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Reduced Rank Regression using
Generalized Method of Moments
Estimators
with extensions to structural breaks
in reduced rank models

Frank Kleibergen*
April 24, 1996

Abstract

Generalized Method of Moments (GMM) Estimators are derived
for Reduced Rank Regression Models, the Error Correction Cointe-
gration Model (ECCM) and the Incomplete Simultaneous Equations
Model (INSEM). The GMM (2SLS) estimators of the cointegrating
vector in the ECCM are shown to have normal limiting distributions.
Tests for the number of unit roots can be constructed straightfor-
wardly and have Dickey-Fuller type limiting distributions. Two ex-
tensions of the ECCM, which are important in practice, are analyzed.
First, cointegration estimators and tests allowing for structural shifts
in the variance (heteroscedasticity) of the series are derived and ana-
lyzed using both a Generalized Least Squares Estimator and a White
Covariance Matrix Estimator. The resulting cointegrating vectors es-
timators have again normal limiting distributions while the cointegra-
tion tests have identical limiting distributions which differ from the
Dickey-Fuller type. Second, cointegrating vector estimators and tests
are derived which allow for structural breaks in the cointegrating vec-
tor and/or multiplicator. The limiting distributions of the estimators
are again shown to be normal and the limiting distributions of the
cointegration tests differ from the Dickey-Fuller type.

*Department of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands, Email:f.r kleibergen@kub.nl



1 Introduction

Cointegration has been an important research topic since its definition in [1]
and already a large literature has evolved on it. An important part of this lit-
erature is devoted to the construction of estimators, test statistics and their
limiting distributions, see a.o. [1], [4] and [11]. These contributions cover
stylized models, which are constant over time and have a constant variance.
Although models, which deviate from these assumptions, no longer suffice
the condition of weak (covariance) stationarity, they can still show mean
reversion so that they still possess properties of cointegration, see for exam-
ple [7], where it is shown that cointegration can still be defined in periodic
models although the model for the cointegrating relationships is not weakly
stationary but still mean reverting. So, the cointegrating relationships do not
suffice weak stationarity conditions in these cases but cointegration is still
an important property of the series generated by these kind of models. In
practice, there is a need for the construction of cointegration estimators and
test statistics, which can be applied in these kind of models as a large number
of series possess properties resulting from these models, like heteroscedastic-
ity and structural breaks, and still show mean reversion of linear combina-
tions. Examples are numerous and lie especially in areas like finance, where
heteroscedasticity is a stylized fact, and macro-economics, where structural
breaks are an important topic. Naive application of the cointegration esti-
mators, which essentially assume that these properties are not present, can
lead to inconsistent estimators and /or wrong expressions of the (asymptotic)
variances of the estimators. There is, therefore, a need for the development
of estimators and test statistics, which can be applied in these kind of mod-
els. This paper tries to contribute to this topic by developing a Generalized
Method of Moments (GMM) framework, see [3], for cointegration models,
which allows for the incorportation of for example heteroscedasticity and/or
structural breaks. Also the stylized models are covered by this framework and
lead to estimators, which are the 2SLS (two stage least squares) counterpart
of the canonical correlation cointegration estimators, see [4].

The discussion of this GMM framework for cointegration analysis, is or-
ganized as follows. In section 2, the relation between the 2SLS estimators
in cointegration and simultaneous equations models is discussed jointly with
the limiting distributions of the cointegrating vector estimators for a few
widely used specifications of the deterministic components. Section 3, con-
tains a discussion of a GMM statistic (=GMM objective function) for testing
for the number of unit roots/cointegrating relationships. In section 4, the
stylized model is extended to a model where a shift of variance occurs after
a predefined fraction of time has evolved. Both a Generalized Least Squares



approach, which assumes a priori knowledge of the variance shift moment,
and a nonparametric approach using a White covariance matrix, see [15],
which uses no knowledge about the specification of heteroscedasticity, for
the construction of cointegration estimators and statistics that account for
heteroscedasticity are discussed. In section 5, cointegration estimators and
statistics that account for a change in the cointegrating relationship and/or
multiplicator, are constructed. Both extensions can be further generalized
to more shifts and also other moment conditions can be added. Finally, the
sixth section concludes.

Note that the following definitions are used throughout the paper; =
indicates weak convergence; integrals are taken over the unit interval unless
indicated otherwise; when possible without confusion, integrals like [ W (t)dt
are shortly denoted as [ W. The theorems in the paper are derived assuming
Gaussian disturbances, which assumption can be relaxed considerably, see
for example [14].

2 2SLS Estimators in reduced rank regres-
sion models

2.1 Reduced Rank Regression Models

Reduced rank regression models are characterized by the lower column or
row rank of a parameter matrix. Two well known models which possess this
property are the Error Correction Cointegration Model (ECCM) and the
INcomplete Simultaneous Equations Model (INSEM). The ECCM is specified
as

Azy = af 1 + &, (1)

where z, : kx 1, t=1,...T; a, 8 : k xr; f/ = (I, -f}); and & is Gaussian
white noise with covariance matrix . For simplicity higher order lags are

left out. The INSEM reads

Yie = Byya + T+ En (2)
Yor = llogxyy + Loowor + €9t

where ¥y @ mq X 1, Yo 2 Mo X 1, @y ¢ k1 X 1, X9y kg X 1,8 =1,...,7T}
Bt mo X my; 7y -k X myq; gy mg X ky; Tlag @ mgy X ky. The disturbances
£1; and £9; are assumed to be Gaussian white noise with covariance matrix
Y. The variables zy; and xy; are assumed to be (weakly) exogenous. The
INSEM in equation (2) is identified when the number of excluded exogenous
variables from the first set of equations, ks, is at least as large as the number



of equations in the second set, my, ky > my. The reduced rank property of
both models is obtained when we specify a general model,

Zt = Hwt —I— Ut. (3)
Both the ECCM and the INSEM are restricted versions of the model
in equation (3). The ECCM is obtained by specifying z; = Az, II =

_ /
af = [ M allﬁ% . U = £, Wy = T_1, while the INSEM is ob-
Qg1 —0421@

/
tained when z, — (yu)’wt: (3711&)’ up = (€1t+ﬂ252t>’ I —
Yot Tot E9t

Bollor + 71 Bollae
11y By

vious while the INSEM has a reduced rank structure when 7, = 0 since the
first set of rows of II is a linear function of the other rows in that case. The
reduced rank properties of both models are different in nature, however, as
in the ECCM the last set of columns is a linear combination of the first set
while in the INSEM the first set of rows is a linear combination of the last
set.

. The reduced rank structure of the ECCM is ob-

2.2 2SLS estimators

In the INSEM from equation (2) a consistent 2SLS estimator of the parame-
ters J2 and 7, is obtained when we replace IIy; and Iy by their least squares
estimators obtained from the second set of equations. A similar kind of 2SLS
estimator can be constructed for the cointegrating vector § in the ECCM.
An important difference between the cointegrating vector parameter 3 and
the structural form parameters J5 and ; results, however, from the presence
of the cointegrating vector in all equations of the ECCM while the structural
form parameters of the INSEM only appear in the first set of equations. The
2SLS estimator for the ECCM has, therefore, a completely different specifica-
tion then the 2SLS estimator in the INSEM. Both estimators can be derived
in a Generalized Method of Moments (GMM) framework, see [3].

To derive the expressions of the 2SLS estimators both in the INSEM as
the ECCM, we use the first order conditions for a maximum of the likelihood.
The derivatives of the log likelihood, when assuming Gaussian white noise
disturbances with covariance matrix %, of the model in equation (3), read

dlnl(0 £l ou
OIIO) — ee(m 1y Yoo 1) e 0

t=1

2 aut
= vee(S ug) —
2 %
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dvec(II)
o0’

dvec(II)
o0’

T
= > wee(S M) (wy @ Iy)

t=1

T
= Zvec(utwé)/(]k ®x )

t=1

T
In the GMM objective function we will only use the Y~ vec(u,w;) part of
=1

the derivative in equation (4). When we substitute the correct expression
for 0 in %ﬂ) the first order derivatives of the different parameters are
obtained. These expressions read, for the ECCM,

dvec(II)

dvec (3 ~lx® ), (5)
dvec(Il)
dvec(a) (8 L),

and for the INSEM,

Ovec(Il)
dvec(3y)
Ovec(IT)
dvec())
_Ovec(Il)

—((

—((
dvec(Ily) (4 0) e (L:
dvec(ID) (0 1Y (];>)

dvec(Ilyy)’
The expressions of the derivatives of the individual parameters are substi-

/

Ny T ) () ©)

/

tuted in the first order derivative of the objection function which is minimized
in the GMM framework. As we cannot exactly solve for the normal equa-

tion, Z wwy, = 0, in case of reduced rank parameter matrices, we take a

quadratlc form containing these normal equations as objective function to
be minimized in the GMM f{ramework, see also [2],

T T T
0) = vec(d_uawy) (O ww)) ™ @ T Hvee(d wu}). (7)
=1 =1 =1
The first order conditions of the GMM objective function then become

aG(0)
o0

= 0< (8)



T 8U¢ 71 T .
2(39, (wy @ I )( Zwtwt S vee(Yww,) = 0
t=1 t=1
8 H / / N\ — — T /
( vgce(/ ))(Zwtwt®]k)((2wtwt) loxn l)vec(Zutwt) = 0«
=1 = =
T
(&}%;m)’(]k © X Nveed ww,) = 0«
1
dvec(Il £l
( vgce(/ ))’vec(EﬂZutwé) =0

t=1

The first order condition of the GMM objective function in equation (8)
exactly equals the first order condition for a maximum likelihood value, see
equation (4).

For the different parameters of the ECCM these first order conditions
read,

T
(It @ &)vee(S Y wah_ ) = 0 (9)
=1
T
vec( @Sy (Awy—afzy)r,_ ) = 0&
=1
T T
(e ) (VAT a(e's ) = 4
t=1 t=1
T
(B @ Ip)vee(X> way_ ) = 0& (10)
=1
T
vee(S Y (Azy — afzm 1)z, 1 8) = 0&
=1

T T
(Z Arery 1 8)(6 Z fl?tflfﬂé,lﬂ)*l = a.
t=1 t=1

For the different parameters of the INSEM these first order conditions
read,

(( [y Iy )/ ® ( ]6” ))’vec(EltzT;ut:p;) = 0« (11)

/
U€C<Z<y1t - ﬂéy% - ’yiatlt)a:; ( IIs; Iloe ) ) = 0

t=1

T T
(( Iy Ty )Zfl?ty/%)fl ( Iy Ilyp )Zfl?t(ylt —Yzw) =

t=1 t=1



( 1, ®(I ) Yree(® 1S wal) — 0o (12)

t=1

T
vec ylt ﬂzy% ’Yi%t)x/u) = 0«
—1

~+

(Z wyh,) ! Z w1y — Boyar) = M,
t=1 t=1

(]k®( B ) vee( IZut:ﬂt = 0= (13)

m2

/ /
vec(( ]ﬂQ ) nt ( L, )th:pt = 0&
mo
0 -1 ! o
vec( Q tha:t) = 0&
I, t=1
T
vec(D (yor — Ihay)r}) = 0&
=1
T T
Q_ver) Q) 1 = I
=1 =1

(e B Y g I B
where () = 0 I, Yy 0 I,
INSEM directly lead to the well known 2SLS estimator for INSEMs as the
estimator of Ily is independent of the parameters J5 and ; such that it can
be estimated independently. The resulting estimate of Ily is then used to
construct estimators for Js and y; (2SLS estimators). The estimators of «
and (3 in the ECCM both depend on one another. As we didnot restrict «

_%2 , both «

and (3, are properly identified. If this specification of 7 is used, a consistent

. The normal equations for the

and 3, they are also not identified. If we specify J as, 0 = (

estimator of « is,

T T
O A1 =y (3 war 1l () war1)ah, ) (14)
t=1 t=1
T
Oz (U= (O mar 1l () e 1)7y, )
t—1
where z; = ilt , Ty o1 X 1, 29 0 (K —7) x 1. If the estimator of « from
2t

equation (14) is used in the estimation of the cointegrating vector parameter
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3, equation (9), the identifying restrictions on 3 are automatically fulfilled.
The resulting estimator of 3 is then the 2SLS estimator of the cointegrating
vector . In a Bayesian analysis this 2SLS estimator equals to the mean
of the conditional posterior of 3 given o when a diffuse prior is used, see
[6]. The estimators of o and [ in equations (9) and (10) also allow for
the construction of an iterative estimation scheme for which the resulting
estimators converge to the maximum likelihood estimators. Asymptotically
the 2SLS least squares cointegrating vector estimator possesses the same kind
of properties as the maximum likelihood estimator, i.e. superconsistency and
normal limiting distribution. This is proved in the theorems in the following
section.

2.3 Limiting distributions 2SLS estimators

As the limiting distribution of the 2SLS estimator in the INSEM model is
discussed at length in the literature, see for example [9], we concentrate on
the limiting distribution of the 2SLS estimator for the cointegration case.
Theorem 1 states the limiting distribution of the multiplicator estimator, &,
and the 2SLS cointegrating vector estimator, B

Theorem 1 When the DataGenerating Process (DGP) in equation (1) is
such that the number of cointegrating vectors equals v (k — r unit roots), the
estimators

T T
a= 0> Axy(1—ahy 1O wor 13, 1) "wo-1)xhy 1) (15)
= =1
T T
O w1 —ahy O mar 1wy q) wae 1)l )
= P
and
. T T
8= (Z xt,lxéfl)*l(za:t,lAa:;)Efld(d’Efld)*l (16)
=1 P

have a limiting behavior which can be characterized by

VT (& —a) = n(0, cov(Fx) ' ©%)) (17)

~

0
re-p= ( (8L60)" o AT (W)~ [ Whd WA, )

0
= ( n(0,d/S e ® O ) ’

(18)



where Wy, resp. Wy are (k — 1), resp. r dimensional stochastically indepen-
dent Brownian motions defined on the unit interval, Ay = (O/LEOAL)%, Ay =

(/S 1a)t, © = (F18,) BLas A (W) A BB 6L) T and T s

T

. T T
estimated by the sum of squared residuals, ¥ = 2 3" (Ax (1=, (X 2 12} ) o 1) Ax).
=1

=1
Proof: see appendix.

Theorem 1 discusses the limiting distribution of the cointegrating vector
estimator for the most straightforward case, i.e. no further lags in the VAR
polynomial and no deterministic components, and shows that it is identical
to the limiting distribution of the canonical correlation maximum likelihood
estimator, see [4]. While addition of lags of Az, only changes the limiting
distribution of the cointegrating vector estimator, B, in the sense that o/, 3,
has to be replaced by o/ I'(1)3,, where I'(L)Ax, = af'zi1 + &, T(L) is a
(p—1)-dimensional lag polynomial in case of a VAR(p), inclusion of determin-
istic components does also change the functional form of the cointegrating
vector estimator, see for example [4] and [5] for the influence of the determin-
istic components on other kind of cointegrating vector estimators. Theorem
2 states the estimators and limiting distributions of the multiplicator and
cointegrating vector estimators including deterministic components for a few
widely used specifications of the deterministic components.

Theorem 2 When the DGP reads
Axy = a(f a1+ 1) + 2, (19)

and the number of cointegrating vectors equals v (k — r unit roots), the esti-
mators

=G ) (1) (e

t=1

(5 P (1) (1) (7 )

(4 Pt



have a limiting behavior which can be characterized by

VT(6 — a) = n(0, cov(fz— ) ' o) (22)
CEHE
= ( (PLAL) oA 0 ) ( ( Wi ) ( Wi )’) (s ( Wi ) AVIAL

0
= ( n(0, /S a @ 6, ) ’

When the DGP reads
Az, =c+af x4+ s, (24)

c=ap +a N, and the number of cointegrating vectors equals v (k — r unit
roots), the estimators

() ()
(57 = (3 {5) (1)

(4 Pt
1
and

(DB Pg (o

(26)
have a limiting behavior which can be characterized by
VT (& —a) = n(0, cov(fz—p) '@ X)) (27)
T]kfrfl PN
( 0 ) (ﬂQL QL) 2L 0 ( ﬂg - ﬂ? ) (28)
0 T3 p=h

L
n(0, /S 'a® 6,)

T o o
=

10



When the DGP reads
Az =c+ a(fxz 1+ 6't) + &, (29)

c=ap +a N, and the number of cointegrating vectors equals v (k — r unit
roots), the estimators

T Tor—1 T Lot—1 Tot—1
a= (> Az,(l- 1 O 1 1 )1 (30)
t=1 t t=1 t t
Tot—1 T Tot—1 / T Tot—1 Tot—1 /
1 D) Qa1 — | 1 Q| 1 I
¢ =1 ¢ =1\ ¢ ¢
Tot—1
1 )29 1)
t
and
B T Tt L1 / T L1
g =001 1 1 D'l 1 |azhzla@za) !
s t=1 t t t=1 t
(31)
have a limiting behavior which can be characterized by
VT (& —a) = n(0, cov(fz—p — &) ox)) (32)
T, 0 0O B - f
0 T: 0 p—p | (33)
0 0 7% 66
0
. W Wi\’ Wi\’
= / —1 ./ a A 1/ 0 1 1 B 1
( (ﬂLﬂL) OﬂL 143 L (f L L ) 1<f L dWQ/)A/Q
T T T

0
= ( n(0,d/Y o @ 6; ) ’

where Wy, Wiy and Wy are (k—r), (k—r—1) and r dimensional stochastically

independent Brownian motions, Ay = (o/LEozL/)%, Ay = (@S ta)z, Ay =
l -1,/ 1 ! 1 1
(el I (A ) ) = ) = 10 <

t<1, = ( —]%2 ) B = (0L Preau(elon)™ ( h ) |

11



o= ) e ([ () ()

L L

/

-1/ W11 W11 -1
@2=(A3 0) J{ = || - >1(A3 0) ,
0 1 0 1
L L
Wi\ [ WY
O3 = (#.8) Bah ([ | o || o |yl
T T

Proof: the first and third part of the theorem are natural extensions of
theorem 1. The second part of the theorem is proved in the appendix.

Theorems 1 and 2 show that the limiting distributions of elements of
the cointegrating vector estimator are normal and standard (asymptotic) x?
tests can be performed to test hypotheses on the cointegrating vectors, see
[11]. The next section discusses the use of the cointegrating vector estimator,
B, and the multiplicator, &, in the GMM objective function, equation (7),
to construct a statistic to test for the number of cointegrating vectors, unit

roots, in the system.

3 Cointegration testing using 2SLS estima-
tors

The GMM objective function, equation (7), can also be used to test for
the number of cointegrating vectors, unit roots. This can be done as the
optimal value of the objective function has a specific kind of distribution
under Hy : 7 = r*. In theorem 3, the functional expressions of this objective
function for several specifications of the deterministic components and their
limiting distributions are stated.

Theorem 3 When the DGP reads,

Az = af 1 + &, (34)

12



and the number of cointegrating vectors equals r (k-r) unit roots, the use of
the estimators,

T

T

a= 0> Axy(1—ahy 1O wor 13, 1) "wo-1)xhy 1) (35)

= =1
T

T
O w1 (1= ahy O maeah, 4) g 1)l ),
= =1

and . .
B= (Vg ) (X mada) S a(@ s 6, (36)
t=1 t=1
in the optimal value of the GMM objective function, equation (7),
A~ T A~
G (@, B) = vee( (A, — 6 e 1)a) (37)

t=1
T T .
((Z Ty )@ 271)1’60(2(&% —afwq)r) ),
t=1

t=1

leads to a limiting behavior of this optimal value which can be characterized
by

G(a,0) (38)
N tr[(/ WldW{)’(/ Wlw{)’l(/ WidW!)).
When the DGP reads,
Az, =z 1 — p') + e, (39)

and the number of cointegrating vectors equals r (k-r) unit roots, the use of
the estimators,

c=am (Y () () (0 e

Sot= (20 S (70 ) ()0 (4 Dot
and
()= () (o s () s ot e
(41)



in the optimal value of the GMM objective function, equation (7),
T " /
(e = vee( 3ol (1)) (a2
=1

/
(it ) 08 e Z o= oo - i) ()
leads to a limiting behavior of this optimal value which can be characterized
by
G(a,B.4)  (43)
s oldf (0 Yawir (P () () i
When the DGP reads,
Az, =c+afx,_q + e, (44)

and the number of cointegrating vectors equals r (k-r) unit roots, the use of
the estimators,

e () () () (1

t=1

G- (0 YE () (5 (1 P

T T
¢= (> An(1 -2y (O @eamy 1) 'wiq)) (46)
= t=1
T T
(Z(l - xt71/<z Ty ) wg)
=1 =1
and
K T T
= za7 ) 'O m A a(@Sa) (47)
=1 t=1

in the optimal value of the GMM objective function, equation (7),

T

Gla, f,¢) = vee(d (Axy — afz,q — &)z, ) (48)
=1
T T
(X 12t 1) © = oee(3 (A =z — )3y,
t=1 t=1

14



leads to a limiting behavior of this optimal value which can be characterized
by

o (" Yo () (%)

When the DGP reads,

G, f,8) (49)
” ) awy)l

/

i (

= =

Axy=c+a(fx, 1 — 8t) + =, (50)

and the number of cointegrating vectors equals r (k-r) unit roots, the use of
the estimators,

6= (3 Azy(1 - ( 1 ) (Z( 1 ) ( 1 ))1( 1 ))x’ltl)(f)l)
=1 t t=1 t t t

Oyl — ( 1 ) (Z( 1 ) ( 1 ))1( 1 ))QJSH)I,

t=1 t t=1 t t t

¢= émtu - ( o ) <tZT; ( o ) ( o )/>1 ( o ))) (52)

g0 (0 JEC) (e ()
and

(-G ) (0 P e

=1 =1
(53)
in the optimal value of the GMM objective function, equation (7),

G(a,B,6,¢) = vec(ZT:(Aa:t —a(Bae 1 —§1) — &) ( j’agl >/)’ (54)
oo (T ) ()t

vee(3 (Axy — &(Bwey — t') — ¢) ( Ett—* ' >/>,

t=1
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leads to a limiting behavior of this optimal value which can be characterized
by

] . G(a,/,6,6)  (55)
Yo (%) (% g ()

T
. . .oy — 1
>,$1t.7“><1, Tot © (l{?—T)Xl, Te1 = Te1— 7 Ela%,l,
t—

=

:>tr[(/(

where x; = (

=l

T1g

Lot

|

T
=t—7 tzl t; Wi, Wiy are (k—r), (k—r—1) dimensional brownian motions,

W12
0<t< 1, T=7—[7, and X is estimated by the residual sum of squares for
the unrestricted model.

W _ —
W1=( 11>,W1:W1—fW1,WHZWH—an,T(t):ta ut) =1,

Proof: for the first part a proof is given in the appendix, the other parts
follow naturally.

Theorems 1 to 3 show that the limiting distributions using the 2SLS
(GMM) estimators are identical to the limiting distributions when maximum
likelihood estimators are used, see [4]. As maximum likelihood estimators can
be constructed in a straightforward way using canonical correlations there
is not much gain when 2SLS estimators are used compared to maximum
likelihood estimators from a limiting distribution perspective. Possible gains
can lie both in the small sample distribution of the 2SLS estimator and
in model extensions as maximum likelihood estimators become analytically
intractable when more complicated models are used then the one shown in
equation (1).

In [12], it is shown that the canonical correlation cointegrating vector
estimator has a small sample distribution with Cauchy type tails such that
it has no finite moments. When we neglect the dynamic property of the data
and assume fixed regressors, results from [9] indicate that the small sample
distribution of the cointegrating vector estimator has finite moments up to
the degree (k — 7). This degree is determined by the (&/%7'&)~! expression
appearing in the cointegrating vector estimator B As [ is specified such that
it always has rank r, rank reduction of o’ implies that « has a rank smaller
than 7. In that case &Y '@ would not be invertible leading to the fat tails of
the small sample distribution. So, cointegration tests essentially test for the
rank of o and can be considered as tests for the local identification of 3 and

16



are, therefore, comparable with the concentration parameter in the INSEM,
see [9)].

The maximum likelihood estimator is appealing as it has a very simple
expression in the standard case. The relation between maximum likelihood
estimators and canonical correlations is, however, lost when extensions of
the model are considered. Furthermore, model extensions often lead to ana-
lytically intractable maximum likelihood estimators. The GMM framework
used in this paper offers a framework which allows for the analytical con-
struction of cointegrating vector estimators for a general class of models. In
the next sections two kind of structural break model extensions are analyzed,
l.e. structural breaks in the variance (heteroscedasticity) and cointegrating
vector and /or multiplicator, whose cointegrating vector maximum likelihood
estimators are not of the canonical correlation type.

4 Cointegration in a Model with Heteroscedas-
ticity

Assuming homoscedastic errors in the model from equation (1), the maxi-
mum likelihood estimator of the cointegrating vector in the ECCM can be
constructed by means of canonical correlations. This estimator has a nor-
mal limiting distribution under conditions which are more general than strict
homoscedasticity, see [14], where it is for example proved that the weak con-
vergence properties are retained in case of heteroscedasticity with a constant
mean of the conditional variance. These weak convergence properties are,
however, lost when the mean of the conditional variance changes from period
to period. Furthermore, also the relation between the maximum likelihood
estimator and canonical correlations is lost in that case. A (3SLS) GMM
cointegrating vector estimator can still be constructed when the functional
form of the heteroscedasticity is known. It is also possible to perform a
quasi-GMM analysis using a White covariance matrix estimator, see [15].
We construct estimators and limiting distributions for both cases for an ex-
ample of a change of the variance after a predefined period of time 717 has
evolved, such that the analyzed model reads,

Ary = af w1 + =, (56)
where
cov(sy) = 3, t=1,...,T (57)
— 22. t:Tl—I—l,,T
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In the next two subsections, the (quasi) GMM cointegration estimators
and tests and their limiting distributions are derived using both a Generalized
Least Squares (GLS) framework to account for the heteroscedasticity and a
White Covariance Matrix Estimator.

4.1 Generalized Least Squares Cointegration Estima-
tors

Assuming that we know the form of heteroscedasticity, a different GMM
objective function then equation (7) is used in the construction of the GMM

estimators,
1 T
Gla,f) = vec(Q_Si'ew) 1+ Y Ty'ew) ) (58)
t=1 t=T1+1
T T
Qi @2+ D0 (v %)
t=1 t=Ti+1
1 T
vecD S sl + Y. Ty leal ).
t=1 t=T1+1

In the next theorem the GMM estimators and their limiting distribu-
tions jointly with the limiting distribution of the optimal value of the GMM
objective function are stated.

Theorem 4 When the DGP in equations (56), (57) is such that the number
of cointegrating vectors is r (k —r unit roots), the estimators,

Ty T
vee(@) = (O meaz, ;O3 ) +( DY) 2, 05" (59)
t=1 t=T1+1

T T
s—1 / s—1 /
vec(D ST Az, + > By Amr_y),
=1

t=11+1
and
vee(#) = (Q_zezi @B @)+ (D zeazi ©4'5,'4))(60)
=1 =Ty 41

T T
vecD T Az, 4+ > &S Anay ),
t=1 t=T1+1
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have a limiting behavior which can be characterized by

VTvee(a—a) = n(0, (w(cov(fz); @ 'Sy a) (61)
(1 —w)(cov(Fz), © a'Zy a)) ),

and
Tlec(Bs — )] (62)

= (8.8 'FLas © L) (A [ WiWIAL © a'S; ) +
</<A2W1 (t) + A1W1 (w))(A2W1(t) + A1W1<’U)))/dt & 04/22710[))71

vee[ ( /w AW, WAL + Oy / AW (1) (AW (£) + AW, (w)YdL)],

The limiting behavior of the optimal value of the GMM objective function,
can be characterized by

G(a, p) (63)
= ’UGC[A1</ dVVlWl’)A’l + AQ(/ dW1<t)<A2W1<t) + A1W1(w))’dt)]’

1

(A4 /wVVlVV{Aﬁ ® o) B tay) + (/(A2W1(t) + A Wi (w))

w

<A2W1 (t) + A1W1 (w))’dt (029 alE;lo@))*l
vee[As / AW WAL + Ay / AW, (1) (AW (£) + AW (w) YdL)),

where w = ITL, W1 and Wy, are stochastically independent r, (k —r) dimen-

. . . i . . . . 1
sional Brownian motions with identity covariance matrices, Ay = (o, 34 10@) 2,

. T
Ay = (O/LEglo@)%, QO = (O/ElOé)%, Qy = (0/2204)%, ¥, = ﬁglea:t(l —

Ty ~ T T
2 (X ezt ) e DA, Yo = mp Y An(l-ahy (X ezt ) wea)Aa,
t=1 t=T1+1 t=T11+1

cov(flx) = %O: CrCY B, cov(fx)y = 3 %O: C:3CF' 3, ()1 are the first
i=0 =0

kr rows of ( )7L
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Proof: see appendix.

Theorem 4 shows that the cointegrating vector estimator B has a normal
limiting distribution. When we use a cointegrating vector estimator which
neglects the heteroscedasticity of the disturbances, we cannot find accurate
expressions of its covariance matrix such that it is hard to test hypotheses
on the cointegrating vector in that case. Although the cointegrating rela-
tionships are not weakly stationary in this case, as they have a different
variance in each of the two variance regimes, they still show mean reversion.
The estimators and limiting distributions from theorem 4 can be extended
to more variance shifts and other moment conditions (relationships) for the
variances can be incorporated. The limiting distribution of the optimal value
of the GMM objective function now depends on the relative change of the
covariance matrix and the point of change, T7. As it is not known what the
true values of these parameters are, they are typically replaced by sample
estimates. The resulting distribution is in that case no longer the true limit-
ing distribution but only an approximation of it. In the next subsection, we
will show the applicability of a nonparameteric correction for heteroscedas-
ticity, the use of a White covariance matrix estimator, see [15], in the GMM
objective function.

4.2 Cointegration Estimators involving Nonparamet-
ric Heteroscedasticity Corrections

For the case of general kind of heteroscedasticity, the White covariance matrix
estimator, see [15], can be used in the GMM objective function. This kind
of analysis is known as quasi-maximum likelihood or quasi-GMM analysis as
we leave part of the stochastic process (conditional variances) unspecified.

We analyze the behavior of the resulting cointegrating vector estimator,
using the White covariance matrix estimator, for the case analyzed in the
previous subsection, i.e. a change of variance at T}. The GMM objective
function then becomes,

T

T T
Gla, f) = vec(Y_e) 1) (Q_(wi1wi y © £2)) Tvec(Y_ewy ), (64)
t=1 =1

= t=1

where £; are the residuals from the unrestricted model estimated assuming
homoscedasticity. Theorem 5 states the different cointegration estimators
and the limiting distributions of these estimators and the optimal value of
the GMM objective function. As the convergence of the White covariance
matrix estimator is proved in [15] for the stationary case, a lemma in the
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appendix contains a proof of its convergence in the case of nonstationary
unit root type series. Note that extensions of the White covariance matrix,
like the Newey-West covariance matrix estimator, see [8], which also account
for serial correlation, cannot be applied here as neglected serial correlation
leads to inconsistent estimators while these covariance estimators can only
be applied when consistent estimators are used, see also [10] and [13].

Theorem 5 When the datagenerating process of the model in equations (56),
(57) is such that the number of cointegrating vectors equals r (k-r unit roots),
the estimators,

T T
& = (O Ax(1— o (D a1y ) war1)rhy ) (65)

Pt =1
T T

O w11 (1= wae 1O war 1y, 1) Mwae 1) )
t=1 t=1

and

T
vee(By) = = mazi 1 @ L)y (I @ &) (66)
t=1
T
O (weazl @ 2E) H(Ir @ &) !
t=1
T T
(I © &) O (m1zy_y © 65))) Twee(d ) Awyry_y)
= =
T
= wvee(fy) — Qw21 O L)y (@ &)

t=1

O (weaaf @) (I @ &) (I @ &)

i
I,

]~

(

T
(rraty @ 28) vee(Y = ).
t=1

i
I,

have a limiting behavior which can be characterized by

VT(a—a) = n0,(weov(Fx) + (1 — w)cov(F'z)y) © ) (67)
(w(cov(Fw)y © ) + (1 — w)(cov(fz); © )
(weov(Bx)1 + (1 — w)cov(Fx)y) @ I) 1),

and
T(vee(B — B3) (68)
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1

S (700 e o L) [N @ ) + ([ (W)

w

HA W (w)) (Ao Wi (1) + AW (w))dt © 1)) (Li-r © &)

1

((Ay /w WAWIAL © Z0) -+ ([ (AaWa(t) + AW () (A W3 1)

w

FA Wi (w)) dt @ 29))  (Iy—r © @) (Iyr © &)

1

((Aq /wWﬂ/Vl/A/l ®@ %) + (/(A2W1(t) + AWy (w))

w

(AW (1) + AW (w))dt & 5)) Moec|S? /w AW (1) (AW (1)) dt

1
25/ (MW (w) + AW (1)) dl]

The limiting behavior of the optimal value of the GMM objective function,
can be characterized by

G(a, f) (69)

= ’UGC[A1</de1W1/)A/1 + AQ(/ dW1<t)<A2W1<t) + A1W1(w))’dt)]’
((As /wVVlVV{Aﬁ ® a5 ar) + (/(A2W1(t) + AWy (w))
(AW (1) + AWy (w))dt @ o 55 ey ) MvecAq ( /w dW WA}

1
where w = —l , Wi and Wy, are stochastically independent r, (k —r) dimen-

_ 1
stonal Bmwman motions with Zdentzty covariance matrices, Ay = (a/, 3 10@) 2,

Ay = (aLEQ ozL) O = (o Eloz) Qy = (OZ/EQOZ)%’COU</6/$)1 :ﬂ’E)C’;‘Eng‘"ﬂ,

cov(fx)y = Z CraCr e, ( );1 are the last k(k —r) rows of ( )~1.
i=0

Proof: see appendix.
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Theorem 5 shows that the limiting behavior of the optimal value of the
GMM objective function is identical to the case of specified heteroscedas-
ticity stated in theorem 4. The limiting distributions of the cointegration
estimators & and B are, however, different although they are both normal
and have a larger variance compared to the limiting distributions of the es-
timators discussed in theorem 4. As we didnot incorporate any specification
of the form of heteroscedasticity, the quasi GMM cointegration estimators
discussed previously can also be used in case of several changes in variance
and essentially lead to consistent covariances as long as the consistency con-
ditions for the White covariance matrix are fulfilled. The specification of
the estimators are identical in that case to the ones in theorem 5 and they
also retain their asymptotic normality. The expressions of the asymptotic
variances do, however, change.

In this section, an extension of the standard cointegration approach is
discussed in the sense that we allow for heteroscedastic disturbances, which
extends the results for constant conditional variances. The next section gives
another extension to breaks in the cointegrating vector and/or multiplicator.

5 Cointegration with structural breaks

In this section, we investigate the influence of a change in the value of the
multiplicator, a;, and cointegrating vector, (3, at T7. The model, therefore, is

Az, = affzi 1 +5 t=1,..,T}, (70)
Azr; = 0¥z 1+ e t="T,+1,...T,

where £; are Gaussian white noise disturbances with covariance matrix
Y. The GMM objective function corresponding with this model reads,

Ty T
Glo,8,7,0) = wvee(d ey 4, Y, =i y) (71)
t=1

t=T1+1
4 1 1
((t;f”tflx;fl)i ®©¥X) 0
T
0 (X zeax ) toxh)
t=T1+1

o) T
/ /
vec(z EtTy 1, Z E6Ty 1),
=1

t=T1+1

where vec(A, B) = (vec(A) vec(B)'). In theorem 6, the cointegration esti-
mators and their limiting distributions are stated jointly with the limiting
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distribution of the GMM objective function. As the cointegrating vector es-
timators and multiplicators all have normal limiting distribution, standard
x? tests can be performed to test for the equality of the parameters in each
of the two periods. Theorem 6 also states the estimators and their limiting
distributions, which can be used when either the cointegrating vectors or
multiplicators in each of the two periods are equal to one another.

Theorem 6 When the DGP in equation (70) is such that the number of
cointegrating vectors is v (k-r unit roots), the estimators,

T T
a= (Y Am(l—ahy, (O wa 1w, 1) 'wa 1), ) (72)
t=1 t=1
T T
(Z x1t71<1 - 37/2%1(2 372%137/%71)71372%1)*"17/1#1)71a
t=1 t=1
. T T
0= > Awy(1—ahy (> wyaah 1) 'wa )2, ) (73)
t=T1+1 t=T1+1
T T
( Z Tie-1(1 — T 4 ( Z Top 1T 1) ap 1))
t=11+1 t=T1+1
and
N 11 T
F=0 waz ) 'O maAd)E Ta(@/ S Ta) (74)
t—1 t—1
T T
Y= moaxh ) (Y, AT, 005, 10) (75)
t=T1+1 t=T1+1

have a limiting behavior which can be characterized by,

VT (& —a) = n(0, cov(fz) ™ ©wk), (76)
VT (0 —60) = n(0, cov(y'z) ' © (1 —w)x), (77)

and

~

0
TB-p)= ( (ﬂlﬂﬂ*lﬂiﬁﬂ\fﬂ(?W1W1/)71(7W1dW2/)Q/1 ) . (18)
T(ya— %) = [(/(ﬂ@(%@)fll\lwl(w) + AL (0 )T ATA() (79)
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(VLB BL) AW (w) 4+ v (0 v0) T AW (t)) dt)]

1

SR8 AW () + 771 (0 70) AT (1))

AW, (L)' dt]S).

The limiting behavior of the oplimal value of the objective function can be
characterized by,

(a 3,4,0) (80)
= vee(( / WydWw!)') / WW) L@ I, Jvee / WdW!)')

toec( [ A0 v (Vi) LB (L B) T AW (w)

sl

+W )W (1)) ([ [ (A0 v (Yov) Y8 B) T A W (w)
(A0 v (Vi) LB ) AW (w)
A0y (Yiv) LB BL) T AW (w)

FWL ()W (1)),

.

g

+Wi(t)

S—r

W ()Y dt] !t @ I )vec(

sl

When the model in equation (70) is such that the cointegrating vectors are
equal in the two periods, 3 = ~y, which can be tested for using a x? test,
the GMM estimator for [ reads (estimators for o and 0 result from the first

part),

vee(3) = a:t 1 @a'E ) + (81)
t 1
T ~ ~
(D 2w @050 (L odD )
t=T1+1
T N T
(vec(S Aty ) + (I 05, Yoeel S Awal )]
=1 =Ti+1

= vec(( _152 ) )+ [(Z T 17, | @ &S )

t=1

T
(Y. zaa, 00, 10)] e ZozE Sty 1)

t=T1+1 t=1
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T
tovee( Y 05, e )]

t=T1+1

and the limiting behavior of this estimator can be characterized by,

TWC(B2 — () (82)

= (81807 © L)@, 80 Ml [ WMWDAL(BLaL) 0 a'S )

(@A) MW w) + (6,4) WA ()((8) MW (w)

+(0, BL) T AW (1)) dt] @ 'S 10)]) Twee(Qy( / AWy, WA (B ay) ™
0

1

+05 [[AWa() (Wi (w)AL (FL00) ™" + WIAL(F,0.) " )at)).

w

When the model in equation (70) is such that the multiplicators of cointegrat-
ing vectors are equal in the two periods, o = 0, which can be tested for using
a x? test, the GMM estimator for o reads (estimators for 3 and y result from
the first part)

o = ZAfEtht 1ﬂ+ Z Az, 1) th 12 1ﬂ+’7 Z Tz )

t=T1+1 t=T1+1
(83)
and its limiting behavior can be characterized by
VT (& — a) = n(0,weov(fx); + (1 — w)cov(yx)s) (84)

where w = —l , Wi and Wy, are stochastically independent r, (k —r) dimen-

1
stonal Bmwman motions with identity covariance matrices, Ay = (o/, X 1a) )3

~ 17
Ay = (0/5710,)%, Q = (@Sa)}, Q, = (0S0)%, & = 715 5 Azl -
t=1

T ~ T T

oy (2 vy ) "2 1) A, By = . o An(l=zi (X @)

=T t=Ti+1
cov(fx)y = ZC 2100, cov(y'w)e = [ 205222052’ﬂ and C1(L), Cy(L)

are the Vector Mavmg Average representatwns 0f the first and second subsets.

Proof: see appendix.
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Theorem 6 again shows that the GMM estimators of the cointegrating
vector and multiplicator have normal limiting distributions in case of breaks
in the cointegrating vector and/or multiplicator. Similar to the limiting dis-
tribution of the optimal value of the GMM objective function in case of het-
eroscedasticity, the limiting distribution of the optimal value of the GMM
objective function again depends on model parameters and the changing
point 7. An approximation of this limiting distribution can again be con-
structed using the estimated values of the parameters, o, 3, 0, v and T}. As
this leads to a rather complicated testing procedure, it may be preferable to
fix the number of cointegrating vectors a priori and just perform tests on the
estimated cointegrated vectors and multiplicators, which are straightforward
to construct. This reasoning also holds for the cointegration tests discussed
in the previous section.

6 Conclusions

A GMM framework for cointegration analysis is developed allowing for exten-
sions of the models, which are analyzable using the methods documented in
the literature. As examples, extensions along the lines of heteroscedasticity
and structural breaks are included and the resulting cointegration estimators
are shown to have normal limiting distributions while the optimal value of
the GMM objective function has a limiting distribution, which is a Brownian
motion functional with additional parameters resulting from the change of
properties of the involved Brownian motions. These additional parameters
are essentially the parameters in the model with vary over time resulting in
heteroscedasticity or structural breaks. In future work, we will apply the
developed framework for a.o. cointegration analysis in financial series, for
example term structure of interest rates. As heteroscedasticity is a stylized
fact of these series, the standard cointegration procedures cannot be applied
here as they lead to inconsistent estimators and/or incorrect (asymptotic)
variances of the estimators.
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Appendix

Lemma 1.

In this lemma the consistency of the White Covariance Matrix Estimator
is proved for the case of nonstationary cointegrated regressors. The proof
is given for the homoscedastic case, extensions to heteroscedasticity follow
naturally as a homoscedastic dataset can be interpreted as a subset of a
heteroscedastic dataset. It is assumed that v, = £, — 2, vec(v,) ~ f(0,A @
L), Bz 12, | @v|ly) = 0. We assume a DGP of the form,

/
Axy = af zi 1 + &y,

T
To proof consistency of the White Covariance matrix estimator Y (z; 12}, ;@
=1

£1£1), we first analyze its behavior in terms of the cointegrating relationships
and their orthogonal complements,

]~

(&8 28 ) @ L) Y (waz, @22)(( J50 161 ) @ L)

i
I,

]~

ﬁﬂ :lrﬂL ) QL) ) (w7 @ X+ Ut)<< \/Lfﬂ %ﬂL ) @ L)

I
—~
N

—_

i
I,

]~

B 3B ) L)Y (w00 (( 58 18 ) oL

|
=
Sk

i
I,

—I—(( \/Lfﬂ %ﬂL )/ixtlx;tl( \/L?ﬂ :lrﬂi )®Ut)
t=1

The cointegrating relationships are stationary such that the standard results
apply to them,

1T
?(Z By 12, f@v) = 0.
t—1

For the nonstationary case it holds according to the central limit theorem,
that because z, 1 and v; are uncorrelated,

1 T
T3/2 <Z B2 1T 181 @ V)i
=1

1 T
- <T3/2 Z@prt*lx;qﬂﬂ%)
=1

= n(0,A® c(/ W2W2)I,).
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where ¢ is a function of the cointegrating vectors, multiplicators and covari-
ance X, W; and W; are (possibly) correlated Brownian Motions. So,

1 T
ﬁ(Z Bl 1z 1B @v) =0
t=1

This result can also be applied to the cross products of the cointegrating
relationships and their orthogonal complements. Consequently,

]~

(708 700 )@ L) Y (weaz, @ 22)(( 78 161 )@ L)

i
I,

]~

= (48 38 )0 L) Y (w00 48 78 )@ L)

i
I,

which proofs that the White Covariance Matrix estimator can be used in the
case of a cointegrated dataset.

Proof of theorem 1.

In [4] it is proved that the stochastic process x;, from equation (1), can
be represented by
1 /
Aw,=C(D)S3g, = (1 -p)
where & is a k—variate Gaussian white noise process with zero mean and
identity covariance matrix. Consequently,

n= B0 B el B Y 6 0D
e = (el )l B jzt:lgj - ( ](; ) CH(L)T3g,

1t 0 1
Ty = (/| B1) 1o/ X2 2 &t ( I, ) C*(L)Xz¢,,
j= —r

where C(L) = C(1)+ (1 — L)C*(L), C*(L) = ioj CrL'. The least squares
i=0

estimator of a;, &, can also be expressed as

T T
d—a = (Y ull—ah (3 w12 ) Ta 1)y, )
t=1 t=1
T T
(Z wy1(1 = 517/2#1(2 Top 1T 1) ap 1))
t=1 t=1
T N T . -
= Qw1 — Bywae 1)) Q_ (w161 — Pyae 1) (@101 — Fyrar 1))
t=1 t=1
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- T -
with By = (3 @ 125, 1) ‘ot 17}, 1. P is a superconsistent estimator
-1

=
of #5 and can therefore be treated as equal to (5 in the derivation of the
limiting distribution of &. Since

T - ~ 00
%t;(fl?ltq - ﬂéx%fl)(xltfl - ﬂéfl?%fl)/ = COU(ﬁ/fE) =0 .;) Ci*EC;/ﬂa

and, T2 (Z wi(zy 1 — Bywar 1)) = n(0, cov(Fz) @ %), the limiting
distribution of a becomes
VT (& —a) = n(0, cov(Fz) ' o).
With respect to the cointegrating vector,

T T
A= Q_ma ) 'Oz da) D (@R a) !
= t=1

t=1
I,

N ( th 174_1)2 1<t§1$t1<x21ﬂa/+ué>)2154(@/21d)1
I,

N ( Zfl?t 177 1)y 1<t§1xt1<x£1ﬂa/+ué>)210‘<0/210‘)1

T

0
- + / -1 I / -1 /=1 -1
( @) (3 ey 1) (X me ) T e (oS )

T T
where (Y 2, 17} ), indicates the last (k — ) rows of (X 2, 12}, ,)~! and
=1 =1

~

& is a consistent estimator of a such that the difference between & and
o will only affects orders of convergence exceeding 7. Furthermore & =

T T T
<t21 a:t,latgfl)fl(;:l x—1Ax}), where <t21 xy 12, )7 " indicates the first r rows

T
of (t; T 7 1) L

To analyze the limiting behavior of B , We have to determine the limiting
expressions of both (Z T 17, ), " and (Z zequp) SN (o’ a) Tt Start-

ing with the latter express1on its hmltlng behav1or can be analyzed using
the stochastic trend specification.

d T t—1
Oz w) R a(a’E ) = <Z@(Ozl@)flal2%(z €)% 20
t—1 ot

t=1

T
—I—ZC’* 22& 165 204)(042 a)

t=1
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Since Yzay, is orthogonal to X Za, i.e. (E%aL)’E’%a = o/ a = 0, the
brownian motions appearing in the limiting expression are independent,

1 T t—1
Y0 SHY )eT ta = A [ Widwiay,
t=1 j=1

T 1
since %O/LE%< ‘21 &) = MWy, Wy is a (k — r) dimensional brownian mo-
J:

tion with covariance matrix [;_, and A| = (ozLEozL) Wy is a r dimensional
brownian motion with covariance matrix [, and W, is stochastically inde-

pendent of Wy, Ay = (O/Z]floz)%.
T
Also the limiting behavior of (3" x; 12} ;)" !is determined by the stochas-
=1

tic trend specification.
(i%—ﬂéq)ﬂ = ( g B ) ( g B ) Zfﬂt 1Ty ( g B )]71 ( g B )/
=1

So, the limiting behavior of ( 8 B )/ (Z Tt 1%} _4) ( [ ) is of primary
=1

importance.

;L 1
(174 146, ) i (740 715,

(cov(ﬂ’ ) 0 )
0 B0 ) M (WA (e B1) 01 51

as T
TN FONL)SRE & B2 CH L) = cov(Fx),
t=1

T

t—1 t—1
T2 B ) D (22 )0 &xa) (o ) VBB
t=1 Jj=1 Jj=1
= ﬂl@(%ﬂﬁfll\l(/ WAWDA (o B1) V8 81,

T
T33O (L) 2522 a ) (o B) VBB = 0.

t=1

Consequently,

;I 1
(128 T8.) <Z;a:t1x;1>(Tw T )t

(cov(ﬂ’ ) 0 )
0 (BL60) B Lo Ay (S WAW]) A BL(B1 L) !
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and

T
(Z T 1yy) "
t=1
= O(T)feov(B'z)"'3 +
O(TQWL(ﬂl@)flﬁi%f\fl/(/ W)~ A BB B
where O(T7) indicates that the limiting behavior of this part is proportional

. T
to T7. The latter part governs the limiting behavior of (3 x; 12} ), ', which
=1

can be characterized by

T
T 1w )y = (B0 FLac A ([ WAW) A el B (8L
t=1

/
as B, = ( 152 ) . So, the limiting expression for the cointegrating vector
-7

estimator becomes,

~

0
- = ( (8.8.)1 8o A7 () WaW}) (T Wad W) )
0
= ( n(0,d/Y e ®© ) ’

where © = (3 0.) "Bl ATV (JWAW]) A/ BL(F 81) " and can be
T
approximated by (= ;1 wor 1 (1= (S 2 a2, 1) Trna)wh, ) (=

©).
Proof of theorem 2 (only the second part of theorem 2 is proved).
When the DGP of x; reads,
Az = N +a(fae 1+ 1) + e,

¢ =a XN + ay, it has the stochastic trend representation, see [4],

1 /
Amy=C(D)(c+33&), f= (I —B ),
where &, is a k—variate Gaussian white noise process with zero mean and
identity covariance matrix. Consequently,

1 ¢ .
= fulel fr) el (e N 4+ 32 3 &) + O (Dap' + CHL)Z2E,
1=
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o = el ) a4 £ ) ( ) (@ se e
= )l 43t Eg)+ (0 )<6ﬁ<1wmuh+cv<L>zéga,

where C(L) = C(1) 4+ (1 — L)C*(L), C*(L) = ZC’*LZ gC*(Da = L.

The least squares estimator of «, &, can also be expressed as

o =

e ()& () (o (4 s
G () (5 (2

i %“_(%>(%?)wimu_(%y

=1 t=1

(3o (3) ()
o ()= 65 ) (1) (1)

superconsistent estir~nato/r of (5. Since o,
b= () (0 P () (0 )
= cov(flx—p) =70 i)C’i*EC’i*’ﬂ, and,
T*%(ZT: ug(Tp-1 — ( ﬂ} >/ ( infl ))’) = n(0, cov(f'x —p') @ %), the
limiting di;tribution of d/éecomes
ﬁ(d —a)=n(0, cov(fx—p) o).
With respect to the cointegrating vector,

(1) = () (3 (5 s

H )

= R



k
as | Y 'a = 0 since X! = PAP', A =diag(\;) = Y Neel, PP = I,
=1
k
o PPa = b =0, Pa = b= (b)), @\ T e = V/Ab = 32 Y, b =

T /
0 as ¥/ ;b; = 0 Vi. (3 ( $t£1 ) (51%11 ) )o ' indicates the last (k — 7 +
=1

/
T
1) rows of (X :Et{l ( :Et{l ) )~! and & is a consistent estimator of «
=1
such that the difference between & and « will only affect orders of con-
vergence exceeding 1. To analyze the limiting behavior of (3, we have to
/
T
determine the limiting expressions of both (3 ( :Et{l ) ( :Et{l ) );1 and
=1
X :Et{l u) X a(a/S )71 Starting with the latter expression, its lim-
iting behavior can be analyzed using the stochastic trend specification.

(i ( r ) u)S oo/ ) !

t=1

_ [ e e X A DT E) ) g,
=1 1
S CHL)ap + CHL)D3E 1) | gk vy et
+;( : ) ) gz ta) et

Since X%ar, is orthogonal to £ 20, ie. (E%aL)’E’%a = o/ a = 0, the
brownian motions appearing in the limiting expression are independent,

Tﬁl)‘L / —1_ d / 12 I3
ng)\ (aLai) Q ;(tal)\ + X2 (Z; 5]))5152 QOZ)
—_ J:
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= A3/ ( VZ” )dWQ’A’Q

T, . 0
R Ea SRR R R O

= As / ( VZ” )dWQ’A’Q

So

. T 'L,y 0 0 "o
+ 0 T3 Z(mt1>ut2 la(o/2 )™ !

=1

(e

=
(NI

o+

Wll
N (%3 ?)/ T | awia

L

/
where 3% = 8.(30.) 'F ai(a a)! ( )\)\L ) , AN =0, Wiy is a

(k —r — 1) dimensional brownian motion with covariance matrix [ , ; and
/ -1,/ 31 / -1, vl
A3 = (( AL(O&LO[;))\/ OZLEQ ) ( AL(O&LO[;))\/ OZLEQ ) )%, W2 is a r dimen-
sional brownian motion with covariance matrix I, and Ws is stochastically
1
independent of Wiy, Ay = (/S )2, 7(t) =¢, «(t) =1, 0 <t < 1.
/

T
Also the limiting behavior of (3" ( :Et{l ) ( :Et{l ) )~! is determined by
=1

the stochastic trend specification.

L ()
0 0
1
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1 X Tﬁl]kfrfl 0
T Qﬂ ﬂL ( 0 ng 0
0 0 T3
cov(f'x — p') + p'p 0 p
1% Wi\
Sl e Y (e
7 0 1
Consequently,
Ty O ) ’ ,
7% ( A NG Lol mea ) [ e
( 0 T ) (Z 1 L))
0 0 T2 ) t1
. Ty O .
T-33 ( g ! " ) 0 =
0 0 T 3
cov(Blw —p/)! 0 —cov(Bx —p') 'y
/
= 0 A§1/<f ( V[j—ll ) ( V[j—ll ) )71A51 0
—peov(Fx — p') 0 1+ peov(B'x — p/)y~ 14!

T
The limiting behavior of (3 2,17} ), ' now becomes
=1

L [ TLi .y 0 - ,
() )& ) (e )

0 T3 ) =
% T]kfrfl 0
& i( 0 T2 ) ’
0 T3
/
N As 0O o </ V:/_H V:/_H )71 As 0O -
0 1 0 1
L L
)\ /
where 33, = (8,.68.) 'fla (¢ a)! )\L . So, the limiting expression

for the cointegrating vector estimator becomes,
T]k*7*1 0 * * \—1 2% A

( 0 T3 )( 51050) lﬂﬂ 0 (ﬂ2—ﬂ2>

0 T3
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-1 !
( %3 2 ) (/ T T )*1/ T dWi A,
L

= n(0, Y 'a®6,)

/

.Y 4% W -1
where Oy = ( %3 2 ) (f 7-11 7—11 )t ( %3 2 ) ‘
L L

Proof of theorem 3 (only the first part is proved, the other proofs are
similar).

The optimal value of the GMM objective function reads
. T T T
G(a,B) = vec(Y_ éwy 1) (Q w1z 1) @ Eil)vec(z ity 1)
=1 =1

T
= vec(d (Az — a(&'T ') ZAa:ta:t 1 th 175 1)

t=1

T T
>z )OO rxy ) TN
= =1
T

vec(d (Azy — a(¢/S'a) la'm ! ZAa:ta:t 1 th 175 1)

t=1

T
Z‘xt*lx;fl)
=1
T
= vee(S' =S @@ @) d SO Ar_y))
—1

(O wazy ) '@ X)vec((T! — o a(@’s 'a) '@/s )

(; Az )

T
This functional consists of two parts, (3 z; 17} ;) ' @) and vec((X~1 —
=1

Sla(eyxta) e )( Z Axx),_)), each of which limiting behavior is an-
alyzed separately. Startlng with the latter expression,

1
?vec((Efl -y la@xta)y ta/s ! ZAa:ta:t 1
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1

T
= ?vec((dL(dlEdL)fl@l(Z Axry )

1 T = B
= ?vec(og o Ya) 12 aLEé&(ZS’}Eé%(ﬂL%) '31))
=1 =

= (B p)! ®04L<O‘/LEO&)71)U€C<A1</ WidW1)'AY)

While

So

2((; 37#1517;71)71 ® )

(Bo(8L80) BLac A ([ WAW]) A B (A1) 8L 0 D).

G(é, )
vee(As( [ WidWiY ALY (B.(a!,81) " © o (@) Tau) Y
(BL(F.80) 7 BLau A ([ WAW]) A 0l AL (A BL) L 0 3)
(B! B1) @ (o) Sa) ee(u( [ WidWi)A})

vee(As( /Wldw1 VALY (A7 Y( /W1W1 AT @ (o) Ba )™
vee( Ay / WidW!YAL)
vec / WydWw!)') / WW) L @ I, Jvee / WdWw!))

tr / WydW!)' / W) / WydW!)]

Proof of theorem 4.

The GMM objective function reads,

T T
Gla,B) = vec(ZEfIgt:le—l— Z E;lgt:p’til)’

=1 t=T1+1
Ty T
O (@wadi oS )+ > (zax_, ©03") !
=1 t=T1+1
vec ZE Sty 1 + Z ¥y et )
t=T1+1
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such that its derivative to vec(5’) becomes,

oG
dvec(F')
7 T
= Lod) Qrez 1 0S) +( Y 2z ©%)))
t—1 =11 +1
vec ZE Sy 4+ Z DIRREN A
t=T1+1
7 T
= (L zz 0T )+ ()] weaz,, © 'S, a))vee(H)
t—1 t=T1+1

vec ZozE A AR Z oYy Az, )

t=T1+1

— wece(d) = th 1 @S ) +( Z 7, @S a)) !

t=1 t=11+1

vec ZozE A AR Z oYy Az, )

t=T1+1

Estimators for & and B then are

Ty T
vee(@) = (O @z, , O +( D) w05 ")
t=1 t=T1+1

vec ZE Ao, |+ Z Yy T Az, )

t= T1+1
T
= (Q 2z 08" +( Z BTy © 8y )7
=1 t=T1+1

1 T
[(Q_ w12l @B Yvec(an) + (D) zeaziy © Ty vec(ay)]
t— =T +1

and

T T
<<meaz;,1 OAEG) +( Yz ©ES Q)
t=T1+1

oy
I

vee([

vec ZozE "N, |+ Z &'y Az )

t=T1+1

= <<Zwt71wéfl®d’2?d>+< Z T 1Ty © &S, a))
t=1 t=T1+1
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Ty

T
(O am, @ &S a)vee(by) + (D ma@)_ | © Ay a)vec(by)]

=1 t=T1+1
! 0
= vpec r + T o T L
<( — 2 ) ) ((tzl T 1T, @& a) + (t ;ﬂ T T, | @ &S, ), !
- =T

1 T
~Iv—1 / ~Ale—1 ’
vec(z aXy ey |+ Z &Yy ey q)
t=1 t=T1+1

where

Ty T
a; = (Z Amtm;—l)(ZfEt—lx;fl)ila
t=1 t=1

T T
dy = Z Az )( Z TeaTy_ )
t=T1+1 t=T1+1
T 11
b = <Zxtflx;71>7l<zfl?tflAfl?;)Efld(d’EIld)’l
t=1 t=1
a

= gl / -1 4 /
t; Ty 1Th 1)y (t; T 1 Az))

- ()
612 ’

yta(a's ta) !

—~

T T
by = (D mear ) (Y weaAr)Syla(@E, )
t=T1+1 t=T1+1
Qs
= T T —1arargi—1a3—1
> wpazh )y (X xqAx)) X, a(@'E, )
t=T1+1 t=T1+1

and ( ), represents the last kr — r2 = r(k — r) rows of ( ).
Estimators for 31 and ¥y can be obtained from the separate subsamples:

. 1 T T B
X = T — k YAzl =y (O wawy ) ae1)Axd,
! t=1 t=1
~ 1 T T
Xip = T_7T, —k Z Afﬂt(l - xg%l(Z xtflt"l?;fl)ilfl?tfl)A{E;.
1 t=T1+1 t—1
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The limiting behavior of each of the four different parts of vec(ﬁ’) will
now be investigated. The crucial difference with the previous examples is the

change of variance at point 11, the stochastic trend of x;, therefore, becomes
in(t,T1)

B B1)” %(22 Z §g+]k(t T1)22 Zé})

where I(t,T}) is an 1nd1c:ator function, I, (t Tl) =0, t <Ty; Li(t,Ty) =
I, t > T,. If T} is such that T} = wT), (T ) =(1—-wT, w= T1 , the

limiting behavior of x; can be characterized by
1 min(71,71)

Jrrr = 7p(BL(e) B1) o, (5} Z 53 + (T TS5 % &)=

min(w,l)

B/ ) (A f dWl( ) + Ik (l,w)As {{dWl(t)) =

ﬂL(alﬂL)’l(AlVVl(mln(w, D)+ L (1, w) A W1 (1)),

where W1 (t), Wa(t) are stochastically independent (k —r), r dimensional
Brownian motlons at time pomt t, 0 <1< 1 [,0<I<1 and Ay =
(&, 1 )3, Ay = (o, Tha )2, QO = (/S10)3, QQ = (O/EQoz)% (note that

both Browman motions appearing in the expression are independent).

14

?ZOAE £} 4

t=1
14

- Fyan 26, Z@ St (Flal) '8,

00 ([ W (30 ) 10

o)
[\
N
-
D
“H
-

~+

I I
e 2

—_

—_

1

2 2& 2522 + Z 522 o (B e ) '8,

j=T1+1

~Nl= e

~+

AW, (1) (AW (1) + AW (w)) dt) (5 )1 5

Y
5
SQH

1 1
since both 222 a, and Ef a, € span(c, ) and El a € span(a), (Bia ), 2a =

0 and (El a,) 22 a = 0. To obtain the limiting distribution of ﬂ we also
need the following results,
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T T
T mw @S M a) + (D) maw | © 'S, ),
t=1 t=T1+1

= ((ﬁlﬂﬁflﬂlou @ I)((Ay /VVlVVl’A’1 ® O/EIIOA) +
0

1

([ (Wi () + M Wi () (A W(t) + A Wi (w))dt 0/, 1))

w

(@ B(AL8) L O L)
So,

T[WC(@ - B2)]

L (AL M © L) (A / WAIVIAL © 'S ) +
( /1 (AW () + AW (w)) (A Wi () + M Wi (w))dt © /5y )
(@ BL(B0) B0 L) (B B1)" @ L e ( O/w dWa WAy +
Qs /1 AW (t) (A Wi (t) + AWy (w))'dt)]

= ((#18) ' flar @ L) (M O/wW1W1’A’1 @ a'S ) +
( /1 (AsWA(t) + MW (w)) (A Wa(t) + AW (w))'dE © /5y )

’UGC[Ql (/w dWQW{)A/l + QQ(/ dW2<t) <A2W1 (t) + A1W1 (w))’dt)]

This limiting distribution is again normal as the Brownian motions in the
stochastic integral W, and W, are stochastically independent. The limiting
behavior of the optimal value of the GMM objective function can again be
determined using the limiting behavior of the cointegrating vector estimator.

. T T
G(a,0) = vec(Q_ ¥y ey + D ByEw )
t=1

t=T1+1
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Ty

T
(Czaz, oS+ (Y a2, 05!

t=1 t=T1+1

vec ZE EeTy 1+ Z DIRER N

t=T1+1

= vec ZE (Az, — &z )2, | +

Z 3,1 Aa:t—ozﬂa:tla:tl th 1Ty 1 QX7 )

t=T1+1 t=1

T
+( Z T @y )) tvee ZE Afl?t—@ﬁfl?t 1)y

t= T1+1

+ Z E Aa:t—ozﬂa:t 1)Z5 1)

t=T1+1

Elements of this objective function are a.o.,

T T
(Qo w12y @B )+ (Y zeaz ©5,1)7
=1 t=T1+1
T
vece(d> Xy YAz, — afzy )z, | + Z S, (Axy — ez )2h_,)
=1 t=T14+1
T T
= (212l @D ) +( X 221 05) ' = (Lhod)
t=1 t=T1+1
T T
(L&) (Qozez 1 OB ) + (Y 2z ©%) (L ©a)™
=1 t=T14+1
T T
(Ir @ &) Joec((Q_ B e+ D, B3y o)
=1 t=T1+1
T T
= hoa ) (L@ d ) (Q_mz 1 @)+ ( )] zeazy 1 ©5,))
=1 t=T1+1

11 T
Iy @ 1)) (I @ & Jvec((Q_Sy el + D, Dy'ewi y),

t=1 t=T1+1

which has a limiting behavior following from,

T T
T @a ) (L@ d )Qo ez @S ) + (Y 2z ©% )
=1 t=T1+1
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Ty

(lr@ay))” (Ik@oﬂ vee 221 &% 1t Z E E4Ty 1)
t=T1+1

= ﬂh®@ﬁ«h®@ﬁ«iﬁvwéﬁﬂﬁ5+(§:%A%4®Efﬁ

=1 =T 41
T ;e T L
(20 ey ol B (gl (3 i3yt
=1 t=T1+1
2522 + Z 522 Jor (B ar) '6))

j=T1+1
= (ﬂL<HLﬂL)71HLO‘L @ o )((As /W1W1/A/1 ® OzlEIlo@) +
0
1
(/(A2W1 () + MW (w)) (A Wa(t) + MWy (w))dt @ o By ta )™

w 1
’UGC[Al (/ dWQW{)A/l + AQ(/ dW2<t) <A2W1 (t) + A1W1 (w))’dt)]
0 w
For determining the limiting behavior of the objective function we also need,

1 T B T -
ﬁ((Z}foE;A ® 3y 1) + ( Z 37t71517271 @ X 1))
t—=

t=T1+1

= (Bl ) ®]k)((A1/W1W{A/1 ®T) +
0

/Amq (1) + AW (w)) (A Wi (1) + AW (w)) dt © 55 1))

(FLa) B ©I).
So,

G(a,9)

w 1
= ’UGC[A1</ dWQW{)A/l + AQ(/ dW2<t)<A2W1<t) + A1W1(w))’dt)]’
0 w
(A1 [ WAWIA, © o, o) +
0
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(/(A2W1 (1) + AW (w)) (AW (t) + AW (w))dt © o 5 ey )

’UGC[A1</de2W1/)A/1 + AQ(/ dW2<t)<A2W1<t) + A1W1(w))’dt)]

= wecl( /w dWy W) + AT Ay ( / dWy (1) (A AW (E) + W (w)) dt)]

1

((/w WiW, @Iy )+ (/(A;1A2W1 (t) + Wi(w)) (A " AW (1) +

w

Wi(w))dt @ Ay "e/ Sy e Ay 1)) !

w 1
veel( [ aWaW]) + Ay Aol [ dWa()(A, AW (1) + Wa(w))dt)
0 w
Proof of theorem 5.

For the case of general kind of heteroscedasticity, the White covariance
matrix estimator can be used in the GMM objective function. We analyze
the behavior of the resulting estimator using this expression of the covariance
matrix for the case analyzed previously, i.e. a change of variance at point 77.
The GMM objective function now becomes

T

T
Glo,f) = wee(Y_ =y 1) QO _(wazl 4 ©44))
t=1

=1
T

vece(d sxh_q)
=1

The estimators of o and 3 then result from,

oG
dvec(')
T T
= Q@21 @ L)L @ o) (D (1) © )
P =1
T
vec(d evri y)
t=1
T T
= Qw21 © L)L © ) (D (w12l @ 28)) (I @ @)
P =1
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(Z Ty 1y 1 @ I)vec(F') — vec(z Axyr, )]

t=1 t=1
So,
A T
vee(fy) = —(Q_ w1 © L)y
—1
T
]k (029 Oé Z a:t,la:’tfl (029 été;))71<]k ® OAZ))71
=1
T T
(I @ &) O (waw,_ @ &£))) tvee(D | Awyr_))
=1 1
T T
= wvee(By) — O wrawy  © L)y (e @ &) O (e aah @) (L © @)
t=1 t=1
T T
(I @ Q) Q_ (w2t 1 @ &) Twee(Y ey y)
=1 =1
and

T T
a = (Zﬁxt(l—37%71(2372t7137/2t71)7137%71)37/1%1)

1
Zfl?lt 1 1—5172t 1 ZCE% 1517% 1 5172t 1)5171t 1) .

As we assume a change of variance at time 77, the stochastic trend in x;

is identical to the one in the previous case,
min(t,T1)

Bi(a Br) OQ(EQ Z fj + Ix(t, TI)EQ Z fj)
J=Ti+
where the definitions used in the proof of theorem 4 are used.

T
12 ’
EtLy 1
1 T1 1

= 221& 2522 + Z 22& 2522 + Z 522
t=T1+1 j=T1+1
aL(ﬂLO‘L) ﬂL
N [Ef/dWQ(t)(Alwl(t))’dH %/dWQ VAW (w) + A Wi (1)) dt]
0

(B o) ']
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Using lemma 1, it follows that

1 L -
ﬁ(Z(%flxiq @ ££L))
t=1
1 T T
= ﬁ((zxmﬂiq X))+ (D, zar  ©))
t=1 t=T1+1

= (B8 O L) (N / WA, © 1) +

/ (AW (1) + AWy (w)) (AW (£) + Ay W (w))'dt @ )

((BLer) '8 @ I)

Such that the inverse has a limiting behavior characterized by,

T
T?(> (we1ah_ @ &))"

t=1

> (Bu(F8) 7 Blar @ L)((Ar [ WiWIA @ 2) +
0

1

([ (AW () + AW () (AW (t) + AW (w)) dt © 55)) !
(o BL(BBL) B © L)
So,

T
Tl @ &) (werzy_y @) wee(D erl_y)
=1 =

= (L)L 00) FLar @ L)(A [ WAWIAL © %) +
0

([ (AaWa(t) + AW () (AW (1) + AW (w)) dt © 55)) !

(& BL(B6) ' @ L) (B BL) ' @ L)

vec|SE /w AW, (0) (AW, (0))'dt + 53 / AW, (1) (AW (w) + AW (1)) dt]
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= (Bu(BLBL) Blar @) (M /WlVV{Aﬁ %)+
([ (AaWa(t) + AW () (AW (1) + AW (w)) dt © 55)) !

vec|S? /w AW, (1) (AW, (1)) dt + 55 / AW (1) (AW (w) + AW (1)) dt]

= 00, (BL(BL8) Blas @ )((Ar [ WIWIN, ©50) +
([ (AW () + AW () (AW (1) + AW (w)) dt © 55)) !
(& pL(FB) 8 @)

Also the limiting behavior of some other matrices is needed,
T
]k © d Z Ty 1Ty g © étéé)yl(]k © @)
t=1

= (888 Blas @) (A [ WA, © %) +
0

1

([ (AW () + AW () (AW (t) + AW (w)) dt © 55)) !

w

(o BL(8.50) 10 ©@a),
and

T
T*(> @ 1), "

t=1

> (A8 e 0 L) (A [ WWIN @ L) +
0

1

</<A2W1 (t) + A1W1 (w))<A2W2<t) + A1W1 (w))’dt & ]7’>)71

w

(@ BL(BLB) AL @ L)
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So,
T(vee(By — B3)

= (B8 Fla L) (A [ WWIA @ 1) +
</<A2W1 (t) + A1W1 (w))<A2W2<t) + A1W1<’U)))/dt & ]7,))71

(I @ ') (M /WlVV{Aﬁ © %) +
0

</<A2W1 (t) + A1W1 (w))<A2W2<t) + A1W1<’U)))/dt & 22))71

(lir @ Q)] Al/Wlw’A’®])+

1

</<A2W1 (t) + A1W1 (w))<A2W2<t) + A1W1<’U)))/dt & ]7,))71

w

(o BL(B18L) O L)

The optimal value of the objective function reads,
. T T
Gla,f) = veel3 e V(X w12ty © )
=1 =1
T
vec(d i q)
t=1

the limiting behavior of its different elements is now determined,

(

]~

(e-12)1 @ été;))flvec(z £y _4)
t
T
= (@1 ©82)) " = Q_(zezy 1 @) (L © &)
t=1

M=~ L

i
I,

T
(I © &) Qo (wamhy @ 48)) (L @ @)~
—1

T T
(L @ &) O _(zi1my_ @ &5))) tvee(D | Az ))
=1
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= (Lroa ) (e @d ) (waz;  @&E)) I @ ay)) !

=
T
(Iy @ dl)vec(z STy 1)
=
and
1 T
7le © ) Jvec(y ey )
=
1 T
= T@GC(Z o ey )

t=1

= ’UGC[Al /wdwl (t) (A1W1 (t))/dt + A2 /dW1 (t) <A1W1 (’U)) + A2W1 (t))/dt]
So that,
G(a, B)

= UGC[A1</de1W1/)A/1 + AQ(/ dW1<t)<A2W1<t) + A1W1(w))’dt)]’
(Ay /wwlvvl’A’1 @d, S ) +
(/(A2W1 (1) + AW (w)) (AW (1) + AW (w))dt © o 5 ey )

UGC[A1</de1W1/)A/1 + AQ(/ dW1<t)<A2W1<t) + A1W1(w))’dt)]

= wvec|( /w dW, W) + A7 A( / AW () (AT AW (1) + Wy (w))'dt)]
((/w W\W, @ I_.) + (/(A;1A2W1 (t) + Wi(w)) (A " AW (1) +

Wi(w))dt @ Ay "e/ Sy e Ay 1)) !

vee( /w AW, IV!) + A7 As( / AW, () (AT AW (1) + W (w))'dt)).
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Proof of theorem 6.

In this part, we investigate the influence of a change in the value of the
multiplicator, «, and cointegrating vector, (3, at point 7). The model therefore
is

Ar, = oz +e t=1,..,1i;
Azr; = 0¥z 1+ e t="1T,+1,..,7T.

where 7 = 3. We now derive the stochastic trend specification of the second
part dataset generated by the model,

Axy, = 02+ &

,y/a,/.t ]T_I_,y/e ; ,y/
= Ti—1+ £ =
( AY| ) ( v )T )T
t—T7

Y N _ (o L++0\ "SR! oy
(M’m) - (vi>€t+( o ) 2y O

1, 0 o i
(5 Y S ey e

1=t—1T1

Since (I, + v'0)"™1 converges to 0 when (¢t — 7)) — oo, we neglect the
stochastic trend resulting from the latter part (we also rid of the stochastic
trend in the first differences in this way) and let the stochastic trend result

/ / /
from V1LTT+1 = VLT + Y ET 41

%xﬂ = —wL(OﬂﬂL OQEQ ij TI<Ty

- -

Ty
(Vo (Viv) B B e B Y g T1> T,
7j=1

Tl
(@) T S )

j=T1+1
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If Ty is such that Ty = wT, (T —T;) = (1—w)T, w="1, 0<w<
1; 0 <1< 1, the limiting behavior of x; can be characterized by

1 1 ' —1 1 wi -
— = — Q a2 ; TI<T:
N ﬁ%( BL) o) ;fy <T

!
= ﬂL(OKlﬂL)flM/dWl(t)
0

1 ) o
= =) WA B) e B Y g T > T,
j=1

VT

Tl
(@) T S )

j=T1+1

= %(ﬂ%)*lﬂ@(alm)*”\l/dWl(t)
0

(0 7)) A, /dVVl ()

= (V) LB BT A (w)
FyL(0y) T AW (1 — w)]
where Wi(t) is a (k — r) dimensional Brownian motions at time point
£0<t<1;1,0<1<1 and Ay = (&, Say)z, Ay = (0,50,)2, Q =
(O/Efloz)%, Q, = (9’2719)%. The GMM objective function does in this case

read

11 T
G(Oé’ﬂ,’}/,e) = ’UeC(Z&t,ﬂ?;il’ Z gtx;fl)/
=1

t=T1+1
4 1 1
((t;f”tflx;fl)i ®©¥X) 0
T
0 (X zeax ) toxh)
t=T1+1

T T
/ /
vec(E :551%717 E | STy 1)
t—1

t=T1+1

where vec(A, B) = (vec(A) vec(B)')'. The cointegrating vector estimators,
[ and ¥, and multiplicators estimators , & and 0, are all identical to these
estimators in the standard case,

T T
& = O Azl —ahy (O war 12y ) Twa1)Ty 1)
t=1 t=1
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T T
O w1 —ahy (O war 1xh, ) 1)2l, )
t=1 t=1
Ty - T ~ ~
= (Z Axe(z1e1 — ﬂéfﬂ%fl)/)(z:(xltfl — Oywar1) (w11 — Pyt 1)),
t=1 t=1
. T T
0 = (> Am(l—ahy (Y @yl ) 'wyq)ry, )
t=T1+1 t=T1+1
T T
( Z Tie-1(1 — @y ( Z Top 1Ty 1) ap 1))
t=T1+1 t=T1+1
T T
= ( Z Amt@jltfl - ’7’25172#1)/)( Z (5171t71 - ’7’2372#1)(371#1 - %517%71)/)717
t=T1+1 t=T1+1

: a2 T / -1 / N T / -1 /
with By = (3_y @212 1) T 121y Yo = (Cipy 1 T2 1) T 12y
The limiting distributions of & and 0 read,

VT(a—a) = n(0, cov(fz) ' @wy),
VT —0) = n(0, cov(vyz) ' @ (1 —w)E).

With respect to the cointegrating vector,

R T T
g o= O waz ) 'O wmAx)S a(@'s @)
t=1 t=1

T T
v o= ( Z $t71$;,1)71< Z Q?tflA,Q?;)EilQ(Q/Eile)il
t=T1+1 t=T1+1

The limiting distribtutions of these cointegrating vector estimators are,

. 0
Tw-p = ( (.88 e (fwawy (P wadmg e, )
1

T(v2 — %) = [(/(ﬂ@(alﬂﬁ*ll\lwl(w) F AL (0 )T A WA(L))

(VLB B) AW (w) 4+ 4y (0 v0) T AW (2)) de)]
1

SR A AW () + 77 (0 70) AT (1))

dWy(t)'dt]

53



The optimal value of the GMM objective function becomes,
o T T
G(&, 3,7,0) = wvec(D_ i y) th 1wy_y) P @S Nvee(Y g ))
t=1 t=1

+uec( Z 2wy 1) (( Z 7, ) tex )
t=T1+1 t=T1+1

T
vec( Z EeTy 1),

t=T1+1

whose elements show the limiting behavior,

1
uee ZE £y 1)

1
= ?vec((Efl—Efl a(@’x ta) ta’s ! ZAa:ta:t 1
1 / — / INT AT / — /
= peclaL(a) Bal) 1aLA1(/W1dW1) AD(B )18,
0

The first component in the sum contained in the objective function shows
the limiting behavior,

Ty T T
vec(D Sl ) (O weaxi_ ) @ Dvee(d T )

t—1 t=1 =1

= veC(ou(OélEOu)lalAl(]UWldW{)’Ai)(ﬂlOéL)lﬂl)/
0
(ﬂL(ﬁlﬂL)lﬂlouf\ll(]ﬂWlW{)lA Yol B8 I8 @)
0
veC(ou(OéLEOu)lalAl(]HWldW{)’Ai)(ﬂl%)lﬂl)
~ pec / WdWw!)') / WAW) L@ L Jvee / Wdw?Y),

and for the second sum we need,

1 T
?vec( > xlaal )

t=T1+1
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1 .
- ?vec((E’l — 29 e ZAa:ta:t 1

1

= vee(0(0,50.) 10 As [0 51) MW (w)

w

9 v (0 7)) AW ()] dWA (1)) () ),

such that it shows the limiting behavior,

T T T
vee( > Bl V(D] el ) Tt @ Dee( > X )
t=T1+1 t=T1+1 t=T1+1
1

= vec(0.(0,50,) 10, A, / Y, 6., B1) T W (w) +

w

VL (O y) T AW (O]dWA () ) (Vi) L)

1

/ BB MW (1) + 717 (07) AW (1)

(VL B BL) AW (w) + Ay (0 v0) TASWA(E)) dt] Ty,

1

S)vec(0. (9,50.) 10, As [, 8 (0) A1) MW (w) +

w

Yoy (0 ye) AW ()] dW L ()) (Y ve) L)

= vee( [, B(0!,51) " MW (w) + 9070 (0 72) " AW (E)]awa (1))

([/(’VLﬂL(O/LﬂL)ilAlWl (W) + 7 70 1) AW (1))

w

(VLB B) MW (w) + 7Ly (0y) A WA (1) dt] ™ @ I ,)
1

Uec(/hlﬂﬂo‘lﬂﬁ*l/\lwl (w) + Ly (0 7)) T AW (1)]dWy (t)')

g

—_

= UGC(/[Wl(w) + AN BV BL) Ty (0 ) A WA ()] dWA (1))

w

1

(L] (Wa(w) + A0 B (LB i (0y1) W)

w

(Wi(w) + Ayt B (YL 80) Yy (0 y) T A Wi () dt] @ 1)
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vee( [Wiw) + A3 ! 80 (VL 80) 710 70) AW ()] (1))

So, that the objective function shows a limiting behavior like,
G(&,5,4,0)

= vee / WidW!)') / WAW) L@ L Jvee / WidWw!)')
1
+U€C(/[W1(w) + AT ALY BL) T L (0 ) T A WA ()W (1))

(L] (Wa(w) + A0 B (LB i (0y1) W)
(Wi(w) + AN By Br) iy (0 y) T A WA () dt]) ' @ Li—y)

1
UGC/ w) + AT B (Y BT v (0 ) T AW (1)]dW (1))

= vec / WidW!)') / WiW) L @ I, Jveel / WdWw!)')

1
tveel [1g 10,7 (717) 7B (0L B M Wi w) + T (AW (0))
1

(] (A0 7 (7). B (@] 1) MW (w) + WA (D)

w

(A0 v (Y oy) LB B) AW (w) + Wa(L) dt] @ Iyr)

1

veel 185107 (171) LB (0! L) A Wa(w) + Wi (0))dWa (1)),

w
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