
  

 

 

Tilburg University

Optimal Enforcement Policies (Crackdowns) on a Drug Market

Kort, P.M.; Feichtinger, G.; Hartl, R.F.; Haunschmied, J.L.

Publication date:
1996

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kort, P. M., Feichtinger, G., Hartl, R. F., & Haunschmied, J. L. (1996). Optimal Enforcement Policies
(Crackdowns) on a Drug Market. (CentER Discussion Paper; Vol. 1996-29). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420777556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/8f874586-670a-470a-95a6-bba7353f4d06


Optimal Enforcement Policies (Crackdowns) on a

Drug Market

Peter M. Kort
�
, Gustav Feichtinger

��
, Richard F. Hartl

���
,

Josef L. Haunschmied
��

Abstract

In this paper an optimal control model is presented to design enforcement

programs minimizing the social costs from both the market and crackdown. By

using the maximum principle we show that performing an enforcement policy that

leads to a collapse of the drug market is more likely to be optimal when the sales

volume depends on the number of dealers. In case of a buyer's market the optimal

enforcement policy leads to a saddle point equilibrium where the enforcement rate

is �xed such that the number of dealers is kept constant at a positive level.
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1 Introduction

Illicit drug markets impose considerable costs on society, as do drug control e�orts. In

recent years problems devoted to drug policy have been increasingly studied in opera-

tions research and management science. In particular mathematical models have been

presented to support the tactical question of optimal use of resources for a crackdown

on a drug market.

In addition to source country control, interdiction, and high-level domestic enforcement,

recent years have witnessed increasing attention to local drug enforcement (cf. Caulkins,

1990, 1993). In particular, crackdowns are being promoted as an e�cient approach to

drug control. Kleimann (1988) de�nes crackdowns as "an intensive local enforcement

e�ort directed at a particular geographic target".

According to Caulkins (1993) crackdowns should be distinguished from the daily usual

enforcement operations, which generally spread resources more or less uniformly. There

is no consensus on the e�cacy of crackdowns (cf. the discussion in Caulkins 1990, 1993).

Mathematical models are formulated and analysed to describe how a drug market might

respond to law enforcement.

Recently, the question of determining the optimal rate of enforcement pressure on a

street-market for illicit drugs has been dealt with. In particular Baveja et al. (1992)

analyse enforcement programs of �nite duration that minimize the total costs of crack-

down, subject to the constraint that the market is eliminated at the end of the program.

The interesting analysis done by these authors is in the context of Caulkins' model (1990,

see section 2). Their main result is that the simple strategy of using maximum available

enforcement level until the market has collapsed is optimal in most instances (e.g. in

the sellers' market). A drawback of the analysis in Baveja et al. (1992) is that arti�cial

upper and lower boundaries are imposed upon the enforcement level. Since their optimal

policy turns out to be bang bang, these exogenous boundaries are very important for

the solution.

The purpose of the present paper is to extend the analysis of Baveja et al. (1992) in var-

ious directions. First, besides minimizing the costs of enforcement, we also include the

current disutility (social costs) caused by the drugs market. It seems reasonable to rep-
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resent the latter by the total number of dealers. Second, we consider an in�nite planning

period, and, third, the enforcement level is non negative and not bounded from above.

Finally, we assume dealers to be risk seeking. It is shown that this latter assumption

leads to a more gradual optimal enforcement policy, contrary to the bang bang behavior

obtained in Baveja et al. (1992).

The paper is organized as follows. In Section 2 the model is presented. Section 3

states the necessary and su�cient optimality conditions resulting in a two-dimensional

system of nonlinear di�erential equations. This system is studied more thoroughly in

the Appendix. In Section 4 we �nd interesting results on the qualitative behaviour of

optimal enforcement rates for three di�erent scenarios. Finally, in Section 5 we draw

some conclusions and give hints for possible extensions.

2 The Model

Since the state equation for the number of dealers is invented by Caulkins (1990), we

brie
y sketch his framework. His core assumption is that the rate of change of dealers

depends on several market parameters as well as on the enforcement level of the police.

These assumptions are similar to those commonly made in microeconomics. The dealers

behave analogously to �rms and the markets to industries. The drug markets are made

up of a large number of identical dealers, and free entry and exit ensures zero long-run

pro�ts.

In the spirit of Becker (1976) dealers rationally maximize their utility. Thus, it seems

plausible to assume that dealers enter the market as long as the utility available to deal-

ers in the market exceeds their reservation wage, otherwise dealers will leave the market.

In particular, Caulkins speci�es the rate of change of dealers with respect to time in a

given market as follows:

dN (t)

dt
= c1

"
�Q(N(t))

N(t)
�

 
E(t)

N (t)

!


� w0

#
; (1)
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where
N(t) = the number of dealers in the market

t = time1

Q(N) = �N� = number of sales per unit time

�;� = demand parameters, where � 2 [0; 1]; � > 0 and �; � are constants

E(t) = enforcement e�ort associated with a crackdown at

time t

c1 = speed of adjustment (c1 > 0 and constant)

� = generalized pro�t per transaction (� > 0 and constant)

w0 = a dealer's reservation wage (w0 > 0 and constant)


 = parameter associated with per dealer cost of enforcement e�ort

(
 2 (0; 1) and constant).

Equation1 (1) says that the rate of change of dealers is proportional to the di�erence

between the utility of one dealer and his/her reservation wage (cf. Caulkins (1993), p.

852). The dealer's utility is his/her generalized pro�t (pro�t per sale net of pecuniary

and other costs2 times the number of sales per unit time, divided by the number of

dealers) minus his/her risk from crackdown enforcement (proportional to the total en-

forcement per dealer). The reservation wage is what the dealer could earn in alternative

employment including dealing elsewhere.

We omit the detailed discussion given by Caulkins (1993) to justify the power function

for Q(N) as well as costs imposed by the enforcement. Since dealers are identical and

share the burden (risk) of enforcement equally, each dealer experiences costs being pro-

portional to E=N . Caulkins assumes a power function to model the costs associated with

crackdown, i.e. (E=N)
. He mainly considers the case of risk-averse dealers, i.e. 
 > 1.

But, as he remarks himself, dealers have selected a very risky profession so that it is not

unreasonable to assume that they are risk-seeking. Therefore, in this paper we assume


 < 1. For risk seeking dealers the utility of income should be modelled as being convex,

but it can be approximated as linear for small ranges. As can be inferred from equation

1For simplicity, in what follows we omit the time dependence in the variables, i.e. we write N for
N (t) etc.

2Caulkins (1993, p. 851) uses the term generalized pro�t instead of net pro�t because many of the
costs are nonmonetary. The generalized pro�t equals the sales price minus the dealer's cost of doing
business, including the costs imposed by other market participants and conventional police enforcement.
The cost associated with crackdowns are dealt with separately.
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(1) we use this approximation here (cf. Caulkins (1993), p. 852). From equation (1) we

derive that the more risk seeking the dealers are (i.e. the lower the value of 
), the more

enforcement is needed to shrink the market.

A dealer enters the market if and only if his/her utility exceeds that o�ered by other

alternatives. The constant c1 measures how fast dealers enter or leave the market.

We study the scenario where �� > w0, so that for N su�ciently low, and in case of no

enforcement, the utility to be gained from this market is that large that dealers will enter.

Contrary to Caulkins (1993), whose model is descriptive, our aim is to determine the

optimal rate of evolution of enforcement pressure. The objective is to minimize the

discounted 
ow of social costs. These costs arise from putting resources on enforcement

and from the disutility caused by the drugs market. If we represent the latter costs by

the total number of dealers, the objective is given by

maximize

�
�

Z
1

0
C(E;N) e�rtdt

�
;

where

r = discount rate (r > 0 and constant ):

For simplicity we assume a separable and linear cost function so that the objective

becomes

maximize
�
�

Z
1

0
(E + �N)e�rtdt

�
; (2)

where

� = a positive constant measuring the relative cost of the drugs market.
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3 Qualitative analysis in the phase plane

De�ne the current value Hamiltonian

H = �E � �N + �c1(��N
��1

� E
N�
 � w0); (3)

where � is the costate variable representing the shadow price of the number of dealers3.

From (3) we derive the following necessary optimality conditions:

E = argmax
E

H;

which, due to the fact that dealers are assumed to be risk-seeking (i.e. 
 < 1)4, leads to

� = �N
=c1
E

�1: (4)

Furthermore, we have the following condition for the evolution of the costate variable

_� = r� �HN = � + �(r � c1��(� � 1)N��2
� c1
E


N�
�1): (5)

The plan is to solve the model by performing a phase plane analysis in the (N;E)-plane.

Here we only state the main results. For a more thorough analysis the reader is referred

to the Appendix. We �rst observe that the _N = 0 isocline immediately follows from (1):

E = (��N��1
� w0)

1=
N (6)

We conclude that on the _N = 0 isocline E will be positive for N 2 (0; Nmax), where (the

notation is borrowed from Caulkins (1993)):

Nmax = (��=w0)
1=(1��): (7)

In the Appendix we show that, provided that 
 + � > 1, the maximum value of E on

this isocline is reached for

3Note that concavity of H in N is not assured, so that su�ciency is hard to prove.
4Note that HEE < 0, because 
 < 1 and � is negative.
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Nmin =

 

 + � � 1




! 1

1��
�
��

w0

� 1

1��

(8)

(see Caulkins (1993, p. 857).

Next, we derive a di�erential equation for E. To do so we �rst di�erentiate (4) w.r.t.

"t", which gives

_� =
N 


c1
E
�1

h
�
N�1 _N + (
 � 1)E�1 _E

i
: (9)

After substitution of (4) and (9) into (5) and some rearranging, we obtain

_E =
E


 � 1

h

N�1 _N + �c1
E


�1N�
 � r+ c1��(� � 1)N��2 + c1
E

N�
�1

i
:(10)

Substitution of (1) into (10) �nally gives

_E =
E


 � 1

h
�c1
E


�1N�
 � r + c1��(
 + � � 1)N��2
� c1w0
N

�1
i
: (11)

In the Appendix we show that E must always be positive in equilibrium, so that we only

need to consider the _E = 0 isocline for positive E. From equation (11) we can obtain

that this _E = 0 isocline can be expressed as:

E = N

,"
r

�c1

N �

��

�

(
 + � � 1)N��1 +

w0

�

# 1

1�


: (12)

In the Appendix we prove that for the _E = 0 isocline it holds that E < 0 for N 2 (0; NA)

and E > 0 for N 2 (NA;1), where NA satis�es

r

c1

NA �

��



(
 + � � 1)N��1

A + w0 = 0: (13)

Concerning the status of the equilibrium the following proposition holds, from which the

proof can be found in the Appendix.

Proposition 1

An equilibrium point is
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� a saddle point, if in the equilibrium point it holds that dE
dN

���
_E=0

> dE
dN

���
_N=0

;

� unstable, if in the equilibrium point it holds that dE
dN

���
_E=0

< dE
dN

���
_N=0

:

4 The optimal enforcement policies

In this section we present optimal trajectories for di�erent scenarios. We distinguish

between a pure sellers' market (Subsection 4.1), a pure buyer's market (Subsection 4.2)

and an intermediate case (Subsection 4.3).

4.1 Optimal trajectories in case of a pure sellers' market

An illicit drugs market is a pure sellers' market if it holds that each dealer creates its

own demand. Here demand is abundant in the sense that if another dealer arrives, total

market sales will expand enough that none of the existing dealers lose sales. In the model

it means that the number of sales grow linearly with N so that � = 1.

To perform a phase plane analysis in the (N;E)-plane, we �rst obtain from (6) that for

� = 1 the _N = 0 isocline is that straight line given by

E = (��� w0)
1=
N: (14)

Concerning the _E = 0 isocline we conclude from Section 3 that E < 0 for N 2 (0; NA),

where NA is de�ned by

NA = (��� w0)c1
=r: (15)

It holds that E > 0 for N 2 (NA;1). Furthermore, in the Appendix it is proved that

E(N+
A )!1, and for N > NA the _E = 0 isocline is decreasing in the (N;E)-plane. The

phase diagram in case of a pure sellers' market is depicted in Figure 1.

[Insert Figure 1 about here]

The equilibrium A in Figure 1 is unstable, which is con�rmed by Proposition 1. This

unstable equilibrium can be a node or a focus (see, e.g., Feichtinger and Hartl (1986),

p. 105). If it is a focus, then we know from the literature (e.g. Skiba (1978) or Dechert
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(1984)) that there exists an interval of N -values that contains the unstable equilibrium,

and on which two candidate trajectories occur. One trajectory goes to the right and the

other one goes to the left. The trajectory to the right lies on the N�axis, because the

optimal trajectory is the one which is as far away from the _N = 0 isocline as possible

(see Feichtinger and Hartl (1986), Theorems 4.13, 4.14). From Dechert (1984) we know

that a so called Skiba-point, S say, can be identi�ed such that for "large" initial num-

bers of drug dealers, N > S, the trajectory to the right is better, and for small initial

numbers of drug dealers, N < S, the trajectory to the left generates a higher value of

the objective.5 These trajectories are called history dependent, since it depends on the

history, i.e. on N (0), which one is optimal. This situation is sketched in Figure 1.

It can also happen that the unstable equilibrium is a node. This means that we still

have history dependent equilibria and the critical point (where to go to left or right) is

simply the unstable node A. Since this situation is simpler than the case of a focus, we

refrain from drawing a picture here.

To interpret the solution in Figure 1 it is convenient to write down the state equation

for the number of dealers for � = 1 (cf. (1)):

_N = c1

 
�� �

�
E

N

�

� w0

!
: (16)

The utility of the individual dealer is ��� (E=N)
. Each individual dealer, who enters

the market, obtains a pro�t of �� from selling his drugs. This pro�t is independent from

the total number of dealers that is already active on this market. We conclude that each

dealer creates his own demand, which con�rms that we have a sellers' market here.

We further conclude that enforcement e�ort does not have a large e�ect on the utility of

the individual dealer if N is large. The reason is that the burden of enforcement is shared

equally among the dealers, so that this burden is relatively low for the individual dealer

when there are a lot of colleagues around. Then, according to (16), a large enforcement

level does not prevent new dealers from entering the market so that the e�ectiveness of

resources invested in enforcement is low. This makes it understandable that in Figure 1

5The reason is that for �xed N , the (maximized) Hamiltonian and therefore also the value function

assumes its minimum value along the _N = 0 isocline so that on the left boundary of the overlapping

interval the left trajectory is better, and on the right boundary the right trajectory is better; see also

Feichtinger and Hartl (1986, p. 117). The existence of a Skiba point in between follows from continuity.
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E = 0 for N > S.

For N < S enforcement is e�ective enough so that it is optimal to invest resources in it.

In fact, enforcement remains positive until the market collapses, i.e. the total number

of dealers that operates on this market is zero in the end. This market collapse is a

perfect illustration of the "positive feedback" generated by the enforcement (see, e.g.,

Kleiman (1988)). As enforcement increases, some dealers who are particularly sensitive

to enforcement pressure exit the market. That increases the amount of enforcement

per participant among those who remain, which might encourage still more to leave.

The departure of this second group, even if total enforcement pressure remains the

same, further increases the ratio of enforcement to the size of the market. In this way

crackdowns provide a gain in e�ciency which leads to a market collapse in this case.

4.2 Phase diagram in case of a pure buyer's market

A buyers' market is one in which sellers have little or no bargaining power. In the context

of a drug market, we must think of a �xed number of sales with dealers simply �ght-

ing for market share; increasing the number of dealers would not increase the number of

sales, because there is already a surplus of dealers. This can be modeled by setting � = 0.

Let us �rst look at the _N = 0 isocline for � = 0. From (6) we obtain that on the _N = 0

isocline E will be zero for N = Nmax only (notice that here 
 + � < 1 since � = 0 and


 < 1). Straightforward derivations give dE

dN

���
_N=0

< 0 for N 2 [0;Nmax),
dE

dN

���
_N=0

= 0 for

N = Nmax and d2E
dN2

���
_N=0

> 0 for N 2 [0; Nmax) (see also the Appendix).

Next, consider the _E = 0 isocline. According to (12) it looks as follows when � = 0:

E = N

,"
r

�c1

N +

(1� 
)��

�

N�1 +

w0

�

# 1

1�


: (17)

It is easy to see that on this isocline it holds that E > 0 when N > 0. If, while taking

into account that � = 0, we put the part between brackets in (11) equal to zero, then

we can obtain from this equation that

dE

dN

�����
_E=0;E>0

=

"
�

rN2

c1(1� 
)
+ w0N +

��(2� 
)




#
N
�3E2�


�
: (18)
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After some algebra it turns out that dE

dN

���
_E=0;E>0

> 0 for N 2 (0; �N) and dE

dN

���
_E=0;E>0

< 0

for N 2 ( �N;1), where �N is given by

�N =
c1(1 � 
)

2r

2
4w0 +

 
w2

0
+

4r��(2� 
)

c1
(1� 
)

! 1

2

3
5 :

After substitution of N = Nmax (cf. (7)) into (17) we get that for E > 0:

dE

dN

�����
_E=0;N=Nmax

=

"
�r(��)2

c1(1� 
)w2

0

+
2��




#
N
�3

max
E2�


�
: (19)

From (19) we obtain that dE

dN

���
_E=0

> 0 for N = Nmax, and thus that Nmax < �N which

implies that dE
dN

���
_E=0

> 0 for N 2 (0; Nmax], if


 <
2c1w

2

0

2c1w
2

0
+ r��

: (20)

The phase diagram for � = 0 and under condition (20) is depicted in Figure 2. According

to Proposition 1 equilibrium A corresponds to a saddle point.

(Insert Figure 2 about here.)

To interpret this solution it again helps to write down the state equation for the number

of dealers that holds in this case (cf. (1)):

_N = c1

 
��

N
�

�
E

N

�

� w0

!
: (21)

Here the utility of the individual dealer is ��=N � (E=N)
. Total revenue from drug

sales is �xed on this market and equals ��. Since all dealers are identical, each of them

gets an equal share of this revenue. Of course this share is low if the total number of

dealers is large.

Contrary to the pure sellers' market case, here it is optimal to have positive enforcement

for N large, despite of the fact that the burden of enforcement for the individual dealer

is then low. The reason is that here it is possible to reduce the number of dealers for N

large. This is because on a buyer's market with a large number of dealers the revenue
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per dealer is very low, and this negatively a�ects the change in the number of dealers

per unit of time. Since 
 < 1, the revenue per dealer is decreased more by a large N

than the burden of the crackdown felt by the individual dealer. So, here enforcement

pressure is relatively successful at driving away dealers, because a buyer's market with

a large number of dealers is relatively unappealing to the dealers.

From Figure 2 we obtain that a market collapse will not occur. This is because when

the number of dealers decreases the revenue per dealer increases more than the disutility

from the enforcement pressure. Since 
 < 1, dealers are risk seeking, which implies that

the utility gained from large sales is larger than the disutility caused by the possibility of

being arrested. Therefore, a market collapse requires an enormous amount of enforcement

e�ort, since, due to the high revenue per dealer, it is very attractive for dealers to enter

this market if N is low. This revenue e�ect more than o�sets the positive feedback

e�ect of the crackdown which played such a crucial role in the solution of the sellers'

market. To obtain this result the assumption of dealers being risk seeking apparently is

crucial. This is con�rmed by Caulkins (1993) where it is shown that a buyer's market

can collapse while enforcement e�ort is still �nite. However, Caulkins also found that

enforcement e�ort required to collapse a market is decreasing in � (see Caulkins (1993),

Figure 3).

4.3 Phase diagram in the intermediate case

Here we study the case where the market is neither a sellers' market nor a buyer's market.

In order to be able to say something about the _E = 0 isocline we assume that dealers are

not too risk seeking, i.e. 
 is close to 1. If we further assume that � is su�ciently large

such that 2
 + � � 2, we know from the Appendix that the _E = 0 isocline decreases in

the (N;E)-plane.

From Section 3 we get that for � < 1 and 2
 + � � 2 the _N = 0 isocline reaches the

highest value for E when N = Nmin (see eqn. (8)). Furthermore, we know that on the

_N = 0 isocline E will be zero for N = 0 and for N = Nmax (see eqn. (6)), and E is

positive for N 2 (0;Nmax). Information about �rst and second order derivatives can be

found in the Appendix.

We conclude that the following inequality is a su�cient (but not necessary!) condition

for the _E = 0 isocline to intersect the _N = 0 isocline twice:
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E(Nmin) j _E=0 < E(Nmin)j _N=0
; (22)

which, by using (6), (8), (12) and doing some calculations, can be rewritten into

N
1


�1

min
=

 

w0

(
 + � � 1)��

! 1

(1��)(1�
)

<

 
r

�c1


! 1

1�

 
(1 � �)w0


 + � � 1

! 1




: (23)

If (23) does not hold it is still possible that the isoclines intersect twice, but it can also

happen that there is only one intersection (hairline case!) or no intersection at all. Here,

we restrict ourselves to the case where (23) holds so that we are sure of the existence of

two equilibria. The phase diagram is depicted in Figure 3.

(Insert Figure 3 about here.)

Due to Proposition 1 we can conclude that A is a saddle point, while B is unstable.

Here a Skiba point NS exists such that for N(0) > NS the equilibrium A will be reached,

while for N(0) < NS we will have a market collapse in the long run.

Figure 3 is drawn for the case where the unstable equilibrium B is a focus, but, like in

Figure 1, it could also be a node. Then for N > B it is optimal to converge to A, while

for N < B it is optimal to approach the origin. We conclude that in both cases (i.e.

node or focus) the equilibrium A is history dependent, because it depends on the history,

i.e. N (0), whether A or the origin will be reached in the long run. This solution is really

intermediate in the sense that it has the possibility of market collapse from the sellers'

market solution and the occurrence of the stable equilibrium from the buyer's market

solution.

Figure 3 relates to the (descriptive) analysis of the dynamic equation (1) by Caulkins

(1993), in which he considered E to be constant. Nevertheless some of his interpretations

carry over to our solution of Figure 3, in which E is not kept constant but optimally

determined instead. As argued by Caulkins (1993), if there were very few dealers each

would attract considerable enforcement pressure. So it would be unpro�table to deal,

and dealers would exit. Suppose, on the other hand, that there were an extremely large

number of dealers. Then none would su�er terribly from enforcement, but there would
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not be enough customers to go around. Again dealers would exit. There may be inter-

mediate values of N , however, that are large enough to dilute enforcement pressure but

small enough for each dealer to make a reasonable number of sales. In that range, deal-

ers' return would exceed the reservation wage, so more dealers would enter. Apparently,

making enforcement pressure so large that the market would collapse in the end is too

expensive for being optimal.

5 Concluding Remarks

In this paper we dealt with the question how police should design the rate at which to

crackdown on a market for illicit drugs in order to minimize the social cost over time.

Drug dealers are modeled analogously to pro�t seeking �rms. Considering the number

of dealers on the market as state variable its rate of change is assumed to be propor-

tional to the di�erence between the utility available to one dealer and his/her reservation

wage. Dealers enter the market as soon as the pro�t from drug sales minus the threat

of being caught from enforcement exceeds the wage the dealer could earn in alternative

employment. This nonlinear state equation has been extensively studied by Caulkins

(1990, 1993) and Baveja et al. (1993). Di�erent to Baveja et al. (1992) we assume

risk-seeking dealers guaranteeing that a su�ciency condition of the maximum principle

(the Legendre-Clebsch) condition) is satis�ed.

Solutions were obtained for three di�erent scenarios: a sellers' market, a buyer's market

and the intermediate case. For a sellers' market it is optimal to have positive enforce-

ment if the size of the market is su�ciently small. Due to the increasing e�ciency of

enforcement with decreasing market size this leads eventually to a market collapse. For

a buyer's market, however, this increasing e�ciency e�ect is more than o�set by the fact

that sales are large in case the number of dealers is low. Therefore optimal enforcement

e�ort leads to a stable equilibrium with a positive number of dealers rather than to a

market collapse. Here, it is important to remark that this outcome results from the as-

sumption that dealers are risk seeking. For the intermediate scenario we have a market

collapse in case the initial size of the market is su�ciently small. For higher initial sizes

the number of dealers converges to a stable saddle point equilibrium.

Concerning future research several interesting extensions can be considered. First, as
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already observed by Caulkins (1993) some crackdowns explicitly seek to arrest users.

Therefore total sales on the market should also decrease with the enforcement rate,

rather than that they only increase with the number of dealers as it is modeled now.

Second, in reality social cost of a drugs market is more than proportionally increasing

with the size. Therefore our linear objective should be made convex in the number of

dealers.

Third, it is interesting to �nd out how the optimal enforcement policy looks like in case

of risk averse dealers. Within the present model formulation the assumption of dealers

being risk averse would lead to an uninterpretable chattering control policy. This can

be circumvented by introducing the enforcement rate as a second state variable in the

model and imposing convex adjustment costs on the rate of change of enforcement. It

is well known that a model created like this can generate stable limit cycles (see, e.g.,

Feichtinger, Novak and Wirl (1994)).

A fourth extension would be the explicit inclusion of the number of addicts as a second

state variable. Dealers and addicts are in a symbiotic relation, and some interesting

results might be expected. One problem would be how to allocate a budget between

crackdown and therapy. Clearly, then the number of addicts would appear as a third

term in the objective functional.
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Appendix. Mathematical Analysis of the Dynamic

System

First we derive under what condition an equilibrium corresponds to a saddle point. Then

we study the _N = 0 isocline and _E = 0 isocline thoroughly.

A.1 Condition for existence of a saddle point.

The determinant of the Jacobian of the dynamic system ((1),(11)) evaluated at the

equilibrium equals:

det J =
c
2

1

1�


h
��
(1� �)E
�1N��
�3 f�
N + (
 + �)Eg+

(1 � �)��N��3

n
� r

c1
N � ��(1� �)N��1

o
+ r

c1

E
N�
�1

i
:
(A.1)

From (A.1) we obtain that this determinant contains positive and negative terms. Hence,

it depends on the speci�c location of an equilibrium in the (N;E)-plane whether it is a

saddle point or not.

Notice that at a steady state E = 0 can never hold. The reason is that E = 0 implies

that � = 0 (see eqn. (4)), and at a steady state � = 0 cannot hold, because � = 0 in

turn implies that _� = �, due to (5). Therefore, E must always be positive in equilibrium.

According to (11) this implies that

�c1
E

�1N�
 � r + c1��(
 + � � 1)N��2 � c1w0
N

�1 = 0: (A.2)

Substitution of this expression into (A.1), as well as using that _N = 0 in an equilibrium

(cf. (1)), leads to

det J =
E

�1

N
�
�2


c
2

1

1�


h
(1 � �)��N��1 f(
 � 1)�N + (
 + � � 2)Eg+

+
E
N�
(E + �N)] :
(A.3)

From equation (1) we obtain that

dE

dN

�����
_N=0

=
(� � 1)��E�
+1N�+
�2 + 
EN�1



: (A.4)

Furthermore, from (A.2) it can be obtained that
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dE

dN

�����
_E=0;E>0

=
�
EN�2(E + �
N)� ��(1� �)(
 + � � 2)E�
+2N�+
�3

�
(1� 
)
: (A.5)

Now, we are ready to prove Proposition 1, which is started here once more.

Proposition 1.

An equilibrium point is

� a saddle point, if in the equilibrium point it holds that dE

dN

���
_E=0

> dE

dN

���
_N=0

,

� unstable, if in the equilibrium point it holds that dE

dN

���
_E=0

< dE

dN

���
_N=0

.

Proof

From (A.4) and (A.5) we obtain

dE

dN

���
_N=0

� dE

dN

���
_E=0

= 1

�
(
�1)

h
��N��1E1�
N
�2 f(� � 1)(
 � 1)�N+

+ (� � 1)(
 + � � 2)Eg+

�
EN�2 f��(
 � 1)N + E + �
Ng] ;

which can be rewritten into

dE

dN

���
_N=0

� dE

dN

���
_E=0

= E
1�


N

�2

�
(
�1)

h
��N��1(� � 1) f(
 � 1)�N + (
 + � � 2)Eg +

�
E
N�
(E + �N)] :
(A.6)

Substitution of (A.3) into (A.6) gives

dE

dN

�����
_N=0

�
dE

dN

�����
_E=0

=
E2�2
N2


�c21

2

detJ: (A.7)

From (A.7) we obtain that

� saddlepoint ) detJ < 0)
dE

dN

�����
_E=0

>
dE

dN

�����
_N=0

; (A.8)

� unstable ) detJ > 0)
dE

dN

�����
_E=0

<
dE

dN

�����
_N=0

: (A.9)

Q.e.d.
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A.2 A closer look at the _N = 0 isocline.

To �nd maximum or minimum values of E on the _N = 0 isocline, we di�erentiate (6)

w.r.t. N :

dE

dN
=

(
(
 + � � 1)



��N��1 � w0

) �
��N��1 �w0

� 1



�1

: (A.10)

Hence, dE=dN will be zero for N = Nmax (due to the fact that 
 < 1) and, provided

that 
 + � > 1, for N = Nmin.

Comparing (7) and (8) we get that Nmax = Nmin for � = 1. Notice also that via (A.1)

we know that detJ is positive for � = 1, so that we have unstability in this case. For

� < 1 we have that Nmin < Nmax.

From (A.10) it is easy to obtain that

dE=dN > 0 for N 2 (0;Nmin); (A.11a)

dE=dN < 0 for N 2 (Nmin; Nmax): (A.11b)

To obtain some more information about the shape of the _N = 0 isocline, we also calculate

the second order derivative:

d2E

dN 2
= �

�
��N��1 � w0

� 1



�2 (1� �)��N��2




"
(
 + � � 1)



��N��1 � w0�

#
:(A.12)

We conclude that on the interval (0; Nmax) the second order derivative changes sign for

that N , say N̂ , that satis�es

N̂ =
1

�1=(1��)

 
(
 + � � 1)��


w0

! 1

1��

=
1

�1=(1��)
Nmin: (A.13)

Notice that N̂ is only positive when 
 + � > 1. If � = 1, then N̂ = Nmin = Nmax. For

� < 1 it holds that Nmin < N̂ < Nmax. From (A.12) we further derive that

d2E

dN 2
< 0 for N 2 (0; N̂ ); (A.14)



19

d2E

dN 2
> 0 for N 2 (N̂;Nmax): (A.15)

A.3 A closer look at the _E = 0 isocline

Consider the denominator of (12). If 
+� > 1 it holds that the denominator is negative

for N # 0. For N = Nmax the denominator equals

"
r

�c1


�
��

w0

� 1

1��

+ (1 � �)
w0

�

# 1

1�


;

which is positive. Hence, by continuity it follows that for an N 2 (0; Nmax), say NA, it

must hold that this denominator equals zero, so that NA satis�es

r

c1

NA �

��



(
 + � � 1)N��1

A
+ w0 = 0: (A.16)

We conclude that on the _E = 0 isocline it holds that E < 0 for N 2 (0; NA) and E > 0

for N 2 (NA;1). Since E < 0 makes no economic sense we do not need to consider the

part of this isocline where N 2 (0; NA) any further. Furthermore, it can be concluded

that

lim
N#NA

E(NA)

����
_E=0

=1: (A.17)

Also, from (8) and (12) we obtain that

E(Nmin) j _E=0 =

�
�c1


r

� 1

1�


N




�1

min
> 0: (A.18)

Hence, we can conclude that Nmin > NA.

Next, we determine the derivative of the _E = 0 isocline in the (N;E)-plane. To do so we

put the part between brackets in (11) equal to zero and obtain from this equation that

dE

dN
=h

� r

�c1(1�
)
N 
�1 + (
+��1)(
+��2)

�
(1�
)
��N�+
�3 + w0

�
N
�2

i
E2�
:

(A.19)
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After noticing that

(
 + � � 1)(
 + � � 2) = 
(
 � 1) + (2
 + � � 2)(� � 1);

we see that we can rewrite (A.19) into

dE

dN
=

"
�

rN

c1(1� 
)
�

(2
 + � � 2)(1� �)


(1� 
)
��N��1 � ��N��1 + w0

#
N
�2E2�


�
:(A.20)

From (7) we obtain that, since � 2 (0; 1], we have

��N��1 � w0 for N 2 [0;Nmax]; (A.21)

so that from (A.21) we can conclude that for N 2 (NA; Nmax] it holds that

dE

dN

�����
_E=0

< 0 (A.22)

if

2
 + � � 2: (A.23)



21

References

1. Baveja, A., R. Batta, J.P. Caulkins and M.H. Karwan, "Collapsing street market

for illicit drugs: the bene�ts of being decisive", Working Paper (1992).

2. Baveja, A., R. Batta, J.P. Caulkins and M.H. Karwan, "Modeling the response

of illicit drug market to local enforcement", Socio-Econ. Plann. Sci. 27, 73-89

(1993).

3. Becker, G.S., "The Economic Approach to Human Behavior", Univ. of Chicago

Press, Chicago (1976).

4. Caulkins, J.P., "The distribution and consumption of illicit drugs: some mathe-

matical models and their policy implications", unpubl. Ph.D. Dissertation, Mas-

sachusetts Inst. of Technology, Cambridge Mass. (1990).

5. Caulkins, J.P., "Thinking about displacement in drug markets: why observing

change of venue isn't enough", J. Drug Issues, 22, 17-30 (1992).

6. Caulkins, J.P., "Local drug markets' response to focused police enforcement", Op-

erations Research, 41, 848-863 (1993).

7. Caulkins, J.P. (Ed.), "Mathematical models of drug markets and drug policy",

Special issue of Mathematical and Computing Modelling, 17, 1-115 (1993).

8. Dawid, H. and G. Feichtinger, "Optimal allocation of drug control e�orts: a dif-

ferential game analysis", to appear in Journal of Optimization Theory and Appli-

cations, (1995).

9. Dechert, W.D., "Has the Averch-Johnson e�ect been theoretically justi�ed", Jour-

nal of Economic Dynamics and Control, 8, 1-17 (1984).

10. Gragnani, A., Feichtinger, G. and S. Rinaldi, "Dynamics of drug consumption: a

theoretical model", IIASA Working Paper (1994).

11. Feichtinger, G., Hartl, R.F., "Optimale Kontrolle Oekonomischer Prozessc: An

wendungen des Maximumprinzips in den Wirtschaftswissenschaften", DeGruyter,

Berlin (1986).

12. Feichtinger, G., Hartl, R.F. and S.P. Sethi, "Dynamic optimal control models in

advertising: recent developments", Management Science, 40, 195-226 (1994).

13. Feichtinger, G. Novak, A. and F. Wirl, "Limit cycles in intertemporal adjustment

models", Journal of Economic Dynamics and Control, 18, 353-380 (1994).



22

14. Kleimann, M.A.R., "Crackdowns: The E�ects of Intensive Enforcement on Retail

Herion Dealing. In "Street-Level Drug Enforcement: Examining the Issues", M.R.

Chaiken (ed.), Natural Institute of Justice, Washington, D.C. (1988).

15. Kleimann, M.A.R., "Enforcement swamping: a positive feedback mechanism in

rates of illicit activity", Mathematical and Computing Modelling, 17, 65-76 (1993).

16. Skiba, A.K., "Optimal growth with a convex-concave production function", Econo-

metrica, 46, 527-539 (1978).



23

Figure 1. Optimal trajectories in case of a pure sellers' market (� = 1).
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Figure 2. Optimal trajectories in case of a pure buyer's market (� = 0) and (44).
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Figure 3. Optimal trajectories under the conditions 2
 + � � 2 and (47).


