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A Monte Carlo Evaluation of

Maximum Likelihood

Multidimensional Scaling Methods

abstract

We compare three alternative Maximum Likelihood Multidimensional Scaling methods for

pairwise dissimilarity ratings, namely MULTISCALE, MAXSCAL, and PROSCAL in a

Monte Carlo study. The three MLMDS methods recover the true con�gurations very well.

The recovery of the true dimensionality depends on the test criterion (likelihood ratio test,

AIC, or CAIC), as well as on the MLMDS method. The three MLMDS methods �t the

dissimilarity data equally well. The methods are relatively robust against violations of

their distributional assumptions. MULTISCALE outperforms PROSCAL and MAXSCAL

with respect to computation time. In a separate Monte Carlo study, it is shown that the

MLMDS methods frequently converge to local optima, especially if a random start is used.

Rational starts, however, turn out to provide a satisfactory solution for the local optima

problem. Implications for researchers intending to apply MLMDS are provided.
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A Monte Carlo Evaluation of

Maximum Likelihood

Multidimensional Scaling Methods

Multidimensional scaling (MDS) has been used frequently by marketing researchers in

science and practice (Greenberg, Goldstucker, and Bellenger 1977; Kinnear and Taylor

1991; Wind, Rao, and Green 1991) for a wide range of marketing issues (Cooper 1983;

Green 1975). The number of MDS methods available and the complexity of these methods

increases rapidly, however, which makes it di�cult for a marketing researcher to choose

between alternative MDS methods. The introduction of methods based on the maximum

likelihood (ML) principle is considered to be one of the most important recent develop-

ments in MDS analysis of dissimilarity data. Davison (1983) stated '... the maximum

likelihood approach may enable researchers to examine the �t of the model to their data

more rigorously than has been possible with other approaches'. According to Young and

Hamer (1987) 'The approach changes Multidimensional Scaling from a descriptive tool

into an inferential tool'. Maximum Likelihood Multidimensional Scaling (MLMDS) of-

fers a number of theoretical and practical advantages over classical MDS methods, such

as ALSCAL (Young and Lewyckyj 1979) and KYST (Kruskal, Young, and Seery 1973).

These advantages arise because MLMDS methods assume that the observed dissimilarity

data are error-perturbed, and explicitly model the error component. Contrary to the clas-

sical methods, the ML approaches estimate uncertainty or variance parameters in addition

to the stimulus coordinates. Furthermore, the ML approach enables the researcher to test

between alternative models, for example in selecting the most appropriate dimensionality.
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To date, three ML approaches to the MDS analysis of dissimilarity data have been de-

veloped: MULTISCALE (Ramsay 1977, 1978, 1982, and 1991a), MAXSCAL (Takane 1977,

1978a, 1979, 1981, 1982; Takane and Carroll 1979 and 1981), and PROSCAL (MacKay

1983, 1989; MacKay and Zinnes 1981, 1982, 1986, 1991; Zinnes and MacKay 1983). In

applying MLMDS researchers have to choose one of these three alternative methods.

Presently, however, there is only very limited knowledge of the relative performance of

these methods under various conditions, such as di�erent sample sizes, numbers of stimuli,

numbers of dimensions, and error variance levels. As the conceptual and mathematical

frameworks di�er considerably, the relative performances of the three methods in a wide

range of situations needs to be investigated (Spence 1983). Here, we will present a Monte

Carlo simulation study comparing the three methods. Our study will focus on a com-

parison of the relative performance of the methods with respect to pairwise dissimilarity

judgements made on rating scales, which is probably the most commonly used and the

most appropriate method to collect dissimilarity data (Bijmolt and Wedel 1995). First, we

describe the conceptual frameworks of the MLMDS methods. Second, we provide a review

of previous Monte Carlo studies investigating the performance of the methods. Third,

a description of the design of our main Monte Carlo study is given. Fourth, we present

the results of this study. Next, we present a Monte Carlo study on the extent to which

the three MLMDS methods su�er from the local optima problem. Finally, we discuss the

results and provide implications for marketing researchers intending to apply MLMDS.

THE MLMDS MODEL

In this section, a framework for MLMDS models will be provided and the three speci�c

methods will be described. The MLMDS methods isolate the systematic variation in the

data from the random variation. The models consist of three parts, namely a measurement

model, a representation model, and an error model. Table 1 summarizes some similarities

and di�erences between the three MLMDS methods with respect to their measurement,

representation, and error models.
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[ Insert Table 1 about here ]

We will use the following notation:

i; j = 1; :::; I : indicate stimuli,

m = 1; :::;M : indicates dimensions,

n = 1; :::;N : indicates subjects,

r = 1; :::; R : indicates replications within a subject,

t = 1; :::; T : indicates categories of a rating scale,

xim = the coordinate of stimulus i on dimension m,

dijn = the errorless distance between stimuli i and j for subject n,

�ijnr = the observed dissimilarity between stimuli i and j for subject n in

replication r,

eijnr = error in the observation of the dissimilarity between stimuli i and j

for subject n in replication r,

wmn = weight for dimension m for subject n,

Measurement model

In MDS tasks subjects judge the dissimilarity relation between stimuli. The measure-

ment model represents the judgment processes of subjects. MULTISCALE and PROSCAL

assume the dissimilarity data to be metric. In the MULTISCALE analysis a data transfor-

mation can be speci�ed for each subject, such as a linear, a power or a spline transformation.

Contrary to MULTISCALE, PROSCAL assumes the metric dissimilarities to be observed

directly, and no measurement model parameters have to be estimated. MAXSCAL as-

sumes the dissimilarity data to be nonmetric. Various types of nonmetric dissimilarity

data can be analyzed, among which: ranking of pairs, tetrads, triads, paired comparisons,

same-di�erent judgments, and conditional rankings. The methods for this wide range of

dissimilarity data are incorporated in several versions of MAXSCAL (Takane 1979; Takane
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and Carroll 1979). In the present study focus is on pairwise dissimilarity judgments made

on rating scales. MAXSCAL assumes that these scales have a small number of categories

and are nonmetric. In MAXSCAL, the probability pijtn that the dissimilarity between

stimuli i and j for subject n falls in category t is given by

pijtn = P (b(t�1)n < �ijn < btn); (1)

where btn denotes the upper bound of category t for subject n. Hence, in the measurement

model of MAXSCAL the category boundaries btn have to be estimated. In order to reduce

the number of parameters to be estimated, the category bounds can be restricted to be

identical across subjects, or linear constraints can be imposed upon them.

Representation model

The systematic component of the dissimilarities �ijnr is captured as Euclidean distances

dijn in the representation model, which speci�es the distances as functions of the stimulus

coordinates. The distance function in the representation model is de�ned as follows:

dijn =

vuut MX
m=1

wmn(xim � xjm)
2
: (2)

Only MULTISCALE allows for individual weighting of the dimensions through the di-

mensional weights wmn, as in INDSCAL (Carroll and Chang 1970). For MAXSCAL and

PROSCAL, wmn = 1 for all m and n, whereby the representation model reduces to the

simple Euclidean distance model.

Error model

The error model speci�es the form of the error component in the relationship between

�ijnr and dijn. In MULTISCALE and MAXSCAL, the distances are assumed to be error-

perturbed, so that:

�ijnr = f(dijn; eijnr); (3)

where f(:) is some function. The error component eijnr is assumed to have a distribution

h(:) with zero mean and variance �ijnr. MULTISCALE and MAXSCAL contain two options
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for the distribution function, namely the normal and the lognormal distribution. These

give rise to two di�erent error models. The normal distribution implies that f(:) is an

additive function:

�ijnr = dijn + eijnr; (4)

while the lognormal distribution implies that f(:) is a multiplicative function:

�ijnr = dijneijnr: (5)

The variance of the error component �ijnr can be assumed to equal � across all of

i; j; n; and r. Alternatively, the variance can be assumed to di�er between stimuli, between

subjects, or between replications. Also, the variance component �ij can be assumed to

be related positively to the distance between the stimuli i and j. MULTISCALE includes

options to estimate error variance parameters di�ering between stimuli and subjects, and

to relate the error variance to the distances. MAXSCAL allows the variance parameter to

vary between subjects, but not between stimuli.

Contrary to MULTISCALE and MAXSCAL, PROSCAL is based on the assumption

that normally distributed error is added to the stimulus coordinates xim. The resulting

distribution of the squared distances d2
ijnr

is a function of the non-central chi-square distri-

bution (Hefner 1958; Ramsay 1969). A consequence is that the error variance may di�er

between dimensions (MacKay 1989; MacKay and Dr�oge 1990). The PROSCAL error vari-

ance can be speci�ed to di�er between stimuli and dimensions. Furthermore, the error

variance can be assumed to be related to the distances.

Estimation and statistical inferences

If it is assumed that the observed dissimilarities are independently distributed with a

(discrete or continuous) density function given by h(�ijnr j �), where � is a vector with the

model parameters to be estimated, the log-likelihood function is given by

logL =
X

i

X

j

X

n

X

r

log h(�ijnr j �): (6)

6



The MLMDS methods attempt to recover the true parameter values by maximizing the

log-likelihood using iterative procedures. For this purpose MULTISCALE and MAXSCAL

employ the Fisher's scoring method. PROSCAL o�ers two optimization methods, namely

the Davidon-Fletcher-Powell method and a direct search method.

The ML approach to MDS permits statistical inferences to be made on alternative rep-

resentations of the data, such as a representation in M dimensions versus a representation

in M � 1 dimensions. Let L0 and L1 be the two likelihoods obtained under a null model

and a more comprehensive alternative model respectively. If the null model is subsumed

under the alternative model, the Likelihood Ratio statistic

LR = 2(log L1 � log L0) (7)

is asymptotically chi-square distributed with degrees of freedom equal to the di�erence in

the number of parameters in the two models. The chi-square distribution for the LR-test

may not hold while testing for the dimensionality (Shapiro 1986). One of the regularity

conditions for the asymptotic chi-square distribution of the LR-test is not satis�ed in that

case. This condition is a su�cient, but not necessary condition, so that its violation does

not imply that the asymptotic chi-square distribution never holds. For those situations, or

if the models are not nested, a number of information criteria are available. These criteria

penalize the likelihood by the number of parameters estimated, and take the form

� 2 logL + c�; (8)

where � is equal to the number of free parameters and c the cost of adding a parameter to

the model. The various model selection criteria di�er in the extent to which they penalize

each additional parameter in the model through the factor c. In Akaike's information

criterion (AIC) (Akaike 1974) the c is equal to 2. In the consistent version of the Akaike's

criterion CAIC (Bozdogan 1987) c is equal to log(S) + 1, where S is the sample size. If

pairwise dissimilarity data are available for I stimuli from N subjects without replications

the total sample size S equals (NI(I�1)=2). The model for which the information criterion

is lowest is selected as the best representation of the data. Because of the total number
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of dissimilarity data points in empirical MDS studies, log(S) is much larger than 2, and

CAIC penalizes additional parameters more severely, which results in more parsimonious

models compared to AIC.

PREVIOUS EVALUATION STUDIES

In this section, we give a brief review of previous Monte Carlo studies on the performance

of MLMDS methods.

Ramsay (1977) compared MULTISCALE to INDSCAL in an analysis of synthetic data.

MULTISCALE outperformed INDSCAL in the recovery of both stimulus coordinates and

dimensional weights. In addition Ramsay (1977) showed that MULTISCALE underesti-

mated the error variance in the case of a single subject. Ramsay (1980a) further investi-

gated the small sample properties of the estimates and of the LR-test for dimensionality.

He used a single variance level across subjects. The distribution of the LR-statistic was

found to deviate from the chi-square distribution, which led to the retention of too many

dimensions. Therefore, Ramsay proposed a correction factor to adjust the LR-statistic.

For data with a single subject Ramsay's corrected LR-test did not provide much power to

detect the true number of dimensions. On the other hand, in the case of 5 subjects and 10

stimuli and in the case of 2 subjects and 15 stimuli a correct rejection rate of 70 % of 2 ver-

sus 3 dimensions was achieved. In general, the estimates of the standard errors contained

little bias even when the dimensionality was misjudged. Weinberg, Carroll, and Cohen

(1984) compared the con�dence regions computed by MULTISCALE with those computed

by INDSCAL using jackknife and bootstrap techniques. Though the shape of the con-

�dence intervals seemed to be equal, the MULTISCALE regions were smaller. In small

samples (less than 20 subjects) the MULTISCALE estimates of the standard errors tended

to give an optimistic view of the reliability of the solution. Spence and Lewandowsky

(1989) investigated the robustness against outliers of several MDS methods. Nonmetric

MDS turned out to be more robust than metric MDS. MULTISCALE appeared to be the

most robust metric method and almost as robust as nonmetric MDS. Recently, Storms
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(1995) showed that MULTISCALE is fairly robust against violations of the assumption of

the error distribution. Neither the recovery of the true distances, nor the �t of the dissimi-

larity data were seriously a�ected if the distribution was misspeci�ed. Furthermore, Storms

(1995) found the corrected chi-square test (Ramsay 1980a) to outperform the uncorrected

chi-square test while testing for 3 versus 2 dimensions.

Takane (1978b) performed two Monte Carlo simulations in order to investigate vari-

ous statistical and numerical properties of the MAXSCAL-1 algorithm for the analysis of

tetrads and triads. In the �rst study, he did not consider violations of the distributional

assumptions. Better recoveries of the coordinates were obtained when the number of sub-

jects increased, the number of judgments per subject increased, and the magnitude of the

error decreased. The estimated standard errors of the stimuli decreased, as expected, in

the same direction. The AIC statistic (Akaike 1974) detected the correct dimensionality

in almost all cases. In the second study, Takane examined situations in which the distri-

butional assumptions were violated. The AIC statistic indicated that the additive error

model with a constant variance �ts the data best in each situation studied. However, the

dimensionality was overestimated by the AIC statistic in most of the cases. Thus, the

AIC statistic seems reliable if the distributional assumptions are correct, but if these as-

sumptions are violated AIC may be very unreliable. Furthermore, Takane found in this

second study, that the estimates of stimulus coordinates were robust against the violations

of distributional assumptions, but that the goodness of �t statistics were not.

MacKay and Zinnes (1981) performed a small Monte Carlo simulation study in which

they examined the advantage of PROSCAL over a nonmetric analysis with KYST (Kruskal,

Young, and Seery 1973). They showed that PROSCAL outperformed KYST with respect

to the recovery of the true distances. B�uy�ukkurt and B�uy�ukkurt (1990) reported two

extensive simulation studies of PROSCAL dealing with small-sample properties and the

robustness against violations of the assumptions concerning the error model. The recovery

of true distances by PROSCAL turned out to be related positively to the number of

stimuli and the number of subjects, and negatively to the error variance level. PROSCAL

underestimated the standard deviation under all combinations of factors, with a mean
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negative bias of 10 percent. Furthermore, B�uy�ukkurt and B�uy�ukkurt (1990) investigated

for what percentage of the data sets the AIC and the LR-test correctly selected the two-

dimensional solution. Overall, they concluded that both criteria performed very well (over

90 percent), with exception of the cases with 7 stimuli and 1 subject. In those cases, the

hit rate of both AIC and the LR-test dropped to little over 60 percent. In general, the

percentage of correct identi�cation was slightly higher for the LR-test than for the AIC. In

addition to the factors mentioned above, e�ects of violations of the assumption of normality

of the error term were considered, and KYST and PROSCAL were compared in terms of

parameter recovery. The �ve error distributions investigated did not result in di�erences in

the recovery of the distances nor in the estimates of the standard deviations. The goodness

of �t of PROSCAL turned out to be superior to that of KYST, especially under conditions

with a small number of stimuli and a high error variance level. The identi�cation of the

dimensionality with AIC as well as with the LR-test were hardly inuenced by the violation

of the normality assumption. In the analyses with KYST, the percentage of times the true

dimensionality was correctly identi�ed by the well known elbow heuristic was considerably

less than that by the AIC and the LR-test in PROSCAL analyses.

As has been described above, some previous Monte Carlo research has been done on

computational and statistical properties of the three MLMDS methods. Yet, no compar-

ison of the relative performance of the three methods has been made. In this study the

performance

of the methods is compared under a wide range of conditions.

DESIGN OF THE MONTE CARLO SIMULATION STUDY

The major advantage of a Monte Carlo simulation over a comparison of alternative

MLMDS methods on empirical data is that the true con�guration is known (Spence 1983).

In our Monte Carlo study, con�gurations are generated on the basis of various speci-

�ed numbers of stimuli and dimensions. From these con�gurations distances between the

stimuli are computed. Next, the distances are error-perturbed and the appropriate trans-

formation is applied to the dissimilarity data. This procedure results in a data matrix with
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simulated dissimilarities for a speci�ed number of subjects. Detailed information on the

data generation process is provided in the appendix.

The factors included

We vary seven factors in order to evaluate the performance of the alternative methods.

These seven factors are the number of subjects, number of stimuli, data type (metric versus

nonmetric), number of dimensions, type of error distribution, the error variance level, and

di�erences in error variance between subjects and stimuli. These factors are hypothized to

a�ect the performance of the three methods. Below we explain the seven factors and their

levels (see Table 2).

[ Insert Table 2 about here ]

A. Number of subjects

We assume that each subject yields only a single dissimilarity data matrix, and that there

are no missing values. The number of subjects chosen is 2, 8, and 14. While this is smaller

than the number encountered in some applications, we choose for 14 subjects or less, be-

cause previous studies (B�uy�ukkurt and B�uy�ukkurt 1990; Takane 1978b) indicated that no

more subjects are needed for a good performance of the methods.

B. Number of stimuli

The number of stimuli is selected to be 9, 12, and 15. These numbers are chosen because

of comparability with empirical applications.

C. Data type

One of the prominent conceptual di�erences between the three alternative MLMDS meth-

ods, is that MAXSCAL is developed for nonmetric data, while MULTISCALE and PROSCAL

are developed for metric data. We include in our design both metric and nonmetric data,

generated on the basis of transformations of the distances. Details of these transformations

are provided in the appendix.

D. Number of dimensions
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In the majority of empirical applications of MDS a dimensionality of 2 is selected, while

solutions of a dimensionality higher than three are very rare (Shepard 1972). Therefore,

we include 2 and 3 dimensions in our design.

E. Error distribution

In this study, we assume that the distances are error-perturbed. We include the normal,

the noncentral chi-square, and the uniform distributions in our design. This enables a

comparison of each of the methods under the condition that the actual error distribu-

tion optimally matches that assumed in the model. We select the uniform distribution,

because it is basically di�erent from the noncentral chi-squared, respectively normal and

lognormal distributions, which are assumed in PROSCAL respectively MULTISCALE and

MAXSCAL. Including these distributions allows for an investigation of the robustness of

the methods under alternative distributions.

F. Error variance level

The error variance level is operationalized by the ratio of the standard deviation of the

error distribution and the standard deviation of the error free distances. We specify two

levels of this ratio, namely a low error variance level (25 %) and a high level (75 %), which

correspond to levels used in previous studies (e.g. Weeks and Bentler 1979).

G. Error variance di�erences

The three MLMDS methods di�er in options of allowing the error variance to vary between

stimuli and between subjects (Table 1). In the design, we specify a factor that represents

these di�erences in error variance (see appendix).

Analyses of the data sets

In this study the data sets will be analyzed with the following versions of the MLMDS

programs: MULTISCALE II (Ramsay 1982 and 1991a), MAXSCAL-2.1 (Takane 1979

and 1981), and the updated version of PROSCAL (MacKay and Zinnes 1991). In the

remainder of this paper these will be referred to simply as MULTISCALE, MAXSCAL,

and PROSCAL.
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[ Insert Table 3 about here ]

In the MULTISCALE, MAXSCAL, and PROSCAL analyses, those program options

are used that optimally correspond to the conditions under which the data are generated

(Table 3). In PROSCAL we applied the Davidon-Fletcher-Powell optimization method as

it is faster than the direct search method and produces reasonably good estimates (MacKay

and Zinnes 1982). In MULTISCALE a power transformation of the data is estimated for

each subject, whereas for MAXSCAL and PROSCAL no transformation is estimated. In

the MAXSCAL analyses, the metric data sets are analyzed using a linear constraint on

the category boundaries, and the nonmetric data sets without such a constraint. In both

cases the boundaries are constrained to be equal across subjects. With respect to the error

distribution, MULTISCALE and MAXSCAL options of a normal distribution are used if

the true distribution is normal, and lognormal if the true distribution is non-central chi-

square or uniform. PROSCAL assumes a non-central chi-square distribution for each data

set. In the design of the study the error variance level is either equal across stimuli and

subjects, or varies across stimuli, or varies across subjects. As MULTISCALE includes

each of these options, we use the options that perfectly match the structure of the data

sets in this respect. PROSCAL allows for error variance di�erences between stimuli but

not between subjects, hence only the former option has been used. Though MAXSCAL

allows for error variance di�erences between subjects, we decided not use this option as

it results in a considerable increase in the number of parameters to be estimated, which

turned out to cause insurmountable computational problems. Hence, to reduce the spar-

sity of the discrete data, in the MAXSCAL analyses no individual speci�c parameters are

estimated, neither with respect to the category boundaries nor the error variances. Conse-

quently, MAXSCAL treats the data matrices of the subjects as mere replications (Takane

1981). In addition, when individual parameters are present the asymptotic properties of

the maximum likelihood estimates for any of the models concerned do not hold.

Analyses are performed for each data set for 1 to 4 dimensions. For several data

sets, however, MAXSCAL turns out have problems to derive a solution with a single
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dimension. After a few iterations the program terminates the iteration process without

giving a �nal con�guration as output. In those situations, MAXSCAL was run again but

now for 2 to 4 dimensions. These problems can be explained from the �ndings of Hubert

and Arabie (1986, 1988), who showed that gradient based methods generally perform

worse in case of a city-block distance model. As for Minkowski power distance models a

unidimensional solution is equivalent to the city-block metric, the MLMDS are expected

to encounter di�culties to derive satisfactory unidimensional solutions. In order to equate

the iteration process across the three MLMDS methods, we standardized the maximum

number of iterations to 200. If an analysis did not converge within 200 iterations, it was

checked whether the �nal solution is satisfactory or an increase in the maximum number of

iterations is needed. The methods di�er in the de�nition of the convergence criterion for the

improvement of the likelihood (Table 3). In MULTISCALE a �xed small value can be given

for the improvement, in MAXSCAL the threshold value is speci�ed relative to the value

of the likelihood, and in PROSCAL the threshold value is related in a complex manner

to various parameters of the model at hand. Since the formulation of the likelihoods also

di�ers considerably between the three methods, equating these threshold values is next to

impossible, and for each MLMDS method the default values are used in this study. Table

3 also presents equations for the respective numbers of parameters estimated for the three

procedures.

Evaluation criteria

The performance of the three MLMDS methods is evaluated using a number of criteria

that are clustered in three groups, namely according to whether they assess parameter

recovery, goodness of �t of the model, or computational e�ort required.

Parameter recovery entails both the recovery of the coordinates and the identi�ca-

tion of the correct dimensionality. The con�gurations derived by MLMDS with the sim-

ple Euclidean distance function are invariant under rotations. Therefore, recovery of the

coordinates has to be assessed after rotating the original con�guration and the derived
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con�guration to maximum congruence (Peay 1988; Ten Berge 1977). Here we assess the

equivalent recovery of the distances instead of the recovery of the coordinates. We use the

correlation between the I(I � 1)=2 � 1 vectors of true distances and estimated distances

for each subject, where the estimated distances are calculated on the basis of the true

dimensionality.

For the selection of the correct dimensionality, a number of heuristics are available. In

this study, we evaluate the Likelihood Ratio chi-square test (LR-test), the minimum AIC

rule (Akaike 1974), and the minimum CAIC rule (Bozdogan 1987) for each of the three

MLMDS methods. Likelihood ratio tests (� = 0.01) are performed to test between the

M -dimensional solution versus the (M � 1)-dimensional solution. For PROSCAL, addi-

tional analyses are required to identify the dimensionality as the M -dimensional solution

and the (M � 1)-dimensional solution are not nested. This is due to fact that the noncen-

trality parameter of the non-central chi-square distribution is equal to the dimensionality

of the solution, hence the likelihoods for di�erent dimensionalities are based on the dif-

ferent density functions and are therefore not comparable. To compute correct likelihood

ratio tests, the (M � 1)-dimensional solution has to be speci�ed through constraints on

the M -dimensional solution. Hence, in PROSCAL, the minimum AIC or CAIC rule has

to be applied for each successive pair of constrained and unconstrained solutions. For

MULTISCALE and MAXSCAL, the AIC or CAIC are computed for each solution, and

that solution is selected that yields the smallest value for AIC or CAIC. In addition, for

MULTISCALE we apply the Likelihood ratio test with the correction factor for the chi-

square value (CLR-test), as proposed by Ramsay (1980a). The percentage of times the

dimensionality is correctly identi�ed, is calculated for each method and each statistic at

the various levels of the factors in the design (Table 2). As noted above, the conditions

needed for these statistics to have their asymptotic properties may not hold in testing for

M versus M + 1 dimensions.

We use the correlation between the NI(I � 1)=2� 1 vectors of observed dissimilarities

and estimated distances, calculated from the true dimensionality, as a measure of the

goodness-of-�t of the MLMDS solutions. The latter vector is computed as IN 
 V ec(D),
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where IN is a N�1 unit vector and D is a lower-diagonal matrix with estimated distances.

The computational e�ort required is measured by the CPU time needed (on a 486DX

33Mhz PC).

Experimental design

A full factorial design based on the factors presented in Table 2 would require 2334 = 648

data sets. By assuming interactions of three factors or more to be negligible, we can apply a

fractional factorial design to reduce the number of data sets required, while retaining a high

power to detect main e�ects and 2-factor interactions, as will be shown below. We adopt

a fractional design of 162 data sets from which all main-e�ects and two-factor interactions

can be estimated (Connor and Young 1961). Each of these data sets is analyzed with

the three MLMDS methods. This results in 486 solutions for which the above mentioned

evaluation criteria are calculated. Repeated measurement analyses of variance are used to

test the e�ects of the seven factors and MLMDS methods on the evaluation criteria (three

repeated measures for each of the 162 data sets). Partial omega squared values (Keren and

Lewis 1979) are reported to indicate e�ect size.

On the basis of Cohen (1988) we assess the power of the F-tests in the ANOVA's.

We want to detect at least medium-sized e�ects (Cohen 1988), corresponding to about 6

percent of the total variance accounted for, at a signi�cance level of � = 0:01. We assume

that second and higher order interactions are negligible, and correct for the fact that the

F-tests are part of an ANOVA

model with 87 degrees of freedom in total. Tests for main e�ects of factors with 2

or 3 levels have a power of 0.99 respectively 0.98 in our design. An F-test of a 2-factor

interaction (both factors at 3 levels) has in a power of 0.95. We consider these levels of

power of detecting the above-mentioned e�ects to be highly satisfactory.

RESULTS

Recovery of the distances
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The results of the ANOVA of the correlations between true and estimated distances

(after a Fisher transformation F (�) = 1

2
(log(1 + �) � log(1 � �))) are presented in Table

4. For each of the three MLMDS methods, the average correlations of the true distances

with the estimated distances for each factor level are given in Table 5.

[ Insert Table 4 about here ]

[ Insert Table 5 about here ]

The �rst observation to be made from Tables 4 and 5, is the fact that all three MLMDS

methods recover the true distances very well under all circumstances, as all mean correla-

tions are above 0.90. Furthermore, the variance between data sets is much larger than the

variance due to the di�erence between MLMDS methods. The mean correlations do not

di�er signi�cantly between the MLMDS methods, but some of the interactions between

MLMDS methods and the design factors are signi�cant. The 3-factor interactions between

the MLMDS method, the number of subjects, and the number of stimuli, respectively be-

tween the MLMDS method, the data type, and the error level arise because MAXSCAL

recovers the distances less well in case of large data sets with 14 subjects and 15 stimuli

(average correlation of 0.949), and ordinal data with a high error level (average correlation

of 0.916). The performance of MULTISCALE and MAXSCAL is relatively better when

the error distribution is normal, whereas PROSCAL performs relatively better when the

error distribution is uniform. This latter result is unexpected, but may be caused by the

bounded range of the uniform distribution. Hence, the MLMDS methods tend to per-

form somewhat better when assumption of the error distribution is valid, though they are

rather robust against violations of these assumptions. Whereas PROSCAL performs best

when there are di�erences in error variance, MULTISCALE and MAXSCAL perform best

when there are di�erences in error variance between stimuli. For MAXSCAL this result

is somewhat surprising, since such di�erences are not accommodated for in the analyses.

MULTISCALE recovers the true distances less well when the error variance di�ers be-

tween subjects, even though the model accommodates these di�erences. The same holds
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for PROSCAL's performance when the error variance di�ers between stimuli. These results

may be attributed to a larger number of parameters that needs to be estimated in these

situations (Table 3).

The number of subjects, the data type, the number of dimensions, and the error variance

turn out to have signi�cant and substantial main e�ects on the recovery of the true distances

(Tables 4 and 5). The total number of data points available is expected to have a positive

e�ect on distance recovery. It turns out that the number of subjects indeed does have this

e�ect, whereas the number of stimuli does not. This might be due to the fact that an

increase in the number of stimuli not only causes an increase in the amount of data but

also an increase in the number of parameters to be estimated, which tends to deteriorate

the performance of the algorithms. Con�gurations of dimensionality 2 are better recovered

than those of dimensionality 3, which is probably also related to an increase in number

of parameters to be estimated. Furthermore, the three MLMDS methods recover the true

distances better frommetric data than from nonmetric data, which is most apparent in case

of a non-central chi-square distribution. An increase of the number of subjects, however,

considerably decreases this di�erence between the recovery from metric and non-metric

data. Hence, information on a larger sample of subjects diminishes the negative e�ect of

the ordinal nature of dissimilarity data.

As expected, a higher error variance level results in a decrease in the recovery of the

distances. Furthermore, error variance di�erences between subjects turn out to reduce

recovery, whereas di�erences between stimuli do not have such an e�ect. This e�ect should

be seen in the context of the di�erent performance of the three methods in this respect. The

interactive e�ects of the error distribution and the error variance di�erences respectively

the dimensionality, are caused by a relatively good distance recovery for the combination

of a non-central chi-square distribution and error variance di�erences between stimuli and

the absence of the dimensionality and di�erences in error variance e�ects in the case of

a uniform distribution. Note that the main e�ect of the error distribution is insigni�cant

and extremely small.
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Recovery of the dimensionality

The results of a logistic regression analysis to analyze the e�ects of the factors in our

design, the MLMDS methods, and the selection criteria (omitting the CLR-test) on the

extent to which the true dimensionality is correctly recovered is presented in Table 6. Here,

a zero indicates incorrect and a one indicates correct recovery of the dimensionality. Table

7 summarizes the extent to which the true dimensionality is underestimated, estimated

correctly, or overestimated by each of the criteria for each of the three MLMDS methods

under each of the conditions in the design.

[ Insert Table 6 about here ]

[ Insert Table 7 about here ]

As shown in Tables 6 and 7, there are signi�cant di�erences between the MLMDS

methods with respect to the recovery of the true number of dimensions. Across the selec-

tion criteria, for MAXSCAL and PROSCAL the true number of dimensions is identi�ed

somewhat more frequently than for MULTISCALE. However, there is an interaction e�ect

between the MLMDS methods and the selection criteria: MULTISCALE performs best

with the conservative CAIC heuristic, whereas MAXSCAL and PROSCAL perform better

with the less conservative criteria: the LR-test and AIC. As expected, for MULTISCALE

and MAXSCAL the LR-test and AIC tend to overestimate and CAIC tends to underes-

timate the dimensionality. Apparently, the penalty imposed on the log-likelihood by the

CAIC-statistic tends to be too severe for these models. The penalty imposed by the AIC

appears to be insu�cient, resulting in overestimation of the dimensionality, For MULTI-

SCALE, the correction factor for the LR-test as suggested by Ramsay (1980a) corrects for

the tendency of the LR-test to overestimate dimensionality, and the recovery of the dimen-

sionality with this CLR-test is even slightly better than with CAIC. The CLR-test does not

have a serious bias towards either overestimation or underestimation. The recovery of the

dimensionality for MAXSCAL is best by the LR-test. Finally, all three selection criteria
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tend to underestimate the dimensionality for PROSCAL, especially if the true number of

dimensions is three. Due to the problems with the one-dimensional solution mentioned

previously, the three MLMDS methods, and especially MAXSCAL, tend not to underesti-

mate the true number of two dimensions. As can be derived by comparing the percentage

of underestimation for a true dimensionality of 2 to that of 3, it indeed rarely happens that

the MLMDS methods identify the unidimensional solution as the most appropriate one.

In several cases, MAXSCAL did not provide a unidimensional solution at all. Since the

true dimensionality is 2 or 3, this somewhat inates the percentages of correct recovery.

For PROSCAL, the LR-test and AIC perform about equally well and clearly better than

CAIC, which imposes too severe penalties on the likelihood.

As expected, an increase in the number of subjects has a positive e�ect on the recovery

of the true number of dimensions. For all MLMDS methods and criteria this increase is

substantial for 2 to 8 subjects, but the e�ects marginalizes for a further increase to 14

subjects. The main e�ect of the number of stimuli is not signi�cant, but as can be derived

from Table 7, a higher number of stimuli results in general in a higher dimensionality

being indicated by the criteria, regardless of the true number of dimensions, which causes

the interactive e�ect with the true number of dimensions to be signi�cant. When the

number of stimuli increases, the true number of dimensions is more frequently indicated

for PROSCAL, but less frequent for MAXSCAL, while for MULTISCALE such e�ects

are absent. MULTISCALE recovers the true dimensionality clearly better from metric

data than from nonmetric data, whereas for PROSCAL and MAXSCAL no di�erences are

found.

The main e�ect of distribution of the error is not signi�cant, but the interaction with

the MLMDS methods is. In accordance with the theoretical framework of the methods,

for PROSCAL the true dimensionality is identi�ed most often if the error is chi-square

distributed, and while for MAXSCAL (and to a lesser extent MULTISCALE) this is the

case with normal distributed error. As expected, the true number of dimensions is recovered

most frequently in case of low error variance level and in case of no error variance di�erences

between subjects or stimuli, with minor di�erences across methods.
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Fit of the dissimilarities

The �t of the models is studied by correlating the vector of the dissimilarity data

with the vector of derived distances. As measure of the recovery of true distances, mean

correlations are computed and an ANOVA is performed on the Fisher transformation of

the correlations. Table 8 presents the ANOVA results, and Table 9 the mean correlations.

[ Insert Table 8 about here ]

[ Insert Table 9 about here ]

An increase in the number of subjects or the number of stimuli results in a decrease in

the �t of the models to the data. This is due to the fact that in such situations there is less

opportunity to adjust the model parameters to individual data points. Especially if the

error level is high, an increase in the number of subjects causes a decrease in �t. As shown in

Table 8, the type of data is one of the most important factors explaining the �t. The mean

correlation for metric data is substantially higher than the mean correlation for nonmetric

data. Two interactive e�ects involving the type of data are substantial and signi�cant. The

goodness-of-�t statistic is relatively low (average correlation of 0.693) under the condition

of high error variance and nonmetric data, that is if the error component is relatively large

compared to the information in the data. The �t is relatively good (average correlation of

0.864) under the conditions of metric data and error variance di�erences between stimuli.

The number of dimensions turns out to have virtually no e�ect on the goodness-of-�t,

which may be caused by the fact that here the �tted number of dimensions is equal to the

true number of dimensions.

The factors pertaining to the error model have large e�ects on the goodness-of-�t.

Especially an increase in error variance level a�ects the correlations between the data

and the derived distances negatively. The e�ects of the error distribution and the error

variance di�erences are also considerable. Data with a non-central chi-square distribution
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or with error variance di�erences between stimuli are represented best. Moreover, the

interaction e�ect between these two factors consists mainly of an additional positive e�ect

of the combination of the non-central chi-square distribution with error variance di�erences

between stimuli (average correlation of 0.875). These may be caused by the skewness of

the non-central chi-square distribution, where the extreme values that arise inate the

�t measures, and by the congruence of the non-central chi-square distribution and error

variance di�erences between stimuli.

The di�erences between the MLMDS methods with respect to the �t are very small,

especially compared to the variance due to the between data sets design factors. The

MLMDS methods main e�ect is not signi�cant, though there are some signi�cant, but

relatively small, interactions with the number of subjects and error variance di�erences.

MAXSCAL performs relatively well with a small number of subjects, except when there

are error variance di�erences between these subjects. This is expected, since we did not

accommodate such di�erences in the MAXSCAL analyses. Moreover, MULTISCALE and

MAXSCAL provide relatively good �t when there are error variance di�erences between

stimuli. This is consistent with the �nding that the models recover the true distances

well when the error variance di�ers between stimuli, although a theoretical explanation is

lacking. We conclude that all three methods derived solutions that �t the data reasonably

well, that is with an average correlation between the derived distances and the dissimilarity

data of 0.790.

Computational e�ort

The computational e�ort required is measured by the CPU time needed (on a 486DX

33Mhz PC). The results of ANOVA of the CPU times are given in Table 10. For each

MLMDS program, the mean CPU time according to the factor levels is presented in Table

11.

[ Insert Table 10 about here ]
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[ Insert Table 11 about here ]

The most prominent result from Tables 10 and 11 is that there are substantial di�erences

between the MLMDS programs with respect to the CPU time. MULTISCALE takes on

average about 30 seconds, which is much less than PROSCAL (average of 3.54 minutes) and

MAXSCAL (average of 6.45 minutes). Besides this main e�ect, their are some interesting

interactions of the MLMDS methods with other factors in the design. The CPU time used

by the MLMDS methods depends highly on the number of stimuli. For MAXSCAL this

e�ect is largest; an increase from 9 to 15 stimuli results in an increase in CPU time from 1.62

to 12.70 minutes on average. For PROSCAL and to a lesser extent for MULTISCALE, an

increase in the number of subjects causes an increase in the CPU time. MAXSCAL requires

most CPU time in the case of a small number of subjects. The e�ect of the measurement

scale of the data is most apparent for MAXSCAL. As expected, MAXSCAL takes more

time analyzing metric data, because it has to evaluate equation (1) for 50 categories.

MULTISCALE takes more time analyzing nonmetric data. Estimating parameters related

to error variance di�erences between stimuli or subjects in MULTISCALE and PROSCAL

causes the CPU time to increase, especially when allowing for di�erence between stimuli

in MULTISCALE.

EXAMINING THE LOCAL OPTIMA PROBLEM

For each of the MLMDS methods convergence to a global optimum is not guaranteed.

A solution that is generally used is to start the iteration process with a rational start,

e.g. a metric decomposition of the average dissimilarity matrix. In the Monte Carlo study

presented in the previous sections, such rational starts for the stimulus coordinates have

been used for each of the methods. The extent to which the MLMDSmethods may converge

to local optima is investigated in a separate Monte Carlo study presented in this section.

To examine the convergence to local optima for the MLMDS methods, synthetic data

sets are generated for the following �xed factor levels: nonmetric (7-point) dissimilarities,
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two dimensions, a uniform error distribution, high error variance, and no error variance

di�erences between subjects or stimuli. The data sets vary, however, in two factors that

may a�ect convergence to local optima since asymptotically the problem of local optima

vanishes: the number of subjects (2, 8, 14) and the number of stimuli (9, 12, 15). With two

replications in each cell, this 3�3 design results in 18 data sets (Table 12). Each of these

data sets has been analyzed using 12 sets of starting values for the stimulus coordinates,

namely rational starting values from the defaults in each of the three MLMDS programs,

the true coordinates, and 10 di�erent sets of randomly generated coordinates. In the case

of MAXSCAL, however, several analyses with random starts failed to begin the iterative

process because of a log domain error. For each analysis the value of the likelihood function

at convergence is examined. If the di�erence in the likelihood at convergence between dif-

ferent analyses of the same data set is within the pre-speci�ed level of convergence (Table

3), these analyses are reported to result in the same solution. Table 12 presents for each

MLMDS method the extent to which the 12 analyses of the 18 data sets result in the same

solution.

[ Insert Table 12 about here ]

The MLMDS methods frequently converge to local optima (Table 12), especially if

random starts are used. Rational starting values, however, provide a good (though not

perfect) solution to the local optima problem. Across all methods and data sets for 9 out

of 54 analyses the rational start is outperformed by the true start and/or one or more

random starts, indicating that the global optimum is not reached. This number slightly

di�ers between the three MLMDS methods (MULTISCALE: 3; MAXSCAL: 5; PROSCAL:

1). This result can be explained partly by the fact that the convergence criterion for the

improvement of the likelihood value is much smaller for MAXSCAL than for MULTISCALE

and PROSCAL (Table 3). For those cases where the rational start did not result in the

global optimum, the extent to which the rational start is outperformed in terms of the

�nal log-likelihood is extremely small. The maximum relative improvement of the solution
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from the rational start by the best solution is only 0.12 % for MULTISCALE, 0.21 % for

MAXSCAL and 0.24 % for PROSCAL. It is interesting to note that a global optimum was

not found starting the algorithms from the true parameter values in 15 out of 54 analyses

(MULTISCALE: 2; MAXSCAL: 6; PROSCAL: 7). In addition, it was expected that the

number of stimuli and/or the number of subject a�ects the local optima problem, but these

two factors do not seem to have an e�ect in this study (Table 12). We attribute these two

results to the uniform error distribution, which results in misspeci�cation for each of the

three models.

CONCLUSIONS

The three MLMDS methods perform very well with respect to recovering the true

distances, even if the number of subjects is as small as two. This �nding con�rms results

of previous Monte Carlo studies (B�uy�ukkurt and B�uy�ukkurt 1990; MacKay and Zinnes

1981; Ramsay 1977; Storms, 1995; Takane 1978b). Additionally, this study shows that

MULTISCALE, MAXSCAL, and PROSCAL hardly di�er in the extent to which the true

distances are recovered. For each of theMLMDSmethods, the recovery of the true distances

increases with an increase of the number of subjects, is better for metric data than for

nonmetric data, decreases with an increase of the dimensionality of the true con�guration,

and decreases with an increase of the error variance.

The results of the �t to the dissimilarity data are consistent with those on distance

recovery: the di�erences between the three MLMDS methods are small. As the number

of data points increases, due to an increase in the number of subjects and/or the number

of stimuli, the MLMDS methods have less opportunity to adjust the model parameters to

each individual data point. This results in lower goodness-of-�t of the model to the entire

data set. As expected, low error variance levels result in better model �t as compared to

a higher error variance level.

The recovery of the true dimensionality di�ers between the three MLMDS methods. For

MAXSCAL and PROSCAL the true dimensionality was identi�ed more frequently than
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for MULTISCALE, across the criteria investigated (LR-test, AIC, and CAIC). For MUL-

TISCALE and MAXSCAL, the LR-test and AIC tend to overestimate the dimensionality,

while CAIC tends to underestimate the dimensionality. For PROSCAL all three criteria

tend to underestimate the dimensionality. Hence, the penalty imposed on the likelihood

by AIC is generally insu�cient, while that imposed by CAIC is generally too severe. Both

AIC and CAIC can only be used as heuristics for selecting the appropriate number of di-

mensions, since they depend upon the same regularity conditions needed for the likelihood

ratio test to have its asymptotic distribution under the null hypothesis. These conditions

may not hold when testing for M versus M + 1 dimensions. For MULTISCALE, the cor-

rected LR-test proposed by Ramsay (1980a) appears to correct for overestimation of the

number of dimensions, although not completely (see also Storms, 1995). The properties of

the criteria appear to improve when the number of subjects increases, when the underly-

ing distributional assumptions are correct, and when the error variance is relatively low.

Because the asymptotic properties of the statistics are lacking, their usefulness depends on

the speci�c model, the number of parameters estimated, and the data at hand: clearly an

undesirable situation.

Though CPU time becomes a less important criterion as computers become faster, it

may remain important especially if a substantial number of analyses have to be performed.

Considering the CPU time, MULTISCALE is much faster than PROSCAL and MAXSCAL.

Especially with metric data, with a large number of scale categories for which MAXSCAL

was not designed, MAXSCAL requires signi�cantly more CPU time.

The most frequent criticism of MLMDS, is the fact that assumptions have to be made

about the error model (see e.g. the discussion of Ramsay (1982) or Carroll and Arabie

(1980)). The proposition made by skeptics is that the performance of the MLMDS meth-

ods will critically depend on the correctness of the distributional assumptions. This study

supports B�uy�ukkurt and B�uy�ukkurt (1990), Storms (1995), Storms and Delbeke (1991),

and Takane (1978b) and shows that for each of the three MLMDS methods neither the

recovery of the true con�guration nor the �t of the model to the dissimilarity data is seri-

ously inuenced by violations of distributional assumptions. However, for MAXSCAL and
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PROSCAL the identi�cation of the true number of dimensions appears to dependent more

on the correctness of the assumptions, whereas for MULTISCALE this is less apparent.

This �nding supports and supplements the �ndings of Takane (1978b) and Storms (1995),

but is contrary to the results of B�uy�ukkurt and B�uy�ukkurt (1990).

Traditional MDS methods have been developed for both metric data (Torgerson 1952

and 1958; Carroll and Chang 1970) and nonmetric data (Kruskal 1964; Shepard 1962).

Within the MLMDS framework MULTISCALE and PROSCAL are tailored to metric

data, whereas MAXSCAL assumes the data to be nonmetric. Nonmetric data contain

in general less information about the true con�guration as compared to metric data. The

deterioration of the recovery of true distances and lower goodness-of-�t of nonmetric data

as compared metric data revealed in this study are therefore expected. The metric methods

MULTISCALE and PROSCAL perform similar to the nonmetric method MAXSCAL in

case of nonmetric data. Hence, in accordance with previous research on metric quality of

ordered scales in general (Srinivasan and Basu 1989), the conclusion seems justi�ed that

pairwise dissimilarity judgments on 7-point scales may very well be treated as metric.

The three MLMDS methods su�er from the danger of converging to local optima. So

far, little research has addressed the extent to which these methods converge to local

optima in �nite samples. This paper shows that if random starts are used, the MLMDS

methods converge frequently to local optima for sample sizes used in this study. Using

rational starting values, however, provides a reasonably good solution to the problem of

local optima. In about 80 % of the cases the solution from rational starting values could

not be outperformed by 10 solutions from random starting values and a solution from

the true values as starting values. Furthermore, in those cases where the solution from

a rational start is outperformed the di�erence is extremely small in terms of the relative

improvement of the likelihood. Moreover, if the rational starts used are informative, their

selection rather than the use of random starts may guard against incorrect inferences

in samples with limited information. Rational starts restrict the estimated solution to a

region of the parameter space that on substantive grounds is more likely to contain the true

solution. Hence, by employing a rational start the probability that the true maximum is in
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an a-priori unacceptable region of the parameter space is decreased (Manton, Woodburry,

and Tolley 1995, p. 72). We therefore argue that rational starts are preferable, both

from a theoretical and empirical perspective. These rational starts were used throughout

our study. The �ndings reported are most likely not due to di�erence in the tendency to

converge to local optima among the methods.

DISCUSSION

Marketing researchers who intend to apply MLMDS may base their choice between

the alternative methods on the results presented in this paper. We found that all three

MLMDS methods perform extremely well on two important criteria, namely recovering true

distances and �tting error-perturbed dissimilarities. The di�erences between the methods

with respect to these criteria are negligible. MAXSCAL and PROSCAL recover the true

dimensionality somewhat more often as compared with MULTISCALE. These di�erences

are rather small, however, and depend heavily on the selection criterion used. MULTI-

SCALE, on the other hand, takes much less CPU time. PROSCAL outperforms the other

two methods with respect to avoiding local optima. MAXSCAL is ranked last concerning

both CPU time and avoiding local optima. Hence, none of the three MLMDS methods

clearly dominates the other methods with respect to all evaluation criteria.

Generally, the selection of an MLMDS method may involve more than the results of

Monte Carlo simulation studies. User-friendliness of the programs, for example, may a�ect

the choice made. Our experience with the use of the MLMDS programs is that all three

are relatively easy to use. The programs use control �les and are processed in batch

mode. Well-written manuals are available for each program, where the MULTISCALE

manual is most comprehensive. The MULTISCALE and PROSCAL programs are still

regularly updated (MacKay and Zinnes 1991; Ramsay 1991a). Furthermore, each of the

three MLMDS methods has a number of unique features. Some of these features have

been omitted in this Monte Carlo evaluation in order to make the methods comparable,

which may have biased our study towards converging results for the three di�erent MLMDS
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methods. Some types of data not considered, such as triadic combinations or conditional

rankings, require analysis with MAXSCAL. MULTISCALE, on the other hand, is the only

MLMDS method that allows for individual weighting of the dimensions. Furthermore,

Ramsay (1980b, 1991b) extended MULTISCALE to the simultaneous analysis of attribute

ratings, preferences, and dissimilarities. Within the framework of PROSCAL, it is possible

also to analyze preference data (MacKay and Zinnes 1986). Moreover, in situations where

it is necessary to assume stimuli to be error-perturbed and the error variance to di�er

between dimensions, for example while studying newly developed products with well-known

but also some new attributes, PROSCAL has to be applied. Hence, speci�c characteristics

of a study may direct a marketing researcher towards the use of one of the three MLMDS

methods.

Considering both the results of the Monte Carlo studies presented and more practical

and study-speci�c issues raised above, we tend to favor PROSCAL and MULTISCALE

over MAXSCAL for application by marketing researchers.

Though this paper provides insight in the relative performance of the three MLMDS

methods under a wide range of circumstances, a number of issues remain to be investigated

more closely. The sensitivity of the methods to convergence to local optima could be

addressed in a more extensive Monte Carlo study to complement the results presented in

this paper. Additionally, whether metric MLMDS methods perform well on nonmetric data

may critically depend on the number of scale categories. In this paper, it is shown that a

7-point scale contains enough information to warrant metric analyses, but future studies

may focus on the relative performance of the methods when the number of categories is for

example 3 or 5. Finally, research into alternative criteria for selecting the dimensionality,

such as Monte Carlo tests and modi�ed AIC criteria and the criteria used in this study, is

needed.
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APPENDIX. THE DATA GENERATION PROCESS

For each of the 162 data sets to be generated, a 3-step procedure is followed.

In the �rst step, a con�guration is generated for a given number of stimuli and di-

mensions. The coordinates of the stimuli for each dimension are drawn from a uniform

distribution on the interval (0, 10). From the resulting con�guration error-free distances

dij between the stimuli are computed according to equation (2). We set wmn = 1 for all m

and n, as only MULTISCALE allows for estimation of dimensional weights.

In the second step, the error-free con�guration from the previous step is error-perturbed

in accordance with the the three factors pertaining to the error model, namely the error

distribution, the error variance level, and whether or not there are error di�erences between

stimuli or subjects. The error component eijn is generated applying the following formula:

eijn = un(vi + vj)�ijn; (9)

where �ijn is drawn from the appropriate distribution with variance level �2, un is either

drawn from a uniform distribution on the interval (0.5, 1.5) or un = 1 (error variance

di�erences between subjects or not), and vi and vj are either drawn from a uniform dis-

tribution on the interval (0, 1) or vi = vj = 0:5 (error variance di�erences between stimuli

or not). The standard deviation of the error � is computed as 0.25 or 0.75 times the stan-

dard deviation of the error-free distances (error variance level low or high). In case of the

normal and uniform distributions, the error term eijn is added directly to the error-free

distances dij . To generate non-central chi-square distributed error the stimulus coordinates

are error-perturbed using a normal distribution. The error variance is equated among the

three error distributions by relating the error variance in coordinates to the error variance

in distances using equations (3) and (4) from Zinnes and MacKay (1983). The error vari-

ance level for a stimulus is approximated by imputing the mean and variance of the true

distances, multiplied by un(vi+ vj), into the equation relating the error in coordinates and

the error in distances.

In the third step, the appropriate transformation is applied to obtain the �nal dis-

similarity data. First, error-perturbed distances smaller than 0 were replaced by a small
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positive value. In case of metric similarity data no further transformation is applied. For

the analysis with MAXSCAL, however, the metric data were transformed to correspond to

50-point metric scales. A linear transformation is used, which made the maximum distance

in each data set equal to 50, and the minimum distance equal to 1. All other distances

are rounded o� to the nearest integer. In order to obtain nonmetric data we transform the

data to correspond to dissimilarity ratings on 7-point scales. This is done for each subject

separately, by drawing 6 random numbers from a lognormal distribution with mean and

variance equal to the mean and variance of the error-perturbed distances. These 6 numbers

are ordered and form the bounds of 7 categories as in equation (1). Next, each observed

distance is assigned to one of the categories and replaced by the code of the appropriate

category. This procedure results in a data matrix with simulated dissimilarities among

stimuli for each of a speci�ed number of subjects.
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TABLE 1

The Conceptual Framework of the MLMDS Methods

MULTISCALE MAXSCAL PROSCAL

Measurement Model

Scale Level of the Data metric nonmetric metric

Transformations scale, power, or spline none none

Representation Model

Distance Metric Euclidean Euclidean Euclidean

Individual Di�erences weighted or unweighted unweighted unweighted

Error Model

Error Basis distances distances coordinates

Distribution of Distances normal, lognormal normal, lognormal noncentral chi-square

Options to Di�er Error Variance Level

between Stimuli yes no yes

between Subjects yes yes no

between Dimensions no no yes
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TABLE 2

Factors in the Monte Carlo Simulation

Factor Levels

Measurement Model

A. Number of Subjects 2

8

14

B. Number of Stimuli 9

12

15

C. Data Type metric

nonmetric

Representation Model

D. Number of Dimensions 2

3

Error Model

E. Error Distribution normal

noncentral chi-square

uniform

F. Error Variance Level 25 %

75 %

G. Error Variance Di�erences no di�erences

between stimuli

between subjects
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TABLE 3

Program Options Used

Factor MULTISCALE MAXSCAL PROSCAL

Data Type

Metric Data metric, power transformation linear, equal metric

Nonmetric Data metric, power transformation ordinal, equal metric

Error Distribution

Normal normal normal non-central chi-square

Noncentral Chi-square lognormal lognormal non-central chi-square

Uniform lognormal lognormal non-central chi-square

Error Variance Di�erences

None no di�erences no di�erences no di�erences

Between Stimuli between stimuli no di�erences between stimuli

Between Subjects between subjects no di�erences no di�erences

Algorithm Speci�cations

Optimization method Fisher's scoring method Fisher's scoring method Davidon-Fletcher-Powell

Convergence Threshold �(logL) < 0:05 relative �(logL) < 0:0000025 variable (� �(logL) < logL
1000

)

Maximum Number of Iterations 200 200 200

Starting Procedure rational rational rational

Number of Parameters � (I � 2)M + 2N+ (I � 2)M + 2�metric+ (I � 2)M+

�stim(I � 1) + �subj(N � 1) 6(1� �metric) �stim(I � 1)

� �metric equals 1 for metric data and 0 for nonmetric data

�stim equals 1 for error variance di�erences between stimuli, 0 otherwise

�subj equals 1 for error variance di�erences between subjects, 0 otherwise
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TABLE 4

ANOVA of Distance Recovery

Source � Sum of Squares d.f. F p partial !2

Between Data Sets

Within + Residual 10.99 99

A. Number of Subjects 67.08 2 302.20 < 0.001 0.859

B. Number of Stimuli 0.39 2 1.75 0.180 0.034

C. Data Type 14.37 1 129.46 < 0.001 0.567

D. Number of Dimensions 3.10 1 27.95 < 0.001 0.220

E. Error Distribution 0.36 2 1.60 0.206 0.031

F. Error Variance Level 26.59 1 239.61 < 0.001 0.708

G. Error Variance Di�erences 0.81 2 3.66 0.029 0.069

A � C 1.90 2 8.55 < 0.001 0.147

C � E 1.56 2 7.04 0.001 0.125

D � E 1.31 2 5.90 0.004 0.106

E � G 9.54 4 21.49 < 0.001 0.465

Within Data Sets

Within + Residual 6.91 198

H. MLMDS Method 0.07 2 0.94 0.390 0.009

E � H 1.33 4 9.53 < 0.001 0.161

G � H 1.14 4 8.14 < 0.001 0.141

A � B � H 1.06 8 3.80 < 0.001 0.133

C � F � H 0.82 2 11.80 < 0.001 0.106

� Only interactions signi�cant at � = :01 and with partial !2 > 0:10 are reported.
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TABLE 5

Mean Correlations between True Distances and Estimated Distances

Factor Level MULTISCALE MAXSCAL PROSCAL Row Mean

A. Number of Subjects 2 .902 .910 .918 .910

8 .974 .974 .973 .974

14 .984 .973 .981 .979

B. Number of Stimuli 9 .951 .953 .955 .953

12 .950 .955 .957 .954

15 .959 .949 .960 .956

C. Data Type metric .964 .965 .970 .968

nonmetric .943 .940 .945 .943

D. Number of Dimensions 2 .961 .963 .967 .964

3 .946 .942 .947 .945

E. Error Distribution normal .958 .955 .956 .956

noncentral chi-square .949 .950 .956 .952

uniform .953 .952 .961 .955

F. Error Variance Level 25 % .975 .975 .973 .974

75 % .931 .930 .941 .934

G. Error Variance Di�erences no di�erences .956 .953 .965 .958

between stimuli .960 .962 .953 .958

between subjects .944 .942 .954 .947

Column Mean .953 .952 .957 .954
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TABLE 6

Logistic regression of Selecting the Correct Dimensionality

Source � Wald d.f. p

A. Number of Subjects 82.94 2 < 0.001

B. Number of Stimuli 0.29 2 0.864

C. Data Type 21.60 1 < 0.001

D. Number of Dimensions 70.99 1 < 0.001

E. Error Distribution 2.97 2 0.227

F. Error Variance Level 53.23 1 < 0.001

G. Error Variance Di�erences 30.56 2 < 0.001

H. MLMDS Method 17.17 2 < 0.001

I. Selection Criteria 3.18 2 0.204

A � B 16.00 4 0.003

A � C 24.52 2 < 0.001

A � D 18.21 2 < 0.001

A � G 15.45 4 0.004

B � D 36.48 4 < 0.001

B � H 24.52 4 < 0.001

B � I 18.94 4 < 0.001

C � D 8.97 1 0.003

C � F 14.81 1 < 0.001

C � H 28.70 1 < 0.001

D � F 14.19 1 < 0.001

D � H 24.74 2 < 0.001

D � I 63.79 2 < 0.001

E � F 10.43 2 0.005

E � H 32.70 4 < 0.001

G � H 25.13 4 < 0.001

H � I 27.67 4 < 0.001

� Only interactions signi�cant at � = :01 are reported.
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TABLE 7

Percentages of Selecting the Correct Dimensionality

MLMDS methods MULTISCALE MAXSCAL PROSCAL

Selection Criteria LR-test CLR-test AIC CAIC LR-test AIC CAIC LR-test AIC CAIC

A. Number of Subjects

2 13 37 50 37 59 9 4 30 67 43 48 9 25 57 17 17 46 37 44 54 2 44 50 6 39 54 7 61 37 2

8 4 61 35 17 72 11 2 56 43 35 63 2 4 76 20 2 72 26 35 65 0 26 69 6 20 72 7 35 59 6

14 4 61 35 7 78 15 2 50 48 20 76 4 4 82 15 0 70 30 19 74 7 17 78 6 15 78 7 32 65 4

B. Number of Stimuli

9 11 65 24 35 63 2 6 52 43 46 50 4 15 82 4 9 74 17 39 61 0 39 57 4 35 61 4 52 46 2

12 4 54 43 19 74 7 0 46 54 30 67 4 11 74 15 6 61 33 35 63 2 30 63 7 22 70 7 41 54 6

15 6 41 54 7 67 26 2 37 61 22 70 7 7 59 33 4 54 43 24 69 7 19 76 6 17 72 11 35 61 4

C. Data Type

metric 7 72 21 19 79 3 1 65 33 30 69 1 12 73 15 5 67 28 27 73 0 31 64 5 28 65 6 33 62 5

nonmetric 6 35 59 22 57 21 4 25 72 36 56 9 10 70 20 7 59 33 38 56 6 27 67 6 21 70 9 52 46 3

D. Number of Dimensions

2 0 54 46 7 79 14 0 43 57 11 80 9 0 73 27 0 63 37 0 94 6 9 82 10 6 80 14 17 77 6

3 14 52 35 33 57 10 5 47 48 54 44 1 22 70 7 12 63 25 65 35 0 49 49 1 43 56 1 68 31 1

E. Error Distribution

normal 7 54 39 17 72 11 2 44 54 32 65 4 13 82 6 6 76 19 33 65 2 30 65 6 24 69 7 48 48 4

noncentral chi-square 6 44 50 19 63 19 2 35 63 33 59 7 6 63 32 4 44 52 26 69 6 20 74 6 15 76 9 30 67 4

uniform 7 61 32 26 69 6 4 56 41 33 63 4 15 70 15 9 69 22 39 59 2 37 57 6 35 59 6 50 46 4

F. Error Variance Level

25 % 3 59 38 9 77 15 0 53 47 16 78 6 5 77 19 3 70 27 22 74 4 17 77 6 16 77 7 28 68 4

75 % 11 47 42 32 59 9 5 37 58 49 47 4 17 67 16 10 56 35 43 54 3 41 54 5 33 59 7 57 40 4

G. Error Variance Di�erences

no di�erences 7 65 28 19 76 6 2 57 41 37 63 0 6 74 20 2 67 32 32 67 2 19 82 0 15 83 2 37 63 0

between stimuli 9 50 41 20 59 20 6 43 52 26 61 13 13 72 15 11 61 28 32 65 4 39 46 15 37 48 15 44 44 11

between subjects 4 44 52 22 69 9 0 35 65 35 63 2 15 69 17 6 61 33 35 61 4 30 69 2 22 72 6 46 54 0

Column Mean 7 53 40 20 68 12 3 45 53 33 62 5 11 72 17 6 63 31 33 64 3 29 65 6 25 68 7 43 54 4

Each cell contains the percentages of underestimation, correct estimation, and overestimation respectively
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TABLE 8

ANOVA of Goodness of Fit

Source � Sum of Squares d.f. F p partial !2

Between data sets

Within + Residual 3.24 99

A. Number of Subjects 0.64 2 9.75 < 0.001 0.165

B. Number of Stimuli 0.34 2 5.18 0.007 0.095

C. Data Type 8.40 1 256.18 < 0.001 0.721

D. Number of Dimensions < 0.01 1 0.11 0.737 0.001

E. Error Distribution 1.07 2 16.39 < 0.001 0.249

F. Error Variance Level 14.42 1 440.07 < 0.001 0.816

G. Error Variance Di�erences 2.04 2 31.11 < 0.001 0.386

A � F 0.40 2 6.12 0.003 0.110

C � F 1.21 1 36.94 < 0.001 0.272

C � G 0.49 2 7.53 0.001 0.132

E � G 4.17 4 31.82 < 0.001 0.562

Within Data Sets

Within + Residual 0.25 198

H. MLMDS Method < 0.01 2 0.13 0.879 0.001

A � H 0.03 4 5.85 < 0.001 0.106

G � H 0.07 4 13.02 < 0.001 0.208

A � G � H 0.05 8 4.55 < 0.001 0.155

� Only interactions signi�cant at � = :01 and with partial !2 > 0:10 are reported.
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TABLE 9

Mean Correlations between Dissimilarity Data and Estimated Distances

Factor Level MULTISCALE MAXSCAL PROSCAL Row Mean

A. Number of Subjects 2 .805 .815 .812 .811

8 .786 .785 .784 .785

14 .778 .770 .776 .775

B. Number of Stimuli 9 .800 .805 .801 .802

12 .782 .785 .782 .783

15 .787 .780 .787 .785

C. Data Type metric .835 .839 .839 .838

nonmetric .744 .741 .742 .742

D. Number of Dimensions 2 .799 .802 .803 .801

3 .781 .778 .778 .779

E. Error Distribution normal .789 .786 .783 .786

noncentral chi-square .801 .804 .806 .804

uniform .778 .780 .782 .780

F. Error Variance Level 25 % .856 .854 .854 .855

75 % .723 .726 .726 .725

G. Error Variance Di�erences no di�erences .790 .785 .792 .789

between stimuli .817 .816 .806 .813

between subjects .762 .770 .773 .768

column mean .790 .790 .790 .790
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TABLE 10

ANOVA of CPU Time

Source � Sum of Squares d.f. F p partial !2

Between Data Sets

Within + Residual 480.53 99

A. Number of Subjects 118.93 2 12.25 < 0.001 0.198

B. Number of Stimuli 1757.41 2 181.03 < 0.001 0.785

C. Data Type 601.09 1 123.84 < 0.001 0.556

D. Number of Dimensions 0.30 1 0.06 0.805 0.001

E. Error Distribution 41.70 2 4.30 0.016 0.080

F. Error Variance Level 0.08 1 0.02 0.895 < 0.001

G. Error Variance Di�erences 10.53 2 1.09 0.342 0.021

B � C 247.95 2 25.54 < 0.001 0.340

B � G 93.53 4 4.82 0.001 0.163

C � E 60.82 2 6.27 0.003 0.112

Within Data Sets

Within + Residual 992.29 198

H. MLMDS Method 2769.60 2 276.32 < 0.001 0.736

A � H 804.40 4 40.13 < 0.001 0.448

B � H 1880.67 4 93.82 < 0.001 0.655

C � H 1357.57 2 135.44 < 0.001 0.578

A � B � H 188.09 8 4.69 < 0.001 0.159

B � C � H 547.67 4 27.32 < 0.001 0.356

B � G � H 193.03 8 4.81 < 0.001 0.163

C � E � H 122.77 2 6.12 < 0.001 0.110

� Only interactions signi�cant at � = :01 and with partial !2 > 0:10 are reported.
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TABLE 11

Computational E�ort: Mean CPU Times (in minutes)

Factor Level MULTISCALE MAXSCAL PROSCAL Row Mean

A. Number of Subjects 2 0.42 8.40 1.22 3.34

8 0.44 4.92 3.53 2.96

14 0.58 6.02 5.86 4.15

B. Number of Stimuli 9 0.39 1.62 2.32 1.44

12 0.40 5.03 3.55 2.99

15 0.63 12.70 4.74 6.02

C. Data Type metric 0.37 9.95 3.52 4.62

nonmetric 0.58 2.94 3.55 2.36

D. Number of Dimensions 2 0.54 6.85 3.52 3.64

3 0.42 6.04 3.55 3.33

E. Error Distribution normal 0.33 5.42 3.46 3.07

noncentral chi-square 0.55 6.83 3.59 3.66

uniform 0.55 7.09 3.55 3.73

F. Error Variance Level 25 % 0.48 6.74 3.66 3.63

75 % 0.47 6.16 3.41 3.35

G. Error Variance Di�erences no di�erences 0.24 7.28 3.29 3.60

between stimuli 0.93 5.78 4.02 3.58

between subjects 0.26 6.27 3.30 3.28

Column Mean 0.48 6.45 3.54 3.49
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TABLE 12

The Convergence of the Algorithms from Various Starting Values to Local Optima

Data set Number of Number of MULTISCALE MAXSCAL PROSCAL

subjects stimuli

1 2 9 R = T = 3 � 7 2 � T � R � 2 R = 6 � T = 1 � 3

2 2 9 R = T = 10 R = T = 4 R = 6 � 3 � T � 1

3 2 12 R = T = 5 � 5 R = T � 2 T = 4 � R = 1 � 5

4 2 12 R = T = 8 � 2 R � T � 3 R = 8 � 2 � T

5 2 15 R = T = 9 � 1 T � R � 2 R = T = 4 � 6

6 2 15 R = 1 � 2 � T = 6 � 1 1 � R � 5 � T R = 6 � T = 2 � 2

7 8 9 5 � R = T = 5 R = T = 4 � 1 R = T = 2 � 8

8 8 9 R = T = 7 � 3 R = T = 1 � 3 R = T = 2 � 8

9 8 12 T = 4 � R = 6 R � 1 � T � 4 R = 2 � 3 � T � 5

10 8 12 R = T = 6 � 4 R = 1 � 4 � T � 2 R = 2 � T = 2 � 6

11 8 15 R = T = 10 R = 2 � 2 � T � 2 R = T � 10

12 8 15 T = 5 � R = 1 � 4 2 � R � T � 1 R = T = 7 � 3

13 14 9 R = T = 9 � 1 R = T = 3 � 1 R = T = 4 � 6

14 14 9 R = T = 10 R = T = 3 � 1 R = T = 5 � 5

15 14 12 R = T = 9 � 1 R = T = 1 � 5 R = T = 4 � 6

16 14 12 R = T = 7 � 3 T = 1 � R � 4 R = 4 � 4 � T � 2

17 14 15 R = T = 4 � 6 R = T � 5 R = T = 1 � 9

18 14 15 R = T = 3 � 7 R = T � 4 R = T = 3 � 7

R and T indicate solutions with rational and true coordinates as starting values, respectively

1, 2, .., 10 indicate the number of solutions with randomly generated coordinates as starting values

=: solutions equal within the convergence range

�: the former solutions outperform the latter solutions
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