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Optimal Service Policies to Remote Customers with

Delay-Limits

Menachem Berg� Frank van der Duyn Schouteny Jorg Janseny

December 1995

Abstract

This work deals with service provision to remote customers. Two examples are: (i) a

manufacturer that has to deliver items to customers in a remote destination, and (ii) a

company that provides repair and replacement service to distant clients. In both cases the

remoteness of customers suggests order aggregation: a batch delivery in the �rst example,

and a batch-visits journey in the other; the alternative is to provide individual services to

customers. A key element is a contractual obligation of the company to provide service

within an agreed delay-limit, and in that view the main decision problem is when to do

a batch service. That decision would depend on: (random) demand-arrival patterns, the

costs associated with the two service modes (batch and individual), as well as the model

used to describe operating conditions.

This paper proposes and investigates several service-provision policies, with a simple

enough structure to make them appealing for real-life implementation. Optimal service-

provision procedures are obtained for these policies, minimizing the long-run expected cost

per unit of time. The global optimal policy is also studied by means of a Markov-decision-

process problem formulation, which enables us to verify properties of the optimal policy.

The optimal costs of the proposed policies are compared and their relative performance is

evaluated with respect to the global minimal cost (of the optimal policy) on one hand, and

basic policies that employ either only batch or only individual services on the other hand.

The results are also used to address the issue of the determination of a desirable delay-

limit from the standpoint of the service provider. Finally, this work takes a broader view

of the problem area of optimal service provision to remote customers through demand

aggregation, and it discusses a range of further modelling settings of interest.

1 Introduction

In this work we investigate the issue of service provision to remote customers. Service is

interpreted in a broad sense and includes delivery of production units to customers, and
repair and replacement of failed items to the clients of a company that sells items such as
machinery, and is subsequently responsible for their proper functioning (e.g., during warranty

periods). To illustrate, consider the case of a far-east car manufacturer who sends cars to
customers in Europe, or a producer of personal computers who o�ers customers a service

contract. In a natural manner the remoteness of customers suggests order aggregation and
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batch services. The car manufacturer, for instance, receives demands for cars, and at some

point makes a mass delivery by ships. The personal-computer producer receives calls for
service, and at some point sends out a service truck for a journey to visit these customers.

The focus of this work is on those situations where the service provider must meet a
delay-limit constraint which sets the maximum timespan between the demand arrival (for a

car delivery or a computer repair in the above examples) and the moment of its ful�llment.
Such constraints are normal in service contracts; here we take them to be rigid, i.e., they
must not be violated. Therefore, if a customer is not served in a batch within the delay-limit,

an individual service has to be done. In the examples, the car manufacturer could deliver the
"critical" cars by plane, and the personal-computer producer visits the "critical" customers

on a separate journey.
The main decision problem in these circumstances is when to do a batch service. Primarily

this decision depends on the cost parameters; we assume that the variable cost for serving
a customer within a batch is (much) lower than for an individual service. A batch service,

however, has a �xed cost, which in most applications will be signi�cant. The batching decision
also depends on the (random) demand-arrival pattern; to describe that pattern we use a time-

discretized setting with the basic time period (a day, a week, etc.) being determined on the
basis of relevant operational factors. The demand quantities in these equal-length periods
are assumed to be i.i.d. discrete random variables. The time-discretization also applies to

the service decision process so that a batch service can be started only at period's endpoints.
The service policy also depends on the speci�c circumstances; the particular model considered

here will be described in the next section.
The paper studies several service policies, all characterized by their simple structure,

which is desirable for implementation purposes. These policies are essentially control limit
ones, which base the start of a batch service on pivotal quantities, namely the demand in a

single period or the total number of waiting customers, which - if large enough - triggers a
batch service (to avoid too many individual services). For these policies we obtain the optimal

values of the control limits, and the corresponding optimal costs. To assess the deviation of
these optimal costs from the minimal possible costs we also study the global optimal policy
through a Markov-decision-process problem formulation. An extensive numerical analysis is

carried out that calculates the optimal costs of all the above policies, and compares them,
for a range of values of the costs and model parameters. To obtain a better perspective,

the comparison also includes two basic policies in which service is either exclusively batch or
exclusively individual.

Generally speaking, the problem considered here can be categorized as a stochastic clear-
ing system with some structural characteristics of queues with batch service and impatient

customers. A stochastic clearing system is a system fed by an exogenous stochastic input
process, such that the quantity in the system builds up over time, where at a certain time

instant all the quantity in the system is instantaneously cleared (see [Stidham 1974]). The
two types of queueing models were investigated by di�erent authors: see [Stidham 1977]
for pioneering work on the former queueing model, as well as [Deb and Serfozo 1973] and

[Avramidis and Uzsoy 1993] for related problems, and [Palm 1937] for a seminal treatment of
the latter model with further results in many subsequent papers, e.g. [Baccelli et al. 1984],

[Stanford 1990], and [Blanc et al. 1992]. The authors are not aware of any study of the prob-
lem described here as such (and indeed not even of a queueing model with both batch service

and impatient customers).
The paper is organized as follows. In section 2 we provide a precise description of the model
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considered in this work, for which some preliminary general results are derived. In sections 3

and 4 we investigate several types of simple-structured control-limit policies, and derive the
long-term expected cost per period. Whereas the essential mathematical treatment is given in

the main text, other analyses of a more technical nature (e.g., computational algorithms) are
deferred to the appendices to avoid distraction from the main ow of the paper. We devote

section 5 to the study of the global optimal policy and its properties. A detailed solution is
obtained for the important special case of a two-period delay-limit. In Section 6 we give a
numerical evaluation of the optimal costs of the proposed policies, for a range of values of the

cost and other model parameters, and compare these policies with the global optimal policy
as well as with the two basic policies, which prescribe only batch services or only individual

services. In section 7 we consider the determination of the delay-limit, from the point of view
of the manufacturer, through its e�ects on the overall delivery costs incurred on one hand,

and the induced delay distribution of customers (their "lead-time" in the delivery context) on
the other hand. In section 8 we draw some general conclusions, and discuss future research

directions with respect to model generalizations of interest.

2 The model and some general preliminary results

For concreteness we use here the delivery example. Demand for items arrives to the manufac-

turer according to a time-discretized stochastic process: Xn is the number of items demanded
in period (day, week, etc.) n (n = 1; 2; : : :). The Xn are assumed to be i.i.d. random vari-

ables with probability distribution qk = PrfXn = kg (k = 0; 1; 2; : : :). The delay-limit, i.e.
the maximum timespan allowed to satisfy a demand, is D periods (excluding transportation

time). The manufacturer has two delivery options: a batch delivery or an individual delivery.
The cost associated with a batch of size i (i.e. including i items) is aB + bBi, where the �xed
cost aB is usually much larger than the variable cost bB. A batch delivery can be done at

the end of any period (and only there) and it is assumed that it can accommodate all waiting
demand (which, by the rigidity of the delay-time constraint, must have arrived within time

D backwards). The other option is individual delivery of an item at cost bI , with bI >> bB
(note that for bI < bB the optimal policy is to provide only individual deliveries). The model

here does not assume a waiting cost so that there is no compelling incentive to deliver an
item before the delay-limit D is reached (although many customers will actually get their de-

mand before the delay-limit: see section 7 for some relevant derivations). However, once the
delay-limit of a customer expires while this customer is not included in a batch delivery, an

individual delivery is mandatory (and it is assumed to be feasible, e.g. with the car-delivery
example, enough aircraft space can be rented for that purpose. Note here that the extent
of individual services, at any given time, is normally small because any reasonable delivery

policy will ensure that. Also, individual deliveries are usually done by faster transportation
modes and hence there is additional exibility in its exact timing).

The problem is to determine at which periods a batch service should be done in order
to minimize the per-period long-run expected total delivery costs which includes both batch-

delivery and individual delivery costs. The state vector at decision epochs, i.e. end-points of
periods, on the basis of which a batch delivery decision is made, is given by r = (r1; : : : ; rD),

where rj (j = 1; : : : ; D) is the number of waiting customers that already experienced a
delay of j periods. A (stationary) policy � is a set of rules that associate with possible

states of the process a (stationary) decision rule of whether to do a batch or not (with the
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implicit addendum that any customer reaching its delay-limit must be served individually if

a batch is not done then). Formally, such a policy � is a function from the set of all possible
state vectors IND to f0; 1g, specifying for each vector r either a batch delivery (action "1"),

or avoiding such a delivery (action "0"). (By making the policy dependent only on r we
exclude policies which relate a batch service decision to whatever happened before time D

backwards, e.g. customers already served and previous batch timings. Obviously this will
not exclude the global optimal policy.) Every such policy � generates a stochastic process

fR(n); n = 1; 2; : : :g, where R(n) = (R
(n)

1 ; : : : ; R
(n)

D ) denotes the state vector at the nth decision

epoch. By virtue of the i.i.d. demand process fXn; n = 1; 2; : : :g and the stationary decision
rule, fR(n); n = 1; 2; : : :g is a (time and state discrete) Markov process. (This indeed justi�es

adding an index � to R(n), but since the di�erent policies are dealt with separately this index
is often suppressed in the notation with no risk of ambiguity.)

We shall throughout consider only values of D greater than or equal to 2 since for D = 1
the optimal policy is clearly to make a batch delivery at the end of any period in which the

number of arriving customers exceeds aB
bI�bB

and otherwise to provide each of them with an
individual delivery. The cost of the policy is

b
a
B

b
I
�b
B

cX
k=0

qk � k +
1X

k=b
aB

bI�bB

c+1

qk � (aB + bBk) = �bB + (bI � bB)

b
a
B

b
I
�b
B

cX
k=0

kqk + aB(1� Qb
a
B

b
I
�b
B

c); (1)

where Qk =
Pk

j=0 qj = PrfXn � kg (k = 0; 1; : : :) and � := E(Xn) is the expected demand
in a period.

Next we derive a general expression for the per-period long-term expected cost of an ar-
bitrary policy �. To do that we �rst observe that whatever stationary (�xed) policy � is

employed the Markov process fR(n); n = 1; 2; : : :g regenerates itself at batch-delivery mo-
ments where all waiting customers are cleared and r = 0. This regenerative property of the

fR(n)g process implies that for any given policy � the "statistical picture" between any two
consecutive batch-delivery moments (henceforth: a cycle) is the same, and subsequently we

can introduce the following notations for any policy �:

S� := number of periods in a cycle;

Y� := number of individual deliveries in a cycle;

Z� := number of demands delivered by batch in a cycle;

N� := total demand in a cycle.

By the construction of the model we have the following expressions:

Y� =
S��DX
n=1

Xn; Z� =
S�X

n=S��D+1

Xn; N� = Y� + Z� (2)

(where the numbering of Xn starts anew after every batch delivery).
We �rst observe that, since any policy � that prescribes a batch delivery in at least one

state r is dominated, as can easily be seen, by a geometrically distributed random variable,
we must have

E(S�) <1: (3)
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For the policy that never prescribes a batch delivery, denoted by � = NB (standing for

Never Batch), the long-term expected cost per period is simply

gNB =
1X
k=1

qk � bIk = �bI ; (4)

Due to the regenerativity of fR(n)g for any given �, and (3), we have by the renewal-

reward theorem (see e.g. [Tijms 1994], theorem 1.3.1) that the long term expected cost per
period g� can be expressed as

g� =
aB + bBE(Z�) + bIE(Y�)

E(S�)
: (5)

The event fS� = sg is completely determined by X1; : : : ; Xs, since the batch-delivery deci-

sion is completely determined by R(1); : : : ; R(s) which in turn is completely determined by
X1; : : : ; Xs. Hence S� is a stopping time for fXn; n = 1; 2; : : :g and we have, by applying

Wald's theorem, that

E(N�) = E(Y�) +E(Z�) =
S�X
n=1

Xn = �E(S�); (6)

Combining (6) and (5) we obtain

g� = bB�+
aB + (bI � bB)E(Y�)

E(S�)
: (7)

From (7) we can immediately conclude that for the sake of the search for the optimal �

(whether the global optimal or a local optimal one within a given subspace of policies) we can
standardize costs by setting, arbitrarily, bI = 1 and bB = 0. This leaves us, very conveniently,
with just one (standardized) cost parameter aB for the rest of the analysis.

In the next two sections we use the result in (7) for the derivation of the local optimal
policy within several classes of policies whose simple structure makes them easier for practical

implementation. Throughout the analysis of these policies we shall impose in advance the
condition that S� � D, since, as noted earlier, there is no incentive in the model described

here to do a batch delivery earlier.

3 The Critical-Group policy

The �rst policy we now investigate is one that makes the arrival of a large demand in a period

a trigger for a batch-delivery time D later, when their delay-limit expires, to make sure that
this critical group of customers is not given expensive individual deliveries. It can be shown

(see Appendix A for a proof) that the optimal structure for this policy, denoted by � =CG
(standing for Critical-Group), is of control-limit type, i.e. the rule is: when the demand in

a period is for the �rst time (since the last batch delivery) K or more, plan to do a batch-
delivery D� 1 periods later (the maximum timespan if we want to avoid individual deliveries

for them; the use of D � 1 rather than D is due to the nature of the time discretization).
The Critical-Group policy has a simple control-limit structure depending on just one

parameter and is therefore easy to administer. The optimization procedure consists of �nding
the value K� that minimizes its long term expected cost per period gCG(K).
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To proceed with this optimization we �rst derive gCG(K), employing the general for-

mula (7) which requires the computation of E(SCG) and E(YCG) (clearly SCG and YCG
depend on K but for ease of notation this is suppressed).

Beginning with E(SCG), we have by the de�nition of the CG-policy

SCG = T +D � 1; (8)

where T is the number of periods, since the last batch delivery, until a critical group arrives,
i.e.

T = minfn � 1 : Xn � Kg (9)

(where the numbering of Xn begins anew after every batch delivery). It is easily observable

that the random variable T has a geometric distribution with parameter QK�1 so that, by (8),
the distribution of SCG is given by

PrfSCG = sg = (QK�1)
s�D(1�QK�1) (s = D;D+ 1; : : :); (10)

and thus

E(SCG) = D +
QK�1

1� QK�1

: (11)

Proceeding with E(YCG), we have

E(YCG) = E(E(YCG j SCG)); (12)

where by the rule for individual-delivery provisions

E(YCG j SCG = s) =
s�DX
n=1

E(Xn j SCG = s): (13)

Now, by the mutual independence of Xn

E(Xn j SCG = s) = E(Xn j X1 < K; : : :; Xs�D < K;Xs�D+1 � K)

= E(Xn j Xn < K) =

K�1P
k=0

kqk

QK�1

(n = 1; : : : ; s�D): (14)

Substituting (14) into (13) we �nd

E(YCG j SCG) = (SCG �D)

K�1P
k=0

kqk

QK�1

; (15)

and by substitution of (15) into (12) and using (11) we obtain

E(YCG) = (E(SCG)�D)

K�1P
k=0

kqk

QK�1

=

K�1P
k=0

kqk

1�QK�1

: (16)

Substitution of (11) and (16) into (7) (with bB = 0 and bI = 1) yields the expected cost in
terms of K:

gCG(K) =

aB(1�QK�1) +
K�1P
k=0

kqk

D(1�QK�1) + QK�1

: (17)

In searching for the optimal K� we have the following result.
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Theorem 1 The optimal K� is the smallest K that satis�es the inequality

K + (D � 1)
K�1X
k=0

(1�Qk) � aB:

Moreover, K� � daBe.

Proof.

From (17) it follows that

gCG(K + 1) � gCG(K)

,

 
aB(1� QK) +

KX
k=0

kqk

!
(D(1� QK�1) +QK�1) �

 
aB(1� QK�1) +

K�1X
k=0

kqk

!
(D(1� QK) +QK)

,

DKqK � (D � 1)

 
QK�1

KP
k=0

kqk �QK

K�1P
k=0

kqk

!

qK
� aB: (18)

Next, using the fact that

K�1X
k=0

kqk = (K � 1)QK�1 �
K�2X
k=0

Qk ;

we have

QK�1

KX
k=0

kqk �QK

K�1X
k=0

kqk = QK�1KqK � qK

K�1X
k=0

kqk = qK

K�1X
k=0

Qk: (19)

Substituting (19) into (18) we conclude that

gCG(K + 1) � gCG(K) , DK � (D� 1)
K�1X
k=0

Qk � aB

, K + (D� 1)
K�1X
k=0

(1�Qk) � aB: (20)

Now de�ne

f(K) := K + (D � 1)
K�1X
k=0

(1�Qk):

Since

f(K)� f(K � 1) = 1 + (D� 1)(1�QK�1) � 1;

f(K) is an increasing function of K. Moreover, f(0) = 0 < aB and limK!1 f(K) = 1,

whence gCG(K) has a unique minimum characterized as the smallest value of K for which (20)
holds. Finally, f(daBe) � aB , implying that K� � daBe. 2
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3.1 An extension of the Critical-Group policy: Adding delivery-timing

exibility to the policy

The main idea of the Critical-Group policy, namely ensuring that the (large) critical group

is included in a batch delivery can still be captured using an extension of this policy which
allows the batch delivery to be executed anywhere within the next D � 1 periods (and not

necessarily in the �nal one). We can thus decide that a batch delivery will be done in the �rst
period after the arrival of the critical group in which the total waiting demand is large enough,
i.e. exceeds some control limit. Indeed, the relevant total demand quantity only includes the

demand prior to the arrival of the critical group (which is still waiting for delivery), since those
arriving after it will in any case be included in the coming batch delivery and hence should

not inuence its timing. As a matter of fact we also impose an additional condition, requiring
that the current critical group, at the time of the batch delivery execution, is large enough,

thereby adding one more control limit. This extension of the Critical-Group policy loses some
of the simplicity of the basic policy, although we still retain a (multiple) control-limit type

structure, and it is of interest to check what is gained for that in terms of cost reduction. In
order not to interfere with the main vein of the paper we defer the mathematical formulation

of this policy and the derivation of its cost criterion to Appendix B.

4 The Total-Demand policy

Another simple and sensible policy is one that bases the batch delivery on the total waiting

demand, so that when for the �rst time since the last batch delivery it is K or larger, a
batch delivery is done. Since, as pointed out earlier, there is no incentive in this model to

make a batch delivery before D periods have elapsed since the previous one, the above rule
is modi�ed accordingly so that if the total existing demand reaches K or more beforehand,
the batch delivery is postponed until that moment. De�ning for n = 1; 2; : : :

Ln = the total demand still waiting for delivery at the end of period n

(where the numbering of periods begins anew after a batch delivery), the policy, denoted by

� = TD (standing for Total-Demand), is thus: do a batch delivery at the smallest n such that
Ln � K and n � D.

To �nd the optimal K which minimizes gTD(K), the long run expected cost per period of

the policy, we �rst want to derive, using (7), an expression in terms of K which requires the
computation of E(STD) and E(YTD). From the above, we have

STD = minfn � D : Ln � Kg; (21)

and since, by de�nition,

Ln =

8>><
>>:

nP
m=1

Xm (n < D);

nP
m=n�D+1

Xm (n � D);

we obtain

E(STD) = D +
1X
s=D

PrfSTD > sg
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= D +
1X
s=D

PrfLn < K; n = D; : : : ; sg

= D +
1X
s=D

Prf
n+D�1X
m=n

Xm < K; n = 1; : : : ; s�D + 1g: (22)

To compute E(YTD) we use an identity valid for any policy �,

E(Y�) = E(N�)�E(Z�) = �E(S�)� E(
S�X

i=S��D+1

Xi); (23)

where the second equality follows from (3). This is useful because for the policy here E(Z�),

being the total number of customers served in a batch, is easier to compute than E(Y�). We
have

E(
S�X

i=S��D+1

Xi) =
1X

n=D

PrfS� = ngE(
nX

i=n�D+1

Xi j S� = n)

=
1X

n=D

PrfS� = ng
1X
k=0

Prf
nX

i=n�D+1

Xi > k j S� = ng

=
1X

n=D

PrfS� = ng

0
@K +

1X
k=K

Prf
nX

i=n�D+1

Xi > k j S� = ng

1
A

= K +
1X

n=D

1X
k=K

Prf
nX

i=n�D+1

Xi > k; S� = ng: (24)

Since the expressions in (22) and (24) cannot be simpli�ed further (mainly because fLng

is not a Markov chain), a computational scheme has been developed to enable numerical
evaluations (see Appendix C).

4.1 An extension of the Total-Demand policy: Adding current critical-

group restrictions to the policy

A weak point of the TD policy is that the actual batch-delivery may be done when the current
critical group, i.e. the customers that arrived time D ago and thus have now reached their

delay-limit, is very small. In that case it looks sensible to defer the batch delivery. That
is all the more evident when at that point rD = 0, i.e. the critical group is empty, and

postponement of the batch delivery for at least one more period can only improve things
(since no immediate individual deliveries are needed). All in all this suggests a policy that

bases the batch delivery on both the total demand and the current critical-group size and
in line with our general approach to keep policies simply-structured, we shall again consider

a (double) control-limit type policy. Speci�cally, the rule is: do a batch delivery when for
the �rst time, since the last batch and as always not less than D periods after it, Ln � K1

and R
(n)

D � K2. Clearly K1 � K2, and by the argument above, only K2 � 1 needs to be
considered. This extension of the TD-policy generalizes both the CG- and TD-policies, which

correspond to the special cases K1 = 0 and K2 = 0, respectively, and hence its optimal cost
must be less than either of theirs. As for the magnitude of the savings, in return for the added

complexity, it turns out that in some cases this policy can make a meaningful improvement and
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bring the optimal cost quite close to the global minimal one (see the results of the numerical

analysis in section 6). Unfortunately, as explained later, the computational algorithm for the
derivation of the cost criterion cannot be made on the basis of those developed for either

the CG-policy or the TD-policy and a "brute-force" type of computational approach, based
on two (D � 1)-dimensional systems of equations, is needed. Consequently, the derivation

becomes computationally infeasible already for D = 4 (see Appendix C for details).

5 The optimal policy

Policies of a simple structure, as the ones considered until now, are practical from the point

of view of real-life implementation. Still, there is a theoretical interest in learning about the
global optimal policy, its structure and costs. Also, the results for the optimal policy can be

used to evaluate the deviation of the local optimal costs, i.e. the optimal costs of the policies
considered above, from the global minimum cost.

We shall now study the global optimal policy using a Markov-decision-process (MDP)

formulation of the problem: At every decision epoch, i.e. period endpoints, a choice has to be
made whether to do a batch delivery or not, labelled actions "1" and "0", respectively. The

state of the system at every decision epoch is, as argued earlier, completely characterized by
the vector r = (r1; : : : ; rD) specifying the number of waiting customers at each delay level.

As discussed earlier this implies the exclusion of policies that relate a batch delivery decision
to whatever happened before time D backwards, e.g. previously served customers and past

batch-delivery times, or any exogenous factor. The decision process is thus Markovian in R

(see the argumentation in section 2) and we denote its state space by


 := fr j ri � 0; i = 1; : : : ; Dg:

Following the routine of MDP analysis we now de�ne g and v(r) as, respectively, the expected
cost of the optimal policy and its relative values when starting the process in state r. The

(standardized) costs associated with the two possible actions are (we recall that, for the sake
of policy optimization, we can set bB = 0 and bI = 1 without loss of generality): rD for

action "0" (the cost of providing individual deliveries to all customers whose delay-limit just
expired), and aB for action "1", the cost of a batch delivery. The state transitions from
the present state r = (r1; : : : ; rD), if k (k = 0; 1; : : :) customers arrive in this coming period

(the probability of which is qk), are to state (k; r1; : : : ; rD�1) if action "0" is taken and to
(k; 0; : : : ; 0) if action "1" is taken.

Consequently, the optimality equations of the MDP are:

v(r1; : : : ; rD) = minfrD � g +
1X
k=0

qkv(k; r1; : : : ; rD�1);

aB � g +
1X
k=0

qkv(k; 0; : : : ; 0)g; r 2 
: (25)

From [Ross 1983] (theorem V.2.1) it follows that for this denumerable-state MDP an optimal
stationary policy �� exists. Its numerical computation from equation (25) is however infeasible

for D � 4 because of the curse of dimensionality. Still the equations can be used for D = 2
and D = 3 and indeed for the former we even obtained an (almost complete) analytical

solution (see section 5.2). Moreover the optimality equations can also be utilized to verify
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properties of the global optimal policy, for an arbitrary D, and this last goal is the concern

of the following section.

5.1 Properties of the optimal policy

We �rst consider the cost criterion of the expected discounted costs, with a discount factor �,

and will then infer back on the cost criterion of the expected average costs, considered above.
De�ne for n = 1; 2; : : :

vn(r) = minimal �-discounted costs starting in state r with n transitions to go;

��n(r) = optimal action in state r with n transitions to go:

For ease of notation also de�ne for n = 1; 2; : : :

h1n := aB + �

1X
k=0

qkvn�1(k; 0; : : : ; 0);

h0n(r) := rD + �

1X
k=0

qkvn�1(k; r1; : : : ; rD�1);

hn(r) := h1n � h0n(r):

Now the dynamic programming equations can be written as

vn(r) = minfh0n(r); h
1
ng (n = 1; 2; : : : ; r 2 
): (26)

We begin by verifying some properties of the relative values vn(r).

Theorem 2 (i) vn(r) � vn(r
0); r � r0;

(ii) vn(r)� vn(r
0) � aB;

(iii) vn(r + ei) � 1 + vn(r);

(iv) vn(r + ei) � vn(r + ej), i � j;

(v) vn(r) � vn(r+ k(ej � ei)), i � j;

(vi) If r and r0 are such that
iP

j=1

rj �
iP

j=1

r0j (i = 1; : : : ; D � 1) and
DP
j=1

rj =
DP
j=1

r0j , then

vn(r) � vn(r
0).

Proof. See Appendix D.

The statements of Theorem 2 are better understood by thinking in terms of di�erence in

expected future costs when starting from di�erent states. Property (ii) states that this di�er-
ence is bounded by aB, and property (i) that adding customers increases the costs, but then,

by property (iii), these costs cannot increase by more than bI = 1 per customer. According
to property (iv) the additional costs from an added customer increases with his delay, while

by property (v) moving any number of customers to a higher delay level increases the costs.
Finally, property (vi) states that if we have two states with the same total number of cus-

tomers but with a di�erent internal delay distribution, so that in one of them the number of
customers with a delay not greater than i is smaller than in the other for all i, then the costs

associated with the former state are higher.
Next we use Theorem 2 to derive some structural properties of ��.
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Theorem 3 (i) ��n(r1; : : : ; rD�1; 0) = 0;

(ii) If ��n(r) = 1 then ��n(r + ei) = 1;
(iii) If ��n(r+ ei) = 1 then ��n(r+ ej) = 1, j > i.

Proof.

(i) It follows from (25) that ��n(r1; : : : ; rD�1; 0) = 0 if

1X
k=0

qk

�
vn�1(k; r1; : : : ; rD�1)� v(k; 0; : : : ; 0)

�
� aB ;

which is true by Theorem 2(ii).
(ii) Using Theorem 2(i) we have that

hn(r+ ei)� hn(r) = h0n(r)� h0n(r+ ei) = �Ifi=Dg + �

1X
k=0

qk �

�
�
vn�1(k; r1; : : : ; rD�1)� vn�1((k; r1; : : : ; rD�1) + Ifi6=Dgei+1)

�
� 0:

Since ��n(r) = 1 implies hn(r) � 0, it follows that hn(r+ei) � hn(r) � 0 and hence ��n(r+ei) =
1.

(iii) For j < D we use Theorem 2(i) and for j = D Theorem 2(iii) to obtain

hn(r+ ej)� hn(r + ei) = h0n(r + ei)� h0n(r+ ej) = �Ifj=Dgr
0
D + �

1X
k=0

qk �

�
�
vn�1((k; r1; : : : ; rD�1) + ei+1)� vn�1((k; r1; : : : ; xD�1) + Ifj 6=Dgej+1)

�
� 0:

Since ��n(r + ei) = 1 implies hn(r + ei) � 0, it follows that hn(r + ej) � hn(r + ei) � 0 and
hence ��n(r + ej) = 1. 2

Corollary 1 S�� � D.

Proof. Follows directly from Theorem 3(i). 2

Theorem 3(i) con�rms the fact that a batch service should not be started when the number

of customers requiring an individual service is zero, because by waiting further the customers
arriving in the next period can be included in the batch with no additional costs. Parts (ii)

and (iii) of Theorem 3 state that if the optimal decision in some state is to start a batch,
then a batch should also be started if, respectively, one customer is added or one customer is

moved to a higher delay level.

Theorem 4 (i) vn(r + ei + ej)� vn(r + ei) � vn(r + ej)� vn(r);
(ii) vn(x� ei + ei+k) � vn(x� ej + ej+k); i � j.

Proof. See Appendix D.

Part (i) of Theorem 4 states that the cost of adding a customer decreases with the num-
ber of customers added, while part (ii) states that the cost of increasing the delay level of a

customer by k periods is an increasing function of his initial delay level.
The above analysis is for the discounted cost criterion, but it is not di�cult to verify,

through limiting arguments (see e.g. [Ross 1983]), that the results of Theorems 2-4 also hold,
for the corresponding quantities, when the expected average cost criterion is used.
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5.2 Solution for the case D = 2

We now use the optimality equations (25) and some of the above properties of the optimal

policy for a detailed solution for the important special case D = 2. In this case the state space
is 
 = f(i; j) j i; j � 0g, with i (j) denoting the number of customers that arrived one (two)
period(s) ago. It follows from theorem 3 that the optimal policy has the following structure:

��(i; j) =

(
0 (j < K�

i );

1 (j � K�
i ):

(27)

We �rst note the correspondence between special cases of Ki and the policies considered
earlier:

(a) Ki = K for all i: the CG-policy;
(b) Ki = K � i for all i: the TD-policy (without the added condition that S� � D);

(c) Ki = maxfK1 � i;K2g: the extended TD-policy (section 4.2).
We begin the analysis of the optimal policy with the following result.

Theorem 5 (i) K�
0 = daBe;

(ii) K�
i is non-increasing in i;

(iii) K�
i �K�

i+1 2 f0; 1g (i = 0; 1; : : :).

Proof.

(i) It follows from (25) that ��(0; j) = 1 if j > 0 and aB < j, implying that K0 = minfj :

aB < jg = daBe.
(ii) Suppose that Ki < Ki+1 for some i. Then ��(i;Ki) = 1 and ��(i+ 1; Ki) = 0, contra-

dicting theorem 3(ii).
(iii) It follows from (i) that Ki �Ki+1 � 0. Therefore suppose that Ki �Ki+1 > 1 for some

i. Then ��(i + 1; Ki+1) = 1 while ��(i;Ki+1 + 1) = 0 since Ki+1 + 1 < Ki, contradicting
Theorem 3(iii). 2

Now, for a �xed policy � = (K1; K2; : : :) the expected average costs g� and the relative
values v�(r) can be calculated by solving the following system:

v�(i; j) = j � g� +
1X
k=0

qkv�(k; i) (j < Ki);

v�(i; j) = aB � g� +
1X
k=0

qkv�(k; 0) (j � Ki); (28)

v�(0; 0) = �g� +
1X
k=0

qkv�(k; 0) := 0:

It immediately follows from (28), by using v�(0; 0) = 0, that

v�(i; j) =

8><
>:

j (i = 0; 0 � j < K0);

aB (i � 0; j � Ki);
j + v�(i; 0) (i > 0; 0 � j < Ki):

(29)

It remains to �nd v�(i; 0) for i > 0, and by using (28) and (29) we obtain

v�(i; 0) = �g� +
X

k:i<Kk

qk

�
i+ v�(k; 0)

�
+

X
k:i�Kk

qkaB
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= aB � g� +
�iX
k=0

qk

�
i� aB + v�(k; 0)

�

= aB � g� + (i� aB)Q�i +
�iX
k=0

qkv�(k; 0) (i � 0); (30)

where �i := minfj : Kj � ig, so that �i = j if and only if Kj � i and Kj�1 > i. Note that �i is
well-de�ned by Theorem 5(ii) and strictly decreasing in i for i � K1 by Theorem 5(iii). We

have thus reduced the two-dimensional system (28) for v�(i; j) and g� to the one-dimensional
system (30) for v�(i; 0) and g� (although with an in�nite number of equations). Equation (30)

can be simpli�ed further by observing that

v�(i; 0) =

(
i (0 � i < K1);
aB � g� (i � K0):

(31)

Using (31) in turn we can solve (30) for those i with �i � K1, i.e. for i � �K1 , yielding

v�(i; 0) = aB � g� + (i� aB)Q�i +
�iX
k=0

kqk (�K1 � i < K0): (32)

Consequently, for policies with �K1 � K1, (31) and (32) together give a complete solution
of (30). Moreover, substituting this solution in

g� =
1X
k=0

qkv�(k; 0) (33)

and solving for g� we obtain

g� =

aB(1�QK1�1) +
K1�1X
i=1

kqk +
K0�1X
i=K1

(i� aB)qiQ�i�1 +
K0�1X
i=K1

�i�1X
k=0

kqk

2�QK1�1

: (34)

On the other hand, if �K1 > K1 then what remains of (30) are the equations for K1 � i <

�K1 , and these can be written as

v�(i; 0) = aB � g� + (i� aB)Q�i�1 +
K1�1X
k=0

kqk +
�i�1X
k=K1

qkv�(k; 0): (35)

Finally, substituting (31) and (32) in (33), we end up with a �nite system of �K1 �K1 + 1
equations in the unknowns v�(i; 0) (i = K1; : : : ; �K1 � 1) and g�. We use this for the

construction of an e�cient policy iteration algorithm, where in every iteration system (28) is
solved for some policy �.

6 Numerical evaluations of global and local optimal costs

and comparisons

We shall now carry out an extensive numerical analysis of the various policies considered

hitherto, and compare them with respect to their respective optimal cost. The global optimal
policy naturally provides in that respect a lower bound for any of the other suggested policies.
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On the other extreme we have the policies which either prescribe only batches (denoted by

OB) or no batches at all (denoted by NB). The cost of the latter is given by (4). As for the
former, we obtain it by making the observation that due to the rigidity of the delay-limit

constraint, not having the option of individual deliveries means that even a single customer
will initiate a batch delivery time D later so that the OB-policy in e�ect corresponds to the

special case of the CG-policy with control limit K = 1. Hence, by (17) the cost of this policy
is

gOB =
aB(1� q0)

D(1� q0) + q0
: (36)

Indeed, the NB-policy is also a special case of the CG-policy with control limit K ! 1
(which, from (17), con�rms the result in (4)). The NB- and OB-policies thus provide upper

bounds, as far as their costs are concerned, to the optimal costs of the suggested policies.
Beyond that it is also of interest to see by how much the suggested policies do better than

these two basic policies.
As a matter of fact there is yet another basic policy, namely a periodic one that does a

batch delivery every �xed number of intervals, say L. It is however easily veri�ed that L

attains its optimum at either of the two extreme values 1 or D, depending on whether aB
D�

is larger or smaller, respectively, than bI � bB. Moreover, it can be veri�ed that the expected

cost of this policy is always inferior to either the NB policy (when L =1) or the OB-policy
(when L = D). Hence, if we use the NB- and OB-policies as upper-bound reference bases

there is no further perspective gain in including the periodic policy as well.
Table 1 presents the optimal control limits and optimal costs of the various policies con-

sidered: Critical-Group (CG) and its extension (denoted by ECG), Total-Demand (TD) and
its extension (denoted by ETD), as well as the structure and the costs of the global optimal

policy ��. The distribution of Xn is assumed to be Poisson with mean �, i.e. qk = e�� �
k

k!

(k = 0; 1; : : :). The results cover a range of values of � and the (standardized) cost aB.

� aB gNB gOB g�
CG

(K�) g�
ECG

(K�

1
;K�

2
) g�

TD
(K�) g�

ETD
(K�

1
;K�

2
) g�� (K�

0
;K�

1
; : : :)

1 1.5 1 0.5810 0.5810 (1) 0.5716 (2,1) 0.6138 (2) 0.5395 (2,1) 0.5395 (2,1)

1 2 1 0.7746 0.7090 (2) 0.6848 (2,1) 0.7335 (3) 0.6848 (3,1) 0.6848 (22,1)

1 2.5 1 0.9683 0.8135 (2) 0.7980 (2,1) 0.8311 (3) 0.7797 (3,1) 0.7797 (3,2,1)

3 4.5 3 2.1926 2.0250 (3) 2.0250 (3,3) 2.1398 (5) 2.0012 (5,3) 2.0012 (5,4,3)

3 6 3 2.9234 2.5031 (4) 2.4723 (4,3) 2.5862 (7) 2.4438 (7,3) 2.4438 (6,5,42,3)

3 7.5 3 3.6543 2.8084 (5) 2.7680 (5,3) 2.8169 (9) 2.7303 (8,4) 2.7275 (8,7,6,5,42,3)

5 7.5 5 3.7373 3.5364 (4) 3.5096 (5,4) 3.6650 (8) 3.4921 (8,4) 3.4921 (8,7,6,5,4)

5 10 5 4.9831 4.3661 (6) 4.3337 (6,5) 4.4838 (12) 4.2803 (11,5) 4.2803 (10,9,8,7,62,5)

5 12.5 5 6.2289 4.8334 (8) 4.7806 (8,5) 4.8323 (14) 4.7299 (13,6) 4.7288 (13-7,63,5)

10 15 10 7.4998 7.3032 (8) 7.2918 (9,8) 7.4509 (15) 7.2762 (15,8) 7.2762 (15-9,8)

10 20 10 9.9998 9.1171 (11) 9.0479 (12,10) 9.2786 (22) 8.9814 (21,10) 8.9814 (20-13,122,

11,104,9)

10 25 10 12.4997 9.9013 (16) 9.8427 (15,10) 9.8716 (27) 9.7744 (26,11) 9.7743 (25-17,162,15-

13;122,113,10)

Table 1: Numerical comparison of di�erent policies for D = 2

We used the following shorthand notation for the optimal policy's critical values (K�
i ; i =

0; 1; : : :): nm denotes a string of m n's, n�m denotes the string n; n� 1; : : : ; m (n > m) and
the last number is K�

1.

Some conclusion of interest can be drawn from these results. Firstly, it is clear that the
ETD-policy performs extremely well here: it either entirely coincides with the global optimal
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policy or only slightly deviates from it. In most cases here the CG-policy outperforms the

TD-policy but is outperformed by the ECG-policy.
Table 2 repeats the above calculations for D = 3. The structure of the global optimal

policy is now omitted because of its complexity, and the global minimal costs for � = 10 are
missing due to computational infeasibility.

� aB gNB gOB g�
CG

(K�) g�
ECG

(K�

1
;K�

2
;K�

3
) g�

TD
(K�) g�

ETD
(K�

1
;K�

2
) g��

1 2.25 1 0.6281 0.6281 (1) 0.5944 (2,1,1) 0.6310 (3) 0.5843 (3,1) 0.5798

1 3 1 0.8375 0.7593 (2) 0.7364 (2,1,1) 0.7551 (4) 0.7270 (4,1) 0.7229

1 3.75 1 1.0469 0.8890 (2) 0.8643 (3,1,1) 0.8467 (5) 0.8339 (5,1) 0.8253

3 6.75 3 2.2114 2.0853 (3) 2.0853 (3,3,3) 2.1275 (8) 2.0589 (7,3) 2.0537

3 9 3 2.9485 2.6059 (4) 2.5638 (5,3,3) 2.5734 (11) 2.5215 (10,3) 2.5157

3 11.25 3 3.6856 2.9027 (6) 2.8520 (6,3,3) 2.8240 (13) 2.8021 (12,4) 2.7988

5 11.25 5 3.7415 3.5958 (5) 3.5725 (5,4,4) 3.6459 (13) 3.5625 (12,4) 3.5523

5 15 5 4.9887 4.5038 (6) 4.4283 (7,4.5,5) 4.4428 (17) 4.3815 (16,5) 4.3739

5 18.75 5 6.2359 4.9375 (9) 4.8786 (9,5,5) 4.8323 (20) 4.8156 (20,6) 4.8090

10 22.5 10 7.4999 7.3632 (8) 7.3499 (9,7.5,8) 7.4419 (25) 7.3437 (23,8)

10 30 10 9.9998 9.2920 (12) 9.2061 (13,9.5,10) 9.2114 (33) 9.1251 (31,10)

10 37.5 10 12.4998 9.9800 (18) 9.9412 (17,10,10) 9.8757 (39) 9.8672 (38,12)

Table 2: Numerical comparison of di�erent policies for D = 3

Once more we see that the ETD-policy performs well: it is always close to the global op-
timal policy and better than any of the other policies. The TD-policy is superior to the

CG-policy (except for very low values of � and aB). In general, it is intuitively clear that as
D gets larger the CG-policy will act more and more inferiorly because of the relative loss of
signi�cance of the size of the critical-group rD that triggers a batch with respect to the whole

state information r.
It is also interesting to compare the performance of the various policies against the (stan-

dardized) cost aB and this is done in Figures 1 and 2 (see page 30 and 31), when D = 2,
� = 3 and D = 3, � = 2, respectively. Included here are also the "basic" policies NB (never

batch) and OB (only batch), corresponding to the straight lines in the graph. Figures 3 and
4 (see page 32 and 33) again demonstrate for the above special cases of D and � the rela-

tive savings of the (optimally administered) proposed policies in comparison with the above
"basic" policies, thereby revealing the value of using "sophisticated" policies.

In Figures 1 and 3 we see concavity in aB of the global optimal cost as well as of the
optimal costs of the proposed policies. Since limaB!0 g�� = gOB and limaB!1 g�� = gNB,
the OB-policy performs well for small values of aB and the NB-policy for large ones. As a

matter of fact the OB- and NB-policies have the same cost when aB = �(D+ q0
1�q0

) with the
OB-policy being superior for smaller values of aB and the contrary for larger values of aB.

7 On the choice of D

First of all, it is important to observe that for large values of D the costs as well as the
delay characteristics can be closely approximated by increasing the basic period length, and

correspondingly decreasing D. After all it is the product of the period length and D that
matters for the delay representation and for largeD the di�erence between the policy with the

increased period length and the original one will be small. Indeed, it is this last argument that
has enabled us to consider moderate values of D throughout the paper, without sacri�cing
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too much the applicability of the results obtained.

The delay characteristics and the optimal costs of the di�erent batching policies have been
derived for a given value of D. These results, however, can be used for a sensitivity analysis

with respect to D, so that the supplier can examine the e�ect of the choice of D on the costs
on one hand, and the service performance, as provided by the delay characteristics, on the

other hand. This sensitivity analysis might be a useful input for the determination of D.
We shall not examine this issue in depth here and will su�ce in illustrating the point

with respect to the Critical-Group policy, which is mathematically and computationally the

easiest in this regard. Thus, we shall obtain the delay distribution and its main characteristics
in terms of D. Combining that with the results obtained earlier for the optimal costs of

this policy, again in terms of D, will demonstrate the tradeo� between costs and service
performance as far as the determination of D is concerned.

De�ne for any stationary policy �

N�(i) := number of arriving customers in a cycle incurring a delay of

i periods (i = 1; : : : ; D);

N� := total number of arriving customers in a cycle:

The following relations hold for any �:

N�(i) = XS��i+1 (i = 1; : : : ; D� 1);

N�(D) =
S��D+1X
n=1

Xn = Y� +XS��D+1; (37)

N� =
DX
i=1

N�(i) =
S�X
n=1

Xn:

If we de�ne W� as the delay of an arbitrary customer under policy �, then it follows from the

renewal-reward theorem that

w�(i) := PrfW� = ig =
E(N�(i))

E(N�)
(i = 1; : : : ; D): (38)

As an example we will now derive the implied delay distribution when a Critical-Group policy
is employed. Using (11) and (37) we have that

E(NCG(i)) = E(XT1+D�i) = � (i = 1; : : : ; D� 1);

E(NCG(D)) =
T1X
n=1

Xn = �E(T1) =
�

1� QK�1

; (39)

E(NCG) =
DX
i=1

NCG(i) =
�

1� QK�1

+ (D� 1)�;

and substituting in (38) gives

wCG(i) =
E(NCG(i))

E(NCG)
=

1�QK�1

1 + (D � 1)(1� QK�1)
(i = 1; : : : ; D� 1); (40)

wCG(D) =
E(NCG(D))

E(NCG)
=

1

1 + (D� 1)(1�QK�1)
:

So under a Critical-Group policy the implied delay of a customer is uniformly distributed
over f1; : : : ; D� 1g with a di�erent probability for a delay of D.
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8 Conclusions and further research

The paper deals with an important segment in the service supplier/customer relationship,
namely the actual provision of the service or delivery to the customers. The focus is on

situations with customers far enough from the service provider to justify demand aggregation
rather than all-out individual services. This situation would surely occur with manufacturers

delivering their products internationally and across continents, as well as with companies that
provide repair and replacement service to clients nation- (or region-) wide.

The main decision problem in these circumstances is the timing of batch services as the

demand arrives. That timing would depend on the costs involved, namely batch-service costs
and individual service costs, as well as on the particular model employed. Here we have

considered a basic model; its assumptions can be generalized or altered to cover broader
situations of interest. We shall now elaborate on some possible model generalizations and

alterations.

(1) Batch-service capacity and costs

The model here assumes that a batch delivery can potentially be provided at any decision

point, and can then accommodate all waiting demand. To keep the latter assumption valid
may sometimes require several supply vehicles (ships for delivery, trucks for repair service,
etc.) in which case adjustment of the "�xed" cost of a batch delivery is needed, e.g. two ships

incurring �xed cost of 2aB (or a bit less if administrative costs are common to both). Re-
moving the assumption of enough batch "servers" (e.g. ships and trucks) leads to a queueing

analysis of the �nite-server type (as opposed to the essentially in�nite-server assumption in
the model here).

(2) Variable delay-limit

The model here assumes a constant delay-limit D. Though this is a sensible assumption
with regard to most supplier-customer contracts, there are several situations of interest where

this assumption does not hold. The delay-limit in the model has already been adjusted for
(batch) transportation time. This would leave D as a constant only if the transportation time
is a constant. When transportation time has non-negligible variability, D should be taken as

a random variable. This change has an important impact on the analysis, as the introduction
of variability always does; for instance, the policy characteristic of S� � D becomes void.

Variability of the delay-limit can also be induced when customers have di�erent preset
delay-limits, but are still served jointly. The distribution of D at any give period depends

on the composition of the waiting customers with regard to their individual preset delay-limits.

(3) Model variations of a more technical nature

(i) The model here assumes no waiting time costs. While this could very well be the case

when only the preset delay-limit matters, the company can still have a good reason to provide
the service earlier, namely enhance its reputation. That can be incorporated into the model
through a delay-dependent cost function. Another case where waiting costs become relevant

arises when delays are not entirely considered rigid, and the service provider may occasionally
be ready to assume contractual penalties and not serve within the delay-limit.

(ii) The demand process here is assumed stable in the sense that the Xn are identically
distributed. In those instances where this is not a realistic assumption (e.g., when a seasonality

factor exists) appropriate modi�cations of this assumption are required.
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(iii) Individual service may also be grouped into "mini-batches", so a �xed cost aI becomes

relevant (while the variable cost bI is likely to be reduced).

(4) Broader contexts

Beyond the modelling variations considered above, it may be necessary to broaden the

problem formulation framework and consider the delivery issue within the general production
context; for instance, when enough stock for delivery is not always available at period end-
points (a tacit assumption in the model here). In that case the delivery problem cannot be

considered in isolation, so an integrated approach is needed. Still, the analysis and results
here can then be utilized as building blocks within that broader study.

Appendix A: The CG-policy

In this appendix we show the optimality of a control-limit type policy within the class of

Critical-Group policies. De�ne for n = 1; 2; : : :

Tn := number of periods since the last batch service at the end of period n;

Un :=

(
Tn (Tn < D);

R
(n)

D (Tn � D):

Then fUn; n = 1; 2; : : :g is a stochastic process on the state space

fi0 j i0 = 10; : : : ; D� 10g [ fi j i = 0; 1; : : :g:

Finding the optimal policy here boils down to solving the following optimality equations:

v(i0) = �g + v(i+ 10) (i = 1; : : : ; D� 2);

v(D� 10) = �g +
1X
k=0

qkv(k); (A1)

v(i) = minfaB � g + v(10); i� g +
1X
k=0

qkv(k)g (i = 0; 1; : : :):

It is easily seen that

v(10) = �(D � 2)g+ v(D� 10) = �(D � 1)g +
1X
k=0

qkv(k);

so that (A1) reduces to

v(i) = minfaB �Dg +
1X
k=0

qkv(k); i� g +
1X
k=0

qkv(k)g (i = 0; 1; : : :): (A2)

From (A2) it follows that a batch service is started if i > aB � (D� 1)g, proving the control-

limit structure.
Finally, we note that for a �xed CG-policy with control limit K the optimality equations

are given by

vCG(i) =

8>><
>>:

i� gCG +
1P
k=0

qkvCG(k) (i < K);

aB �DgCG +
1P
k=0

qkvCG(k) (i � K);
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which upon setting vCG(0) = 0 reduces to

vCG(i) =

(
i (i < K);
aB � (D � 1)gCG (i � K):

Next we �nd gCG from

gCG =
1X
k=0

qkvCG(k) =
K�1X
k=0

kqk + (aB � (D� 1)gCG)(1� QK�1);

yielding

gCG =

aB(1� QK�1) +
K�1P
k=0

kqk

QK�1 +D(1� QK�1)
;

in accordance with (17).

Appendix B: The ECG-policy

Under the ECG-policy a batch is executed at time T1 + T2 since the last batch, where

T1 := minfn = 1; 2; : : : : Xn � K1g;

T2 := minfD � 1;minfn = 0; 1; : : : ; D� 2 :

D�nP
i=2

R
(T1)
i

D � n� 1
� K2 ^ R

(T1)

D�n � K3gg:

In words, one �rst waits for a group of at least K1 customers, and then a batch is executed

the �rst period in which the mean number of individual services per period to be avoided
is at least K2 and the size of the current critical group is at least K3. Otherwise the batch

delivery is done, like the CG-policy, D � 1 periods later. The ECG-policy uses three control
parameters: K1 and K3 which are integers, and K2 which need not be integer. The search

for the optimal values of these parameters requires the computation of its expected cost
gECG(K1; K2; K3), which in turn requires the computation of E(SECG) and E(YECG). With
this in mind we de�ne

U1 :=
T1�DX
n=1

Xn;

U2 :=
T1+T2�DX
n=T1�D+1

Xn =
DX

n=D�T2+1

R(T1)
n ;

and clearly

E(SECG) = E(T1) +E(T2);

E(YECG) = E(U1) + E(U2):

We now observe, using earlier arguments, that T1 and T2 are independent. Moreover, since

T1 has a geometric distribution G(QK1�1), it follows that

E(T1) =
1

1� QK1�1

(A3)
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and

E(U1) =
1X

n=D+1

PrfT1 = ng
n�DX
i=1

EfXi j Xi � K1g

=
1X

n=D+1

Qn�1
K1�1(1�QK1�1)(n�D)

K1�1P
k=0

kqk

QK1�1

=
QD�1
K1�1

1�QK1�1

K1�1X
k=0

kqk : (A4)

Next we need expressions for E(T2) and E(U2), and for that we need the joint distribution of

(R
(T1)
2 ; : : : ; R

(T1)

D ) = (XT1�1; : : : ; XT1�D+1):

Note that E(T2) and E(U2) do not depend on R
(T1)
1 = XT1 since the triggering group of

customers arriving in period T1 is always included in the batch. First observe that T1 = n < D

implies that R
(T1)
n = � � � = R

(T1)

D = 0. Therefore we have to distinguish between the case where

rD > 0 and the case where rm = 0 and ri = 0 (i = m + 1; : : : ; D) for some m < D. For
rD > 0 we have

PrfR
(T1)
2 = r2; : : : ; R

(T1)

D = rDg

= PrfXT1�D+1 = rD; : : : ; XT1�1 = r2g

=
1X

n=D

PrfT1 = ngPrfXn�D+1 = rD; : : : ; Xn�1 = r2 j X1 < K1; : : : ; Xn�1 < K1; Xn � K1g

=
1X

n=D

PrfT1 = ngPrfXn�D+1 = rD j Xn�D+1 < Kg � � �PrfXn�1 = r2 j Xn�1 < Kg

=
1X

n=D

Qn�1
K1�1(1� QK1�1)

qrD � � �qr2
QD�1
K1�1

=
1X

n=D

Qn�D
K1�1(1� QK1�1)

DY
i=2

qri

=
DY
i=2

qri (0 � ri � K � 1; i = 2; : : : ; D� 1; 1 � rD � K � 1): (A5)

More generally, we have for m = 1; : : : ; D

PrfR
(T1)

2 = r2; : : : ; R
(T1)
m = rm; R

(T1)

m+1 = 0; : : : ; R
(T1)

D = 0g

=
D�1X
n=m

Qn�1
K1�1(1�QK1�1)

qn�m0 qrm � � �qr2
Qn�1
K1�1

+
1X

n=D

Qn�1
K1�1(1�QK1�1)

qD�m0 qrm � � �qr2
QD�1
K1�1

= (1�QK1�1)

 
mY
i=2

qri

!
D�1X
n=m

qn�m0 + qD�m0

mY
i=2

qri

=
mY
i=2

qri

 
qD�m0 + (1�QK1�1)

1� qD�m0

1� q0

!

(0 � ri � K � 1; i = 2; : : : ; m� 1; 1 � rm � K � 1): (A6)
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Note that for m = D (A6) reduces to (A5). Since conditional on R(T1), T2 and U2 are just

deterministic functions of (r2; : : : ; rD), we can write

T2(r2; : : : ; rD) := minfD� 1;minfn � D � 2 :

D�nP
i=2

ri

D � n� 1
� K2 ^ rD�n � K3gg;

U2(r2; : : : ; rD) :=
DX

i=D�T2(r2;:::;rD)+1

ri:

Conditioning on R(T1) then yields

E(T2) =
X

r2;:::;rD<K1

PrfR
(T1)

2 = r2; : : : ; R
(T1)

D = rDgT2(r2; : : : ; rD); (A7)

E(U2) =
X

r2;:::;rD<K1

PrfR
(T1)
2 = r2; : : : ; R

(T1)

D = rDgU2(r2; : : : ; rD): (A8)

Appendix C: The TD-policy

To develop a computational scheme for E(STD) we introduce the functions

Fn(k1; : : : ; kn) := Prf
iX

j=1

Xj � ki; i = 1; : : : ; ng (n = 1; : : : ; D� 1);

Fn(k1; : : : ; kD�1) := Prf
iX

j=1

Xj � ki; i = 1; : : : ; D� 1;
iX

j=i�D+1

Xi < K; i = D; : : : ; ng (n � D):

By conditioning on Xn we then obtain the following recursive relations:

F1(k1) = Qk1 ;

Fn(k1; : : : ; kn) =
k1X
k=0

qkFn�1(k2 � k; : : : ; kn � k) (n = 2; : : : ; D� 1);

Fn(k1; : : : ; kD�1) =
k1X
k=0

qkFn�1(k2 � k; : : : ; kD�1 � k;K � 1� k) (n � D): (A9)

De�ne Pn := PrfSTD > ng (n � D), then by conditioning on (X1; : : : ; XD�1) we �nd

Pn =
X

k1+���+kD�1<K

qk1 � � �qkD�1Fn�D+1(K � 1�
D�1X
i=1

ki; : : : ; K � 1�
D�1X

i=n�D+1

ki) (A10)

for n = D; : : : ; 2D� 2, and

Pn =
X

k1+���+kD�1<K

qk1 � � �qkD�1Fn�D+1(K � 1�
D�1X
i=1

ki; : : : ; K � 1� kD�1) (A11)

for n � 2D � 1. Finally, by (22) we have

E(STD) = D +
1X

n=D

Pn; (A12)
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and since limn!1 Pn = 0 we can truncate this in�nite sum when Pn is su�ciently small.

Computational remark. Numerical analysis reveals that, asymptotically, Pn consti-

tutes a geometric series, or lim
n!1

Pn
Pn�1

= C (0 < C < 1), so that E(STD) in (A12) can be

approximated as

D +
NX

n=D

Pn +
PN�1PN

PN�1 � PN
(N � D + 1): (A13)

It turns out that this approximation performs very good already for small values of N .

For a computational scheme for E(YTD), we continue from (24) and de�ne

yn :=
1X

k=K

Prf
nX

i=n�D+1

Xi > k; STD = ng:

For n = D we have

yD =
1X

k=K

Prf
DX
i=1

Xi > kg

= Ef
DX
i=1

Xig �
K�1X
k=0

Prf
DX
i=1

Xi > kg

= D��
DX
i=1

(1� QD�
k ); (A14)

while for n > D we have

yn =
1X

k=K

Prf
nX

i=n�D+1

Xi > k; STD = ng

=
1X

k=K

Prf
DX
i=1

Xi < K; : : :;

n�1X
i=n�D

Xi < K;

nX
i=n�D+1

Xi > kg

=
1X

k=K

X
n�1P

j=n�D+1

ij<K

qin�D+1 � � �qin�1 PrfXn > k �
n�1X

j=n�D+1

ijg �

�PrfXn�D < K �
n�1X

j=n�D+1

ij ; : : : ;
n�DX

i=n�2D+2

Xi < K � in�D+1;
n�DX

i=n�2D+1

Xi < K; : : :;
DX
i=1

Xi < Kg

=
X

n�1P
j=n�D+1

ij<K

qin�D+1 � � � qin�1

�
� �

K�1�
n�1P

j=n�D+1

ijX
k=0

(1� Qk)
�
�

�Fn�D+2(K � 1�
n�1X

j=n�D+1

ij ; : : : ; K � 1� in�D+1); (A15)
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where we compute Fn(�) recursively as in (A9). Note that for n = D (A15) does not reduce

to (A14). Combining (23) and (24) we obtain

E(YTD) = �E(STD)�K �
1X

n=D

yn:

Since limn!1 yn = 0, we truncate the in�nite sum when yn is su�ciently small.
Although the computation time of the numerical schemes for E(STD) and E(YTD) in-

creases exponentially with D and K, for D � 5 it remains within the order of seconds.
As an alternative to the above probabilistic procedure, E(STD) and E(YTD) can also

be computed using a "brute-force" approach. The computation time for this approach also
increases exponentially with D, but considerably faster than for the probabilistic procedure.

We will describe the brute-force approach for the TD- as well as the ETD-policy. To this end,
we compute the �rst entrance times and "costs" for the Markov chain fR(n)g induced by the

NB-policy into the sets fr :
DP
i=1

ri � Kg and fr :
DP
i=1

ri � K1 ^ rD � K2g, respectively.

We start with the TD-policy. De�ne

STD(r�D) := expected number of periods until the next batch service when

presently there are ri customers with delay level i (i = 1; : : : ; D� 1),

given that there is no immediate batch service;

YTD(r�D) := expected number of individual services until the next batch when

presently there are ri customers with delay level i (i = 1; : : : ; D� 1),

given that there is no immediate batch service and excluding

possible immediate individual services,

where r�D := (r1; : : : ; rD�1). Note that these quantities are de�ned in such a way that they

are independent of rD, thereby reducing the dimension of the state space from D to D � 1.
Conditioning on the number of arriving customers in the next period we obtain the following

two �nite systems of equations for
PD�1

i=1 ri < K:

STD(r1; : : : ; rD�1) = 1 +

K�1�
D�1P
i=1

riX
k=0

qkSTD(k; r1; : : : ; rD�2); (A16)

YTD(r1; : : : ; rD�1) =

K�1�
D�1P
i=1

riX
k=0

qk

�
rD�1 + YTD(k; r1; : : : ; rD�2)

�
: (A17)

Finally, incorporating the stipulation that STD � D, we can compute

E(STD) = D +
X

k1;:::;kD:
DP
i=1

ki<K

qk1 � � �qkDSTD(kD; : : : ; k2);

E(YTD) =
X

k1;:::;kD:
DP
i=1

ki<K

qk1 � � � qkD

�
k1 + YTD(kD; : : : ; k2)

�
= YTD(0; : : : ; 0):
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Setting up a �nite system of equations for the ETD-policy is more complicated. We exploit

the fact that batch services are now limited to periods with rD � K2, i.e. we use the Markov
chain fR(n)g induced by the NB-policy embedded on f(r1; : : : ; rD) : rD � K2g. De�ne

SETD(r�D) := expected number of periods until the next batch service when

presently there are ri customers with delay level i (i = 1; : : : ; D� 1),

given that there is no immediate batch service and rD � K2;

YETD(r�D) := expected number of individual services until the next batch when

presently there are ri customers with delay level i (i = 1; : : : ; D� 1),

given that there is no immediate batch service and rD � K2, and

excluding possible immediate individual services.

For a given state r�D with
PD�1

i=1 ri < K1 let j be the smallest integer for which rD�j � K2.

For states with j � D � 1, conditioning on the number of customers in the next j periods
yields

SETD(r�D) = j +
X

k1;:::;kj :
jP
i=1

ki<K1�
D�jP
i=1

ri

qk1 � � �qkjSETD(kj ; : : : ; k1; r1; : : : ; rD�j�1); (A18)

YETD(r�D) =
D�1X

i=D�j+1

ri +
X

k1;:::;kj :
jP
i=1

ki<K1�
D�jP
i=1

ri

qk1 � � �qkj

�
rD�j +

+YETD(kj ; : : : ; k1; r1; : : : ; rD�j�1)
�
: (A19)

On the other hand, for states r�D with
PD�1

i=1 ri < K1 and ri < K2 for all i = 1; : : : ; D � 1,

conditioning on the number of customers until the �rst period with R
(n)

D � K2 yields

SETD(r�D) =
1

1�QK2�1

+D � 1 +
X

k1;:::;kD�1:
D�1P
i=1

ki<K1

qk1 � � �qkD�1SETD(kD�1; : : : ; k1); (A20)

YETD(r�D) =
D�1X
i=1

ri +

K2�1P
k=0

kqk

1�QK2�1

+
K1�1X
k1=K2

X
k2;:::;kD:

DP
i=2

ki<K1�k1

qk1 � � �qkD

�
k1 +

+YETD(kD�1; : : : ; k1)
�
: (A21)

Finally, we obtain the required quantities:

E(SETD) = SETD(0; : : : ; 0);

E(YETD) = YETD(0; : : : ; 0):
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Appendix D: The global optimal policy

In this appendix we provide the proofs of Theorems 2 and 4.

Proof of theorem 2.

(i) Obviously,

v1(r) = minfrD; aBg � minfr0D; aBg = v1(r
0):

Next, using the induction hypothesis,

vn(r) = minfrD + �
1X
k=0

qkvn�1(k; r1; : : : ; rD�1); h
1
ng

� minfr0D + �

1X
k=0

qkvn�1(k; r
0
1; : : : ; r

0
D�1); h

1
ng

= vn(r
0):

(ii) Using (i) we have

vn(r)� vn(r
0) = minfhn0(r); h

n
1g �minfhn0 (r

0); hn1g

� maxf0; hn1 � hn0 (r
0)g

= maxf0; aB � r0D � �

1X
k=0

qk

�
vn�1(k; r

0
1; : : : ; r

0
D�1)� vn�1(k; 0; : : : ; 0)

�
� aB

(iii) For i < D using the induction hypothesis gives

vn(r+ ei) = minfrD + �

1X
k=0

qkvn�1((k; r1; : : : ; rD�1) + ei+1); h
1
ng

� minfrD + �

1X
k=0

qk(1 + vn�1(k; r1; : : : ; rD�1)); h
1
ng

= minfrD + 1+ �

1X
k=0

qkvn�1(k; r1; : : : ; rD�1); h
1
ng

� 1 + vn(r):

For i = D we have

vn(r+ eD) = minfrD + 1 + �

1X
k=0

qkvn�1(k; r1; : : : ; rD�1); h
1
ng

� 1 + vn(r):

(iv) For j < D using the induction hypothesis gives

vn(r+ ei) = minfrD + �

1X
k=0

qkvn�1((k; r1; : : : ; rD�1) + ei+1); h
1
ng

� minfrD + �

1X
k=0

qkvn�1((k; r1; : : : ; rD�1) + ej+1); h
1
ng

= vn(r + ej):
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For i < j = D we use Theorem 2(iii) to obtain

vn(r+ ei) = minfrD + �
1X
k=0

qkvn�1((k; r1; : : : ; rD�1) + ei+1); h
1
ng

� minfrD + �

1X
k=0

qk(1 + vn�1(k; r1; : : : ; rD�1)); h
1
ng

= minfrD + 1+ �

1X
k=0

qkvn�1(k; r1; : : : ; rD�1); h
1
ng

� vn(r + eD):

(v) For k = 1 this is equivalent to (iii). Next suppose that (iv) holds for k � 1, then using
Theorem 2(iii) gives

vn(r+ k(ej � ei)) � vn(r + (k � 1)(ej � ei)) � vn(r):

(vi) Repeated application of Theorem 2(v) while using the fact that
iP

j=1

rj �
iP

j=1

r0j (i =

1; : : : ; D� 1) yields

vn(r) � vn(r
0
1; r1+ r2 � r01; r3; : : : ; rD)

� vn(r
0
1; : : : ; r

0
i�1;

iX
j=1

rj �
i�1X
j=1

r0j ; ri+1; : : : ; rD) (i = 3; : : : ; D� 1)

� vn(r
0
1; : : : ; r

0
D�1;

DX
j=1

rj �
D�1X
j=1

r0j)

= vn(r
0);

where the last equality follows from
DP
j=1

rj =
DP
j=1

r0j . 2

Proof of Theorem 4.

(i) First suppose that ��n(r + ei) = 1. Then ��n(r+ ei + ej) = 1 by Theorem 3(ii), and hence

vn(r+ ei + ej)� vn(r+ ei) = h1n � h1n = 0 � vn(r+ ej)� vn(r);

where the last inequality follows from Theorem 2(i).

Next suppose that ��n(r + ei) = 0 and ��n(r + ej) = 1 (by Theorem 3(iii) this is only
possible if j > i). Then again ��n(r+ ei + ej) = 1 by Theorem 3(ii), and hence

vn(r+ ei + ej)� vn(r+ ei) = h1n � vn(r+ ei) � h1n � vn(r) = vn(r + ej)� vn(r);

again using Theorem 2(i).
Finally, suppose that ��n(r + ei) = ��n(r + ej) = 0. If i; j < D then

vn(r + ei + ej)� vn(r + ei)

� h0n(r + ei + ej)� h0n(r + ei)

= �

1X
k=0

qk

�
vn�1((k; r1; : : : ; rD�1) + ei+1 + ej+1)� vn�1((k; r1; : : : ; rD�1) + ei+1)

�
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� �

1X
k=0

qk

�
vn�1((k; r1; : : : ; rD�1) + ej+1)� vn�1(k; r1; : : : ; rD�1)

�

= h0n(r + ej)� h0n(r)

= vn(r + ej)� vn(r);

where the second inequality follows from the induction hypothesis. In the last equality note

that vn(r) = h0n(r) since �
�
n(r) = 0 by theorem 3(ii). If i = D then

vn(r+ eD + ej)� vn(r+ eD) � h0n(r + eD + ej)� h0n(r+ eD)

= h0n(r + ej)� h0n(r) = vn(r + ej)� vn(r);

while if j = D then

vn(r+ ei + eD)� vn(r + ei) � h0n(r + ei + eD)� h0n(r + ei) = 1

= h0n(r + eD)� h0n(r) = vn(r+ eD)� vn(r):

(ii) First, if ��n(r� ej + ej+k) = 1 then obviously

vn(r� ei + ei+k) � h1n = vn(r � ej + ej+k):

Next, if ��n(r� ej + ej+k) = 0 and i+k < j+k 6= D then the result immediately follows from
the induction hypothesis. Finally, suppose that ��n(r � ej + ej+k) = 0 and j + k = D. Then
we also need the fact that

vn�1((k; r1; : : : ; rD�1)� ei + ei+k) � vn�1((k; r1; : : : ; rD�1)� ej + eD)

� 1 + vn((k; r1; : : : ; rD�1)� ej); (A22)

where the �rst inequality follows from the induction hypothesis and the second from Theo-
rem 2(iii). Using (A22) it follows that

vn(r� ei + ei+k) � rD + �

1X
k=0

qkvn�1((k; r1; : : : ; rD�1)� ei+1 + ei+k+1)

� rD + 1+ �

1X
k=0

qkvn�1((k; r1; : : : ; rD�1)� ej+1)

= vn(r � ej + ej+k):
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Figure 1: Average costs per period (D=2, X=Poisson(3))
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Figure 2: Percentage cost savings (D=2, X=Poisson(3))
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Figure 3: Average costs per period (D=3, X=Poisson(2))
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Figure 4: Percentage cost savings (D=3, X=Poisson(2))
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