ 508 \end{gathered}$	$\begin{gathered} 1297 \\ 2.5400 \\ 798 \end{gathered}$	$\begin{gathered} \hline 1314 \\ 2.6100 \\ 815 \end{gathered}$	$\begin{gathered} \hline 1322 \\ 2.6100 \\ 823 \end{gathered}$
	100	$\begin{gathered} 481 \\ 1.5800 \\ 491 \end{gathered}$	502 1.7000 512	$\begin{gathered} 514 \\ 1.7500 \\ 524 \end{gathered}$	$\begin{gathered} 788 \\ 1.5800 \\ 788 \end{gathered}$	836 1.6900 836	$\begin{gathered} 861 \\ 1.7400 \\ 865 \end{gathered}$	$\begin{gathered} 1035 \\ 1.5800 \\ 547 \end{gathered}$	$\begin{gathered} 1065 \\ 1.7000 \\ 578 \end{gathered}$	$\begin{gathered} 1082 \\ 1.7500 \\ 592 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1422 \\ 1.5800 \\ 923 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1488 \\ 1.6900 \\ 989 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1521 \\ 1.6900 \\ 1026 \\ \hline \end{gathered}$
	200	$\begin{gathered} 510 \\ 1.1600 \\ 521 \end{gathered}$	$\begin{gathered} 576 \\ 1.2900 \\ 586 \\ \hline \end{gathered}$	$\begin{gathered} 622 \\ 1.3500 \\ 633 \\ \hline \end{gathered}$	$\begin{gathered} 871 \\ 1.1600 \\ 872 \end{gathered}$	$\begin{gathered} \hline 1012 \\ 1.2900 \\ 1011 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1103 \\ 1.3500 \\ 1102 \end{gathered}$	$\begin{gathered} 1081 \\ 1.1600 \\ 597 \end{gathered}$	$\begin{gathered} 1171 \\ 1.2800 \\ 687 \end{gathered}$	$\begin{gathered} 1232 \\ 1.3400 \\ 752 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1535 \\ 1.1600 \\ 1036 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1721 \\ 1.2900 \\ 1219 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1840 \\ 1.2900 \\ 1339 \end{gathered}$
L	25	$\begin{gathered} 525 \\ 1.0200 \\ 538 \end{gathered}$	$\begin{gathered} 662 \\ 1.1000 \\ 676 \end{gathered}$	$\begin{gathered} 804 \\ 1.1600 \\ 818 \end{gathered}$	$\begin{gathered} 919 \\ 1.0200 \\ 919 \end{gathered}$	$\begin{gathered} \hline 1220 \\ 1.1000 \\ 1221 \end{gathered}$	$\begin{gathered} \hline 1490 \\ 1.1600 \\ 1489 \end{gathered}$	$\begin{gathered} \hline 1106 \\ 1.0200 \\ 622 \end{gathered}$	$\begin{gathered} 1288 \\ 1.1000 \\ 805 \end{gathered}$	$\begin{gathered} \hline 1466 \\ 1.1600 \\ 985 \end{gathered}$	$\begin{gathered} \hline 1599 \\ 1.0200 \\ 1100 \end{gathered}$	$\begin{gathered} \hline 1980 \\ 1.1000 \\ 1482 \end{gathered}$	$\begin{gathered} \hline 2328 \\ 1.1000 \\ 1837 \end{gathered}$
	50	$\begin{gathered} 528 \\ 1.0000 \\ 541 \end{gathered}$	$\begin{gathered} 724 \\ 1.0200 \\ 739 \end{gathered}$	$\begin{gathered} 1072 \\ 1.0600 \\ 1087 \end{gathered}$	$\begin{gathered} 928 \\ 1.0000 \\ 929 \end{gathered}$	$\begin{gathered} 1391 \\ 1.0200 \\ 1392 \end{gathered}$	$\begin{gathered} 2054 \\ 1.0700 \\ 2052 \end{gathered}$	$\begin{gathered} 1112 \\ 1.0000 \\ 629 \end{gathered}$	$\begin{gathered} 1373 \\ 1.0200 \\ 892 \end{gathered}$	$\begin{gathered} 1785 \\ 1.0700 \\ 1312 \end{gathered}$	$\begin{gathered} 1614 \\ 1.0000 \\ 1115 \end{gathered}$	$\begin{gathered} 2183 \\ 1.0200 \\ 1687 \end{gathered}$	$\begin{gathered} \hline 2991 \\ 1.0200 \\ 2491 \\ \hline \end{gathered}$
	100	$\begin{gathered} 422 \\ 2.5400 \\ 430 \end{gathered}$	$\begin{gathered} 422 \\ 2.6100 \\ 429 \end{gathered}$	422 2.6300 433	$\begin{gathered} 623 \\ 2.5400 \\ 623 \end{gathered}$	$\begin{gathered} 623 \\ 2.6100 \\ 624 \end{gathered}$	$\begin{gathered} 623 \\ 2.6400 \\ 623 \end{gathered}$	$\begin{gathered} 942 \\ 2.5400 \\ 452 \end{gathered}$	$\begin{gathered} 942 \\ 2.6100 \\ 452 \end{gathered}$	$\begin{gathered} 942 \\ 2.6400 \\ 453 \end{gathered}$	$\begin{gathered} 1195 \\ 2.5400 \\ 695 \end{gathered}$	$\begin{gathered} 1196 \\ 2.6100 \\ 698 \\ \hline \end{gathered}$	$\begin{gathered} 1196 \\ 2.6100 \\ 698 \end{gathered}$
	200	$\begin{gathered} 446 \\ 1.5800 \\ 456 \end{gathered}$	$\begin{gathered} 447 \\ 1.6900 \\ 457 \end{gathered}$	$\begin{gathered} 448 \\ 1.7500 \\ 459 \end{gathered}$	$\begin{gathered} 704 \\ 1.5800 \\ 705 \end{gathered}$	$\begin{gathered} 708 \\ 1.7000 \\ 708 \end{gathered}$	$\begin{gathered} 710 \\ 1.7500 \\ 710 \end{gathered}$	$\begin{gathered} 985 \\ 1.5800 \\ 497 \end{gathered}$	$\begin{gathered} 987 \\ 1.6900 \\ 500 \end{gathered}$	$\begin{gathered} 987 \\ 1.7500 \\ 502 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1312 \\ 1.5800 \\ 812 \end{gathered}$	$\begin{gathered} 1316 \\ 1.7000 \\ 814 \\ \hline \end{gathered}$	$\begin{gathered} 1319 \\ 1.7000 \\ 824 \end{gathered}$
$1.5 L$	25	$\begin{gathered} 483 \\ 1.1600 \\ 494 \end{gathered}$	$\begin{gathered} 494 \\ 1.2800 \\ 505 \\ \hline \end{gathered}$	$\begin{gathered} \hline 499 \\ 1.3400 \\ 512 \\ \hline \end{gathered}$	$\begin{gathered} \hline 810 \\ 1.1600 \\ 810 \\ \hline \end{gathered}$	$\begin{gathered} 839 \\ 1.2800 \\ 840 \end{gathered}$	$\begin{gathered} 8.51 \\ 1.3500 \\ 851 \\ \hline \end{gathered}$	$\begin{gathered} 1044 \\ 1.1600 \\ 558 \end{gathered}$	$\begin{gathered} 1061 \\ 1.2800 \\ 574 \end{gathered}$	$\begin{gathered} \hline 1068 \\ 1.3500 \\ 583 \end{gathered}$	$\begin{gathered} \hline 1457 \\ 1.1600 \\ 9.58 \end{gathered}$	$\begin{gathered} \hline 1498 \\ 1.2800 \\ 1000 \end{gathered}$	$\begin{gathered} \hline 1514 \\ 1.2800 \\ 1014 \\ \hline \end{gathered}$
	50	$\begin{gathered} 517 \\ 1.0200 \\ 529 \end{gathered}$	$\begin{gathered} 572 \\ 1.1000 \\ 585 \end{gathered}$	$\begin{gathered} 596 \\ 1.1600 \\ 608 \end{gathered}$	$\begin{gathered} 899 \\ 1.0200 \\ 899 \end{gathered}$	$\begin{gathered} 1033 \\ 1.1000 \\ 1034 \end{gathered}$	$\begin{gathered} 1091 \\ 1.1600 \\ 1092 \end{gathered}$	$\begin{gathered} 1096 \\ 1.0200 \\ 612 \end{gathered}$	$\begin{gathered} 1175 \\ 1.1000 \\ 692 \end{gathered}$	$\begin{gathered} 1211 \\ 1.1600 \\ 728 \end{gathered}$	$\begin{gathered} \hline 1577 \\ 1.0200 \\ 1078 \end{gathered}$	$\begin{gathered} 1756 \\ 1.1000 \\ 1256 \end{gathered}$	$\begin{gathered} 1834 \\ 1.1000 \\ 1331 \end{gathered}$
	100	$\begin{gathered} 528 \\ 1.0000 \\ 541 \end{gathered}$	$\begin{gathered} 670 \\ 1.0200 \\ 686 \end{gathered}$	768 1.0700 784	928 1.0000 928	$\begin{gathered} \hline 1266 \\ 1.0200 \\ 1266 \end{gathered}$	$\begin{gathered} \hline 1487 \\ 1.0600 \\ 1487 \end{gathered}$	$\begin{gathered} 1112 \\ 1.0000 \\ 628 \end{gathered}$	$\begin{gathered} 1309 \\ 1.0200 \\ 828 \end{gathered}$	$\begin{gathered} \hline 1441 \\ 1.0600 \\ 964 \end{gathered}$	1613 1.0000 1114	$\begin{gathered} \hline 2055 \\ 1.0200 \\ 1556 \end{gathered}$	$\begin{gathered} \hline 2340 \\ 1.0200 \\ 1841 \end{gathered}$
	200	$\begin{gathered} 422 \\ 2.5400 \\ 430 \end{gathered}$	$\begin{gathered} 422 \\ 2.6100 \\ 429 \\ \hline \end{gathered}$	$\begin{gathered} 422 \\ 2.6400 \\ 431 \end{gathered}$	$\begin{gathered} 623 \\ 2.5400 \\ 623 \end{gathered}$	$\begin{gathered} 623 \\ 2.6100 \\ 624 \end{gathered}$	$\begin{gathered} 623 \\ 2.6500 \\ 622 \end{gathered}$	$\begin{gathered} 942 \\ 2.5400 \\ 452 \end{gathered}$	$\begin{gathered} 942 \\ 2.6100 \\ 453 \end{gathered}$	$\begin{gathered} 942 \\ 2.6400 \\ 455 \end{gathered}$	$\begin{gathered} 1195 \\ 2.5400 \\ 696 \end{gathered}$	$\begin{gathered} \hline 1196 \\ 2.6000 \\ 699 \end{gathered}$	$\begin{gathered} \hline 1196 \\ 2.6000 \\ 699 \end{gathered}$

In each cel the top, the middle and the bottom elements denote the reorder point calculated
by the method described in Janssen et al. (1995), the associated delivery frequency and the average stock position, respectively.

[^0]: ${ }^{1}$ Graduate School of Industrial Engineering and Management Science, Eindhoven University of Technology, P.O. Box 513, Paviljoen F4, 5600 MB Eindhoven, The Netherlands
 ${ }^{2}$ Co-operation center Tilburg and Eindhoven Universities, Tilburg University, P.O. Box 90153, B929, 5000 LE Tilburg, The Netherlands

