

Tilburg University

Inexact Iterations for the Approximation of Eigenvalues and Eigenvectors

Smit, P.

Publication date:
1996

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Smit, P. (1996). Inexact Iterations for the Approximation of Eigenvalues and Eigenvectors. (FEW Research
Memorandum; Vol. 724). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420777557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/6460ad25-34e1-46b8-a6bf-e5047cf70887

Inexact Iterations

for the Approximation of

Eigenvalues and Eigenvectors

Paul Smit

April 15, 1996

Abstract

The algorithms of inverse iteration and Rayleigh quotient iteration for approxi-

mating an eigenpair of a matrix contain a step in which a matrix-vector equation

must be solved. The behaviour of these algorithms is analysed if this equation

is solved only approximately with a known tolerance.

1 Introduction

Eigenvalues of matrices play important roles in many situations and the problem of

approximating them has led to a variety of algorithms. For large sparse matrices, the
algorithms which need the matrix only for the purpose of matrix-vector multiplications
are very popular.
The simplest method based on this idea is the power method which multiplies an
arbitrary starting vector with powers of the matrix. Under certain conditions the

iteration vectors converge to an eigenvector corresponding to the absolute largest
eigenvalue. In order to be able to calculate other eigenvalues the matrix can be
shifted and inverted to make a certain eigenvalue correspond to the absolute largest
of the transformed matrix. Then the power method can be applied as before. This
process is called the inverse iteration method. In practice the inversion of the matrix
is numerically expensive for large matrices. The alternative is to solve matrix-vector

equations in each step without using the inverse matrix explicitly. For this are also

many algorithms available and in the case of large sparse matrices the techniques
based on the projection on Krylov subspaces are the �rst choice.

The last approach leads to another problem. The iterative algorithms for solving a
matrix-vector equation need a stopping criterion. Usually the algorithm stops if the

residual of the approximate solution is smaller than a tolerance provided by the user.

This means that a suitable choice is to be made in the eigenvalue algorithm for this
tolerance. Of course, the equations could be solved with maximal accuracy, but in
general this requires many iterations of the solver. If a larger tolerance would also give

satisfying results, the costs of the algorithm would be reduced. In each iteration step

1

we want a tolerance which does not spoil the convergence of the eigenvalue algorithm

on the one hand and is not much larger than necessary to accomplish this on the other

hand. The structure of the resulting eigenvalue algorithm can be seen as two nested

loops and the question is how the tolerance of the inner loop a�ects the error in the

outer loop. This asks for an analysis of the convergence behaviour with respect to the

tolerance.

Two iterative algorithms will be analysed here: inverse iteration and Rayleigh quotient

iteration. Only the case of symmetric matrices will be considered here, because the

unsymmetric case has many complications.

Definition 1.1: A is a real symmetric n � n matrix. Avi = �ivi with kvik = 1

for i = 1; : : : ; n where k � k denotes the norm k � k2.

In order to be able to discuss the error in an approximation of an eigenvector or

eigenvalue three di�erent measures of the error are introduced in section 2 and in a

series of lemmata they are related to each other. The results in that section will be

used in the next ones.
Inverse iteration and Rayleigh quotient iteration are analysed in section 3 and section
4 respectively. The results of numerical experiments are also presented there.

2 Measures of the error

Let x be a vector of length one and � = xTAx, the Rayleigh quotient of x with respect
to A. We would like to see the pair x; � as an approximation of the eigenpair v1; �1. It
is supposed that �1 has multiplicity one. To say something about the quality of this

approximation we need a measure of the error. There are several possible choices.

� The error in x can be represented in terms of functions of �x, the angle between
x en v1. A disadvantage of these expressions is that they can not be calculated
in practical situations because the eigenvector is unknown.

� j� � �1j gives the distance from the Rayleigh quotient to the eigenvalue. Again
this is an unknown number in practice. A more serious disadvantage is that it
can occur that this expression is small by coincidence, while at the same time

x is far from v1.

� A familiar expression for the error of an approximate eigenpair is the residual

kAx��xk. A great advantage is that it can be calculated in practical situations
because it does not need the knowledge of the eigenvector or eigenvalue. But

the disadvantage here is that the residual is small in the neighbourhood of any
eigenpair, so a small residual can not lead to the conclusion that we have a good

approximation of v1 and �1.

It is useful to know how these three expressions relate to each other. This is the

subject of the rest of the section.

2

Definition 2.1: Let (A� �1I)
+ denote the pseudo-inverse (see [1]) of the matrix

(A� �1I).

�min = k(A� �1I)
+k�1 = min

i6=1
j�i � �1j

�max = kA� �1Ik = max
i
j�i � �1j

The vector x with kxk = 1 is decomposed as x =
1v1+w where w ? v1. � = xTAx.

The residual is denoted by r = Ax� �x. For any vector u is the angle 0 � �u � �

2

de�ned by cos�u =
juT v1j
kuk .

Some relations which are useful further on are stated in the next lemma.

Lemma 2.2:

� � �1 = wT (A� �1I)w

r = (I � xwT)(A� �1I)w

r ? x

If z = (A� �1I)w, then:

w = (A� �1I)
+z

krk � kzk

Proof:

� � �1 = xTAx� �1 = �1

2

1 + wTAw � �1 = �1(

2

1 � 1) + wTAw

= ��1wTw + wTAw = wT (A� �1I)w

r = Ax� �x = (A� �1I)x� (� � �1)x

= (A� �1I)w � xwT (A� �1I)w = (I � xwT)(A� �1I)w

xTr = xTAx� �xTx = xTAx� xTAx = 0

Let z = (A � �1I)w, then (A � �1I)
+z = (A � �1I)

+(A � �1I)w = w, because
(A��1I)

+(A��1I) is an orthogonal projection on the row space of (A��1I), which
contains w, because (A� �1I) is symmetric.

Now r = (I � xwT)z. If w = x then:

krk = k(I � wwT)zk � kzk
If w 6= x then (I � xwT) is invertible with inverse (I + xwT

2
1

), so we have for z:

z = (I � xwT)�1r =

I +

xwT

21

!
r = r + x

wTr

21

Because r ? x we have:

kzk2 =

r + x

wTr

21

2

= krk2 +

wTr

21

!2

� krk2

3

So in all cases is krk � kzk.

We want to bound each of the numbers �x, j���1j and krk in terms of another. This

leads to six inequalities. The �rst two re
ect the fact that if �x is small, then j���1j
and krk are also small.

Lemma 2.3:

j� � �1j � �max sin
2 �x

Proof: From lemma 2.2 we have:

� � �1 = wT (A� �1I)w

Which implies:

j� � �1j � kA� �1Ik kwk2 = �max sin
2 �x

Lemma 2.4:

kAx� �xk � �max sin �x

Proof: From lemma 2.2 we have:

krk � k(A� �1I)wk � kA� �1Ik kwk = �max sin �x

The next two lemmata are concerned with bounds in terms of the residual. As we said
before a small residual does not imply that the approximation is close to the wanted
eigenpair. Therefore it is necessary to give an additional condition in lemma 2.5 and
a di�erent function of �x in lemma 2.6.

Lemma 2.5: If j� � �1j = mini j� � �ij, then:

j� � �1j � kAx� �xk

Proof: Let j� � �1j = mini j� � �ij.
krk = k(A� �I)xk � min

i
j�i � �j kxk = j� � �1j

Lemma 2.6:

sin �x cos �x � ��1minkAx� �xk

4

Proof: From lemma 2.2 we have:

r = (I � xwT)(A� �1I)w

If w = x then cos �x = 0 and in this case the statement is true. If w 6= x then

(I � xwT) is invertible, so:

w = (A� �1I)
+

I +

xwT

21

!
r

kwk2 � k(A� �1I)
+k2

r + x
wT r

21

2

= ��2min

krk2 + (wTr)2

41

!

We would like to have an upperbound of wT r that is as small as possible. Note that

wT r = (w+cx)T r for any c because r ? x. Now take c such that kw+cxk is minimal.

This is achieved when (w + cx) ? x, which gives c = �wTw. Substituting this gives:

kw � xwTwk2 = wTw + xTx(wTw)2 � 2wTxwTw

= wTw + (wTw)2 � 2(wTw)2

= wTw(1 �wTw) = kwk2
21
(wTr)2 = ((w � xwTw)Tr)2 � kw � xwTwk2krk2 =
21kwk2krk2

kwk2 � ��2
min

krk2 +
21kwk2krk2

41

!

= ��2minkrk2

21 + kwk2

21

!

=
��2minkrk2

21
j
1j kwk � ��1

min
krk

The last inequalities concern bounds in j�1 � �j. If �1 is not an extreme eigenvalue
no conclusions for �x or krk can be based on this number. This is shown by the next
counter example.

Assume that �1 =
Pn

i=2 �i�i with all �i � 0 and
Pn

i=2 �i = 1. Choose �x arbritrarily,
let
1 = cos �x and for all i � 2 let
i =

p
�i sin �x. With x =

Pn
i=1
ivi we have:

kxk2 =
nX
i=1

2i = cos2 �x +
nX
i=2

�i sin
2 �x = 1

� = xTAx =
nX
i=1

�i

2

i = �1 cos
2 �x +

nX
i=2

�i�i sin
2 �x = �1

So �1 being extreme is essential here.

Lemma 2.7: If �1 is an extreme eigenvalue, then:

sin2 �x � ��1minj� � �1j

5

Proof: Because �1 is an extreme eigenvalue, (A� �1I), restricted to the orthogonal

complement of v1, is de�nite, so using lemma 2.2:

j� � �1j = jwT (A� �1I)wj � min
i6=1

j�i � �1j kwk2 = �minkwk2

kwk2 � ��1minj� � �1j

Lemma 2.8: If �1 is an extreme eigenvalue, then:

kAx� �xk2 � �max j� � �1j

Proof: Let z = (A� �1I)w, then lemma 2.2 gives:

� � �1 = wT (A� �1I)w = zT (A� �1I)
+(A� �1I)(A� �1I)

+z

= zT (A� �1I)
+z

Because �1 is an extreme eigenvalue, (A � �1I)
+, restricted to the orthogonal com-

plement of v1, is de�nite, so:

j� � �1j = jzT (A� �1I)
+zj � min

i6=1
j�i � �1j�1 kzk2 = ��1max kzk2

krk2 � kzk2 � �maxj� � �1j

As a �nal result we give relations for the special case that w is an eigenvector. This
can be important when x is an iteration vector in an algorithm like the power method.
After a number of steps this vector is almost the sum of the two eigenvectors corre-
sponding to the two dominating eigenvalues.

Lemma 2.9: If w =
2v2 then:

kAx� �xk = j�2 � �1j sin �x cos �x
j� � �1j = j�2 � �1j sin2 �x

Proof:

r = (I � xwT)(A� �1I)w = (I �
2xv
T
2)(�2 � �1)
2v2

= (�2 � �1)
2(v2 �
2x) = (�2 � �1)
2(v2 �
2
1v1 �
2
2
v2)

= (�2 � �1)
2(

2

1v2 �
2
1v1) = (�2 � �1)
1
2(
1v2 �
2v1)

krk = j�2 � �1j sin �x cos �x
� � �1 = wT (A� �1I)w =
2

2
(�2 � �1)

j� � �1j = j�2 � �1j sin2 �x

6

3 Inexact inverse iteration

3.1 The algorithm

The simplest iterative algorithm for approximating an eigenvalue and eigenvector of

a matrix is the power method. It repeatedly multiplies the iteration vector with the

matrix. The largest eigenvalue whose eigenvector is represented in the starting vector

of the algorithm will dominate the rest and if this eigenvalue has multiplicity one the

iteration vectors converge to an eigenvector corresponding to this eigenvalue. See [1]

or [2] for more details about this algorithm and its rate of convergence. Here only the

algorithm itself is given.

Algorithm 3.1: Power method.

input: A, x0
for k = 1; 2; : : : ; kmax

yk = Axk�1
xk = yk=kykk
�k = xTkAxk

end

output: �kmax, xkmax

If the eigenvalue of interest is not the largest in absolute value, then the power method
can be applied to the matrix (A� �I)�1. This matrix has eigenvalues (�i� �)�1 (i =
1; : : : ; n) and has the same eigenvectors as A. Now maxi j�i��j�1 = (mini j�i��j)�1,
so if �i is the unique eigenvalue of A which is closest to �, then (�i � �)�1 is the
unique largest eigenvalue of (A� �I)�1. If x0 has a component in the direction of vi
then the sequence of vectors f(A � �I)�kx0g will converge to this eigenvector. This
is the inverse iteration algorithm.

Algorithm 3.2: Inverse iteration.
input: A, �, x0
for k = 1; 2; : : : ; kmax

yk = (A� �I)�1xk�1
xk = yk=kykk
�k = xTkAxk

end

output: �kmax, xkmax

The most important step in this iteration is the calculation of:

yk = (A� �I)�1xk�1

As was made clear in the introduction, the matrix is not really inverted in most

practical situations, but instead the following matrix-vector equation is solved:

(A� �I)yk = xk�1

7

Here we turn again to a practical aspect, namely the fact that this equation is not

solved exactly. Of course the machine precision is a barrier for exact computations of

this kind and the traditional error analysis is mostly concerned with this type. But

more important now is the fact that the user of the algorithm can specify the accuracy

with which the equation should be solved. For example, a method like GMRES (see

[3] for details) could be used. The iterative solver is stopped if the residual of the

approximate solution kxk�1�(A��I)ykk is smaller than a certain tolerance "k. When

we include this aspect in the inverse iteration algorithm, we get a theoretical model

of what is done in practice. For the purpose of reference we call this inexact inverse

iteration.

Algorithm 3.3: Inexact inverse iteration.

input: A, �, x0
for k = 1; 2; : : : ; kmax

choose "k > 0 and calculate yk such that:

kxk�1 � (A� �I)ykk � "k
xk = yk=kykk
�k = xTkAxk

end

output: �kmax, xkmax

At this point it is not yet clear how "k should be chosen in each step of the algorithm.
In order to make a sensible choice it is necessary to know what the in
uence of the
size of the tolerance on the performance of the algorithm is.

3.2 Analysis of an iteration step

To analyse inexact inverse iteration we focus on one single step. As a measure for the
distance between a vector and an eigenvector we take the angle between them. We
would like to know how the change in the angle after one step is in
uenced by the

size of the tolerance and in particular whether this angle decreases if we work with a
certain tolerance.
Without loss of generality we assume that � = 0, so we are interested in the smallest
eigenvalue and the corresponding eigenvector. Number the eigenvalues such that
j�1j < j�2j � j�ij 8i � 3. Let x be the current iteration vector with kxk = 1. For

inverse iteration we have to solve y from:

Ay = x (1)

Write x, just as in de�nition 2.1 in the form:

x =
1v1 + w with w ? v1

If we solve (1) exactly, we have:

y = ��11
1v1 +A�1w

tan �y =
kA�1wk
j��11
1j

� k��12 wk
j��11
1j

=
j�1j
j�2j

kwk
j
1j

=
j�1j
j�2j

tan �x (2)

8

From this formula it is visible that the rate of convergence of inverse iteration is

bounded by j�1j
j�2j .

Suppose we solve (1) with a tolerance " resulting in the approximate solution ~y. This

means that kx�A~yk � ", or equivalently:

A~y = x+ �x for some �x with k�xk � " (3)

The only di�erence between the equations (1) and (3) is the right-hand side, so it is

clear from (2) that:

tan �~y �
j�1j
j�2j

tan �x+�x (4)

The remaining problem is how tan�x+�x is related to tan �x. If �x > 0 there exists a

� such that:

tan �x+�x = � tan �x

It is clear that the value of � depends on the length and the direction of �x. Perhaps
less obvious is that the value of �x can also in
uence the possible values of �. For
example, if cos �x � 1, then small vectors �x can cause very large values of tan�x+�x .
We want to give an upperbound for the factor � in terms of the values of " and �x.
We do not want to involve the speci�c direction of �x, so for the bound we take the

maximum value of � over all feasible vectors �x and denote that value by ��.

Definition 3.4: Let x and " be given. If �x > 0, then �� is de�ned as:

�� = max

(
tan �x+�x
tan�x

����� k�xk � "

)

So we have by the de�nition of �� and equation (4) the following sharp inequalities:

tan �x+�x � �� tan�x (5)

tan �~y � j�1j
j�2j

�� tan �x (6)

In the following theorem an expression for �� is given.

Theorem 3.5: If �x > 0 and " < cos�x then �� satis�es:

�� =
1 + "

p
1�"2

sin�x cos�x

1� "2

cos2 �x

Proof: Suppose " < cos �x and k�xk � ". Decompose �x as follows:

�x = ~
1v1 + ~w with ~w ? v1

9

j
1j
kwk

!

j
1j
��kwk

!

"

�x
�0

�0

�0

Figure 1: Visualisation of the relation between " and ��.

then we have:

�� tan �x = max ftan �x+�x j k�xk � "g

= max

(
kw + ~wk
j
1 + ~
1j

����� j~
1j2 + k ~wk2 � "2
)

= max

(
kwk+ k ~wk
j
1j � j~
1j

����� j~
1j2 + k ~wk2 � "2
)

= max

(
q

p

����� (p � j
1j)2 + (q � kwk)2 = "2
)

The expression on the right-hand side can be regarded as the maximal tangent of
the line through (0; 0) and a point (p; q) taken from a circle of radius " around the
point (j
1j; kwk) 2 IR2. This situation is depicted in �gure 1. In the �gure the line is
drawn where the maximum tangent �� tan �x is attained, corresponding to an angle �0.
Because " < cos �x, this line is well de�ned. Now we can write cos �0 in two di�erent

ways:

"

(�� � 1)kwk = cos�0 =
j
1jq

j
1j2 + ��2kwk2

) "2(j
1j2 + ��2kwk2) = j
1j2(�� � 1)2kwk2

, "2

kwk2 +
"2��2

j
1j2
= ��2 � 2�� + 1

, (1� "2

j
1j2
)��2 � 2�� + (1� "2

kwk2) = 0

10

This equation has two solutions, corresponding to the maximum and minimum values

of �. �� is the largest solution:

�� =
2 +

q
4 � 4(1 � "2

j
1j2)(1�
"2

kwk2)

2(1 � "2

j
1j2)
=

1 +
q
1 � (1 � "2

j
1j2 �
"2

kwk2 +
"4

j
1j2kwk2)

1 � "2

j
1j2

=
1 + "

j
1j kwk

q
kwk2 + j
1j2 � "2

1� "2

j
1j2
=

1 + "
p
1�"2

j
1j kwk

1� "2

j
1j2
=

1 + "
p
1�"2

sin�x cos�x

1 � "2

cos2 �x

The value of �� is a rather complicated expression but it can be bounded from both

sides by easier expressions. Using the proof of the theorem we have that:

" =
(�� � 1)kwk j
1jq
j
1j2 + ��2kwk2

� (�� � 1)kwk j
1jq
j
1j2 + kwk2

= (�� � 1) sin �x cos �x

�� � 1 +
"

sin �x cos �x

If " < sin �x cos�x then the following inequality is valid:

�� =
1 + "

p
1�"2

j
1j kwk

1� "2

j
1j2
�

1 + "

j
1j kwk

1 � "2

j
1j2kwk2
=

1

1 � "

sin�x cos�x

(7)

Combining equation (6) and theorem 3.5 gives the following result for the reduction
of the error in one step of inexact inverse iteration.

Corollary 3.6: If �x > 0 and " < cos �x then:

tan �~y �
j�1j
j�2j

0
@1 + "

p
1�"2

sin�x cos�x

1� "2

cos2 �x

1
A tan �x

We have the following remarks about the results in this section.

� The value of �� represents the worst-case situation. The average reduction factor
will be smaller and vectors �x can also give values of � which are smaller than

one.

� The formula for �� shows that this number is large if " � cos �x. Then small
variations in the value of " can cause large variations in the value of ��. When

"� cos �x, then 1� "

cos�x
� 1 and

p
1� "2 � 1, so �� � 1+ "

sin�x cos�x
. In this case

the value of �� depends on the quotient of " and sin �x cos�x. If "� sin �x cos �x,

then � � 1 and the in
uence of " can hardly be noticed. Only if " is of the same

or of a larger order than sin �x cos�x the disturbance is important.

� Of course we do not want an iterative algorithm to diverge. The translation of
this requirement to a single iteration step is that tan �~y should be smaller than

tan �x. This is certainly true if j�1j
j�2j �� < 1, or equivalently �� < j�2j

j�1j . This gives

the following rather complicated condition for ":

11

If " <
(
j�2j
j�1j � 1) sin �x cos �xr
cos2 �x +

j�2j2
j�1j2 sin

2 �x

then �� <
j�2j
j�1j

(8)

A simpler but weaker expression is obtained from equation (7):

If " <

1 � j�1j

j�2j

!
sin �x cos�x then �� <

j�2j
j�1j

(9)

If " � cos �x then the condition " < (j�2jj�1j � 1) sin �x cos �x will be su�cient,

which is an improvement by a factor
j�2j
j�1j over (9). In the context of inexact

inverse iteration the conditions above can be used in several ways. If during

the iterations a �xed value for "k is chosen, the method will converge until �k is

getting so small that the condition of (8) is no longer satis�ed and convergence

is no longer guaranteed. Because the average value of � is smaller than �� it

can be expected that convergence will not stagnate at once, but after some
more iteration steps. On the other hand, if "k is varied during the iterations
these conditions give a guiding line for the choice of "k if convergence is to be
maintained. For smaller values of sin �x cos�x, also smaller values of "k are
needed. A disadvantage is that the conditions are based on unknown numbers
such as the eigenvalues and the current error in the eigenvector. In the next

section we will give a condition based on known numbers which can be expected
to give satisfying results.

3.3 Numerical experiments

3.3.1 Introduction

To see how inexact inverse iteration behaves in practice a number of numerical ex-
periments have been performed. The goal was to see how various possibilities for the
choice of the "k in
uence the iterations. The 100� 100 matrices involved were of the

form:

A = diag(�11;�10;�9; : : : ; 87; 88) � �I

Three values have been chosen for �. Table 1 gives an overview of these and some

other relevant values.
In the experiments a number of steps of the inexact inverse iteration method have

been performed. The starting vector x0 was (1; 1; : : : ; 1)
T in all cases. In each step "k

was determined and the iteration vector was disturbed by a random vector of norm
"k after which the matrix-vector equation was solved within machine precision. The
following data have been recorded. They are represented on a logarithmic scale in the

�gures on the left-hand sides.

� "k (dash-dot line), the value of the tolerance.

12

�gures � �1 �2
j�1j
j�2j

2� 7 1

11
� 1

11

10

11

1

10

8�13 1

3
�1

3

2

3

1

2

14�19 4

9
�4

9

5

9

4

5

Table 1: List of matrices.

� tan �k (solid line), the tangent of the angle between the iteration vector and the

eigenvector.

� krkk (dashed line), the norm of the residual rk = Axk � �kxk.

� j�1 � �kj (dotted line), the error in the approximation of �k.

The �gures on the right-hand sides show the following additional information.

� tan �k= tan �k�1 (solid line), the reduction factor of the tangent.

� �� j�1j
j�2j (dashed line), the theoretical upperbound of corollary 3.6.

3.3.2 A fixed "k

The �rst strategy for the choice of "k was to give it a constant value of 10
�8. Looking

at the �gures we distinguish two di�erent phases in the behaviour of the iterations.

1. The �rst phase is the part where the value of �� is almost equal to one. When
the iteration starts the in
uence of "k is not visible and the algorithm behaves
the same as exact inverse iteration. In the starting vector all eigenvectors are

equally represented, but after a few iterations almost all of them can be neglected
and only the components in the directions of v1 and v2 play an important role.
This means that we have more or less the situation of lemma 2.9. In this case is
j�2��1j = 1, so for small �k we have: krkk � tan�k and j�1��kj � tan2 �k. This

is clearly visible in the �gures. Because "k is much smaller than �k the reduction

factor is after a few iterations almost equal to the theoretical upperbound of

j�1=�2j.

2. In the second phase �� visibly deviates from one and takes much larger values. In

the �gures as drawn here that is approximately from the point when �� � 1:01,

corresponding to tan�k � 100"k. What we observe in practice is the following.
As long as �� is small enough to ensure convergence we see only some very small

irregularities in the reduction factors and the convergence proceeds almost the
same as before. For larger values of �� the behaviour becomes more irregular and

in short time completely unpredictable with reduction factors smaller and larger

13

0 2 4 6 8 10 12 14 16
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = 1e−08

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = 1e−08

Figure 2 Figure 3

0 2 4 6 8 10 12 14 16
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = (1−abs(lambda1/lambda2))*sin(phi)*cos(phi)

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = (1−abs(lambda1/lambda2))*sin(phi)*cos(phi)

Figure 4 Figure 5

0 2 4 6 8 10 12 14 16
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = min(((1−q)*q*norm(r)) / ((1+q)*abs(theta)) , 1e−02)

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = min(((1−q)*q*norm(r)) / ((1+q)*abs(theta)) , 1e−02)

Figure 6 Figure 7

14

0 10 20 30 40 50 60
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = 1e−08

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = 1e−08

Figure 8 Figure 9

0 10 20 30 40 50 60
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = (1−abs(lambda1/lambda2))*sin(phi)*cos(phi)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = (1−abs(lambda1/lambda2))*sin(phi)*cos(phi)

Figure 10 Figure 11

0 10 20 30 40 50 60
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = min(((1−q)*q*norm(r)) / ((1+q)*abs(theta)) , 1e−02)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = min(((1−q)*q*norm(r)) / ((1+q)*abs(theta)) , 1e−02)

Figure 12 Figure 13

15

0 20 40 60 80 100 120 140 160 180
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = 1e−08

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = 1e−08

Figure 14 Figure 15

0 20 40 60 80 100 120 140 160 180
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = (1−abs(lambda1/lambda2))*sin(phi)*cos(phi)

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = (1−abs(lambda1/lambda2))*sin(phi)*cos(phi)

Figure 16 Figure 17

0 20 40 60 80 100 120 140 160 180
−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = min(((1−q)*q*norm(r)) / ((1+q)*abs(theta)) , 1e−02)

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

number of iterations

re
du

ct
io

n
fa

ct
or

epsilon = min(((1−q)*q*norm(r)) / ((1+q)*abs(theta)) , 1e−02)

Figure 18 Figure 19

16

than one, but such that the error stays more or less the same with small
uctu-

ations. The convergence has come to an end. The fact that the convergence of

�k stops has also to do with the machine precision of 10�16; it would stop there

even for smaller values of "k. Further remarks are that krkk is larger than tan �k,

which follows from lemma 2.6, and that is has a much smoother behaviour than

the latter. It also seems that if j�1=�2j is smaller the error reaches smaller val-

ues. Perhaps a hint of an explanation is given by the critical value of equation

(8). The smaller j�1=�2j is, the smaller this critical value for convergence is. Of

course this is the worst-case situation, but is seems reasonable that a smaller

worst-case bound indicates that the average reduction is also smaller.

3.3.3 A critical "k

From corollary 3.6 and the experiments in the previous section we learn that as long

as "k is of a smaller order than the actual error, inexact inverse iteration behaves

practically the same as inverse iteration. We can also conclude that it is not necessary

for "k to be much smaller than �k in order to see this behaviour. It is of course
attractive to work with less accuracy when possible, so the next strategy was to keep
the value of "k in the same order as tan �k. For this purpose the bound from (9) was

used which ensures convergence: "k = (1 � j�1j
j�2j) sin �k�1 cos �k�1. For this value it

cannot be said how fast the convergence will be; it is possible that �� = 1 and there
is no convergence at all. But the previous experiments suggest that even if �� = 1,

convergence is still rather good. Moreover, this choice of "k is based on a bound for
�� which is not realistic for "k � cos �k. In that case we have:

�� � 1 +
"k

sin �k�1 cos �k�1
= 2� j�1j

j�2j

which is much smaller than j�2j
j�1j for small values of j�1j

j�2j .
In the �gures we see indeed that the theoretical upperbound for the reduction drops
quickly from 1 to j�1j

j�2j(2�
j�1j
j�2j). But the reduction that occurs in practice is very close

to j�1j
j�2j during all the iterations except the �rst few ones. Although it is not a smooth

curve, the rate of convergence is almost equal to that of inverse iteration. We can
conclude from this that the theoretical reduction factor can be very pessimistic and

the average reduction is much better, so this strategy gives a very good result. In this

way the tolerance is decreasing during the algorithm which leads to reduced work in

solving the equation compared to the previous strategy.

3.3.4 A practical "k

The strategy of the previous section seems to be a good one in the sense that the

convergence is close to ideal and the tolerances are of the same order as the error in
the eigenvector. The major disadvantage is that it uses the values of some eigenvalues

and the current error. In practice these are not known to us; moreover the problem is
to calculate �1. So a strategy based on known values is prefered. Among the various

measures for the error used here there is only one which can be computed from the

17

iteration vector: the residual. We would like to base our strategy on this number.

A problem is the quotient j�1j
j�2j which plays a role in the bound of (9). This number,

however, is almost equal to the rate of convergence of the residual after a number of

iterations. We could de�ne the actual reduction factor by:

qk =
krkk
krk�1k

and subsititute this for the quotient of eigenvalues. Assume that xk has only important

components in the direction of the eigenvectors v1 and v2 and �k is small enough

so that �k is already a good approximation of �1. From lemma 2.9 we know that

krkk � j�2 � �1j sin �k cos �k. A good approximation for the bound of (9) would then

be:

(1 � j�1j
j�2j

) sin �k cos �k �
1� j�1j

j�2j
j�2 � �1j

krkk =
(1 � j�1j

j�2j)
j�1j
j�2j

j1� �1
�2
j j�1j

krkk

�
(1� j�1j

j�2j)
j�1j
j�2j

(1 + j�1j
j�2j)j�1j

krkk �
(1� qk)qk

(1 + qk)j�kj
krkk

This last formula contains only numbers which can be calculated without information
about the eigenvalues or the error in the eigenvector and this is of course very attrac-
tive. But it is also a bit dangerous to use this expression as a choice for "k, because
it is only a good approximation of the bound if some convergence has ensured that
qk � j�1j

j�2j and � � �1. Therefore it seems wise to have a certain maximum for the

tolerance to force the start of the convergence. In these experiments it was chosen to
be 10�2. So the third strategy for the choice of "k was:

"k = min

(
(1� qk�1)qk�1
(1 + qk�1)j�k�1j

krk�1k; 10�2
)

The results as shown in the �gures are very satisfying. The graphs of the error are

almost the same as in the case of the previous strategy. The reduction factors are
close to j�1j

j�2j and the theoretical bound oscillates a bit, but is still close to the one in
the previous experiment.

4 Inexact Rayleigh quotient iteration

4.1 The algorithm

The rate of convergence of inverse iteration using a shift � depends on the quotient

of the second largest and the largest eigenvalue of the matrix (A� �I)�1. The closer
the shift � is to the wanted eigenvalue, the faster the convergence will be. The �k are
the Rayleigh quotients of xk with respect to A and they are approximations of the

wanted eigenvalue. After a number of iterations they are better approximations than
� and then it is attractive to use the value of �k itself as a shift instead of �. This is

the Rayleigh quotient iteration.

18

Algorithm 4.1: Rayleigh quotient iteration.

input: A, x0
�0 = xT0Ax0
for k = 1; 2; : : : ; kmax

yk = (A� �k�1I)�1xk�1
xk = yk=kykk
�k = xTkAxk

end

output: �kmax, xkmax

Usually the convergence of this algorithm is very fast (see [2]), but it only converges

to a certain eigenvalue if the starting vector has a rather large component in the

direction of the corresponding eigenvector.

Of course solving the equations in this algorithm gives the same problems as in the

case of inverse iteration, so also in this case we propose a variant which solves the

equation approximately with a certain tolerance.

Algorithm 4.2: Inexact Rayleigh quotient iteration.
input: A, x0
�0 = xT0Ax0
for k = 1; 2; : : : ; kmax

choose "k > 0 and calculate yk such that:
kxk�1 � (A� �k�1I)ykk � "k
xk = yk=kykk
�k = xTkAxk

end

output: �kmax, xkmax

4.2 Analysis of an iteration step

Again we focus on one iteration step for the analysis of the algorithm. We have a
vector x with kxk = 1 and the Rayleigh quotient � = xTAx. If we solve the equation
in the algorithm with tolerance ", then we get a vector ~y satisfying:

(A� �I)~y = x+ �x with k�xk � " (10)

Theorem 4.3: If �x > 0, " < cos �x and j� � �1j � 1

2
�min, then:

tan �~y �
2�max

�min

�� tan3 �x

19

Proof: Suppose that j� � �1j � 1

2
�min, which implies that � is closer to �1 than to

any other eigenvalue. Just as in the case of inverse iteration we have:

tan �~y � j� � �1j
mini6=1 j� � �ij

tan �x+�x �
j� � �1j

mini6=1 j�i � �1j � j� � �1j
tan �x+�x

� j� � �1j
1

2
mini6=1 j�i � �1j

tan �x+�x =
2j� � �1j
�min

tan�x+�x

Lemma 2.3 says that j� � �1j � �max sin
2 �x and by de�nition of �� is tan �x+�x �

�� tan �x, which gives:

tan �~y �
2�max

�min

sin2 �x tan �x+�x �
2�max

�min

�� sin2 �x tan �x �
2�max

�min

�� tan3 �x

It can be seen from theorem 4.3 that in the case of exact Rayleigh quotient iteration,

when " = 0 and �� = 1, we have cubic convergence which is of course much faster than

the linear convergence of inverse iteration.
What can be expected for the convergence in the case of a nonzero "? Suppose that
cos �x � 1 and "� cos�x, so �� � 1 + "

sin�x
� 1 + "

tan�x
, then

tan �~y � 2�max

�min

(1 +
"

tan �x
) tan3 �x

=
2�max

�min

(tan�x + ") tan2 �x

If "� tan �x then:

tan �~y �
2�max

�min

tan3 �x

And this is cubic convergence, just as in the exact method. If "� tan �x then:

tan �~y �
2�max

�min

" tan2 �x

In this case we have quadratic convergence. Roughly speaking we can expect cubic

convergence as long as the �x is larger than the " and after that quadratic conver-

gence. Compare this with inexact inverse iteration: �rst linear convergence and then

stagnation. It is remarkable that the method still converges if the tolerance is so much
larger than the actual error in the eigenvector. There is no need to choose an extreme

small " or to decrease its value during the iterations. This leads to the conclusion
that the value of " is the most critical at the start of the iteration. If the tolerance

is small enough to give the iteration a begin of convergence, then it will converge at
least quadratically.

20

4.3 Numerical experiments

For the numerical experiments the following 100 � 100 matrix was used:

A = diag(1; 2; 3; : : : ; 99; 100)

The starting vector was x0 = 110e12 +
P

i6=12 ei, where the ei are the standard unit

vectors. This ensured convergence of the Rayleigh quotient iteration to the eigenvector

e12. As before, in the �gures on the left-hand sides the following graphs are drawn.

� "k (dash-dot line)

� tan �k (solid line)

� krkk (dashed line)

� j�1 � �kj (dotted line)

This time, the �gures on the right-hand sides do not show the reduction factors, but

the `power of the reduction'.

� log(tan �k)= log(tan�k�1) (solid line), this is equal to � if tan �k = tan� �k�1.

In the �gures 20 and 21 the performance of exact Rayleigh quotient iteration (" = 0)
is shown. Figure 21 shows that the convergence is cubical after the �rst iteration.

In the next experiment the strategy was to take "k = 10�2. The �gures 22 and 23
contain the results. In step 1 the errors are the same as in the previous experiment.
After step 1 tan �k is smaller than the tolerance, so according to the theory we have
from now on at least quadratic convergence. In step 2 there is not much di�erence
with the situation of "k = 0. Figure 23 shows that the convergence is only slightly

worse than cubical. In step three the di�erence becomes clearly visible and the rate
of convergence is halfway quadratical and cubical.
In the third experiment where "k = 10�1 (�gures 24 and 25) the deviation from cubic
convergence is already clear in the second iteration step and in step 3 the convergence
is closer to quadratical than to cubical.

The experiments con�rm the theory that it is not necessary to choose a small tolerance
for inexact Rayleigh quotient iteration. It should only be small enough to ensure the

start of the convergence. Even for large values of "k the rate of convergence is still

very good.

Acknowledgements

I wish to thank Giel Paardekooper (University of Tilburg) for cooperation and Jan
Brandts (University of Bristol) for remarks and corrections.

21

0 1 2 3
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = 0

1 2 3
1.5

2

2.5

3

3.5

number of iterations

po
w

er
 o

f r
ed

uc
tio

n

epsilon = 0

Figure 20 Figure 21

0 1 2 3
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = 1e−02

1 2 3
1.5

2

2.5

3

3.5

number of iterations

po
w

er
 o

f r
ed

uc
tio

n

epsilon = 1e−02

Figure 22 Figure 23

0 1 2 3
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

number of iterations

lo
g1

0
of

 e
rr

or

epsilon = 1e−01

1 2 3
1.5

2

2.5

3

3.5

number of iterations

po
w

er
 o

f r
ed

uc
tio

n

epsilon = 1e−01

Figure 24 Figure 25

22

References

[1] G. Golub and C. van Loan,Matrix Computations, The John Hopkins Univer-

sity Press, Baltimore, second ed., 1989.

[2] B. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood

Cli�s, NJ, 1980.

[3] Y. Saad and M. Schultz, GMRES: a Generalized Minimal Residual Algorithm

for Solving Nonsymmetric Linear Systems, SIAM J.Sci.Stat.Comp., 7 (1986),

pp. 856{869.

23

