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The value of information in an (R; s;Q) inventory model

Fred Janssen, 1 Ruud Heuts, 2 Ton de Kok. 3

Abstract

In this paper we compare three methods for the determination of the reorder point s in
an (R; s;Q) inventory model subject to a service level constraint. The three methods di�er
in the modelling assumptions of the demand process which in turn leads to three di�erent
approximations for the distribution function of the demand during the lead time. The
�rst model is most common in the literature, and assumes that the time axis is divided
in time units (e.g. days). It is assumed that the demands per time unit are independent
and identically distributed random variables. The second model monitors the customers
individually. In this model it is assumed that the demand process is a compound renewal
process, and that the distribution function of the interarrival times as well as that of
the demand per customer are approximated by the �rst two moments of the associated
random variable. The third method directly collects information about the demand during
the lead time plus undershoot, avoiding convolutions of stochastic random variables and
residual lifetime distributions. Consequently, the three methods require di�erent types of
information for the calculation of the reorder point in an operational setting. The purpose
of this paper is to derive insights into the value of information; therefore it compares the
target service level with the actual service level associated with the calculated reorder
point. It will be shown that the performance of the �rst model (discrete time model)
depends on the coe�cient of variation of the interarrival times. Furthermore, because we
use asymptotic relations in the compound renewal model, we derive some bounds for the
input parameters within which this model applies. Finally we show that the aggregated
information model is superior to the other two models.

1. Introduction

The (R; s;Q) inventory model is well-known in the literature, and is frequently used in

practice. In this paper a comparison is made of three methods for determining the minimal

value for the reorder point s such that a target value of the P2 customer service level is

guaranteed, where the P2 service level is de�ned as the fraction of demand directly delivered

from stock on hand. Under the regime of the (R; s;Q) inventory policy the inventory position

is monitored every R time units in order to take a replenishment decision. When the inventory

position is below s, an amount of Q units is ordered such that the inventory position is raised

to a value between s and s + Q. Customer orders which cannot be delivered directly from

stock, will be backordered.
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Both the supplier and the retailer should have certain advantages when using an (R,s,Q)

inventory model instead of another replenishment policy. Firstly, using a periodic review

replenishment policy (with a su�ciently large review period) for products replenished by the

same supplier, the ordering and transportation costs can be reduced when replenishment

orders can be properly coordinated. Secondly, for make-to-order organizations the knowledge

of review moments of its customers (which are possible demand epochs), and the fact that the

customers request �xed quantities, can be translated into an e�cient production schedule.

This clearly reduces the production lead times, and consequently has a positive e�ect on the

required inventory at the retailer, needed to achieve a desired customer service level. Thus,

the retailer beni�ts due to coordination and shorter lead times, whereas the manufacturer

beni�ts due to the e�cient production schedules and less work in progress. Furthermore,

the (R; s;Q) inventory model coincides with the time phased reorder point in a MRP-system

(Material Requirement Planning).

To use mathematical models such as inventory or production planning models in practice,

information about the underlying processes is required. For the above mentioned inventory

model often information is available or collected about demand per time unit. However, more

accurate information could be collected by monitoring the customers individually, thereby

collecting information about the interarrival times and the demand size per customer. An

interesting question would be: what is the additional value of this more detailed information?

In this paper three di�erent ways to model the demand process are described, and therefore

three di�erent ways of collecting information about the actual demand and lead time process

are required. In the sequel we denote these methods as the discrete time method (DTM),

the compound renewal method (CRM), and the aggregated information method (AIM). The

DTM is well-known in the literature; the CRM and the AIM, however, are not common

practice. The CRM is presented in De Kok (1991b); Sahin (1983) derived expression for the

state probabilities of the inventory position in the (s; S) inventory model with compound

renewal demand. The idea of measuring aggregated information (the main idea behind AIM)

is described in, for example, Brown (1963), and Strijbosch and Heuts (1992).
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The DTM is extensively described in the literature (see, for example, Schneider (1981,1990),

Tijms and Groenevelt (1984), Silver and Peterson (1985), and Tersine (1994)). The DTM

approach assumes that the time axis is divided into disjunct time units of length T (e.g.

days). Moreover, it is assumed that information is available about the �rst two moments

of the demand per time unit (obtained from historical data). To reduce the complexity of

the model, it is assumed that the demands per time unit are independent and identically

distributed random variables (in general this random variable might have positive probability

mass at zero). Notice that the setting in which R is equal to T is often denoted as an (s; Q) or

(Q; r) inventory model. A method which closely resembles the DTM, is the method described

by Dunsmuir and Snyder (1989) and Janssen et al. (1996), where the demand is modelled

as a compound Bernoulli process, that is, with a �xed probability there is positive demand

during a time unit, else demand is zero.

In the CRM the time axis is not divided into disjunct intervals. The demand process can be

described as a compound renewal process, which is obviously a generalization of a compound

Poisson process; see also Sahin (1983, 1989). In practice, customers are often retailers who

control their inventory with, for example, (s; Q) policies. In these situations the demand

process, which is the superposition of the ordering processes of the retailers, is certainly not

a compound Poisson process. For CRM it is assumed that information is available about

the �rst two moments of the interarrival times of customers as well as about the �rst two

moments of the demand sizes of each customer. It is clear that the CRM requires speci�c

and more detailed customer information, which is often not available in practice, whereas the

DTM requires only information about demands per time unit.

Both methods require convolutions of stochastic random variables and residual lifetime

distributions. The AIM monitors undershoots plus demands during subsequent lead times,

it is assumed that this stochastic variable forms a sequence of independent and identically

distributed random variables. By directly observing this aggregated quantity AIM avoids the

calculation of convolutions of stochastic random variables and moments of residual lifetime

distributions. Finally, the distribution function of the undershoot plus the lead time demand
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is �tted, using the estimated moments of the historical data. The main purpose of the paper

is to compare the required service level with the actual service associated to the reorder

level calculated by each of the methods, and give an answer to the question stated above:

what is the beni�t of using more or less detailed information with respect to the quality of

reorder point calculation with the associated method. To cover inventory practice as closely

as possible, we suppose that the actual underlying demand process is a compound renewal

process. Notice that in this way we neglect possible autocorrelations in the interarrival times

and demand sizes. The impact of correlated demand during the lead time is shown by e.g.

Ray (1980,1981) and Fotopoulos et al. (1988).

The organisation of the paper is as follows. In section 2 the general assumptions of the

(R; s;Q)- inventory model are presented, while in sections 3, 4, and 5 the AIM, DTM, and

CRM respectively are described. In section 6 several numerical comparisons are presented,

based on discrete event simulation. Finally, in section 7 conclusions are given, and future

research is discussed.

2. The (R; s;Q) model description

In order to specify the inventory model we distinguish between the demand process and the

lead time process. We assume that the demand process is a compound renewal process, i.e. the

interarrival times A2; A3; : : : and the demands per customer D1; D2; : : : are independent and

identically distributed random variables. The interarrival times of customers are independent

of the demands per customer. Moreover, we assume that the process is already going on for

an in�nite period of time and that time epoch zero, which is a review moment, is an arbitrary

point in time, indicating that A1 is distributed according to a residual lifetime distribution.

The reasons for this assumption will be explained later in this paper. We assume that the

lead times L1; L2; : : : do not cross in time, implying that the lead times of replenishment

orders are dependent random variables. The �rst moment, standard deviation and coe�cient

of variation of a generic random variable X will be denoted respectively by IEX; �(X) and

cX .
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The main problem is to determine the minimal value of the reorder level s, given values

for Q and R, such that a target service level is achieved. Hence, we assume that R and Q are

determined based on cost considerations, such as a trade-o� between the replenishment costs

and the inventory costs. We derive a general relation between the reorder level s and the tar-

get service level �(R; s;Q) for the (R; s;Q) inventorymodel. We de�ne the following variables:

N(t1; t2) := the number of customer arrivals in (t1; t2];
Z(t1; t2) := the total demand in (t1; t2];
Zt;i := Z(it; (i+ 1)t) where t 2 IR+ and i 2 IN ;
X(t) := the inventory position at time t just before a replenishment order is placed;
Tk := the point in time at which the inventory position drops below s

the k-th time after 0;
Uk := s �X(Tk), the undershoot at time Tk;
�k := the �rst review moment after Tk;
UR;k := s �X(�k), the undershoot at the review epoch;
Zk := Z(�k; �k + Lk) + UR;k;

We now focus on the �rst replenishment cycle starting after time 0, and restrict ourself

to the situations where all replenishments are equal to Q. Thus the undershoot is always

smaller than Q, of course this only holds when the demand during the review period ZR;i

is much smaller that Q. Because all the processes involved are stationary we conclude that

Z(�1; �1+L1)
d
=Z(�2; �2+L2) and UR;1

d
=UR;2, where

d
= denotes equality in distribution. Given

that the backlog at the end of the cycle equals the backlog at the beginning of the cycle to-

gether with the unsatis�ed demand during the cycle, it can be derived (see e.g. de Kok(1991b))

that s must satisfy the following service equation (see also Figure 1):

�(R; s;Q) =

8>><
>>:

0 s � �Q

1� IEZ1�s�IE(Z1�s�Q)
+

Q
�Q < s � 0

1� IE(Z1�s)
+
�IE(Z1�s�Q)

+

Q
0 < s

(1)

where X+ =MAX(0; X).

From (1) the reorder point s can be calculated according to the method presented by Tijms

and Groenevelt (1984), where in order to calculate IE(Z1 � s)+ and IE(Z1 � s � Q)+ it is

assumed that the distribution of Z1 can be approximated by a generalized Erlang distribution

using the �rst two moments of Z1. Hence, to calculate the reorder point s only the �rst two

moments of Z1 are required. Basically, the AIM, DTM and the CRM di�er in the way these

moments are obtained.
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Z(τ2,τ2+L2)
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net stock inventory position

Figure 1: Evolution of the net stock and inventory position during the �rst replenishment
cycle

3. The Aggregated Information Method (AIM)

The AIM is based on the estimates of the �rst two moments of Z1, which are obtained

by collecting information from historical data of this quantity. To be more precise, each

time the inventory position drops below s, and consequently a replenishment order is placed,

the actual undershoot has to be registered, and furthermore, the accumulated demands until

the replenishment order arrives have to be registered. The sum of these two variables is a

realisation of the variable representing Z1.

We notice that the distribution function of the undershoot is asymptotically invariant

under changes of the reorder point s. However, this is not true for the reorder quantity Q

and the review period R. Hence, the moments for the undershoot must be obtained from

historical data under a �xed reorder quantity and review period.

The main advantage of the AIM is that moments of convolutions and moments of the

residual lifetime distribution need not to be calculated. Furthermore, correlations between

demands or between demands and lead times are allowed. These e�ects are all included by
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directly collecting information about Z1. The presence of correlations is often quite cumber-

some when applying theoretical inventory models in real life situations, as well in forecasting

procedures.

However, a possible disadvantage of the AIM (which has to be investigated in future re-

search) is the small number of historical data. The aggregated variable is composed of several

components, and therefore it is hard to estimate this variable. In order to make fair com-

parisons the exact knowledge of the required information is pre-assumed. This of course is

seldomly the case in practice.

4. The Discrete Time Method (DTM)

In this section we describe the DTM, for which we assume that the time axis is divided into

time units of equal length T, e.g. days, and that R and the lead times Lk for k = 1; 2; : : :

are integral numbers of T . Furthermore, we assume that the inventory position is monitored

every time unit. Decisions about replenishments, however, are made every R time units. The

depletion of the inventory position in the k-th time unit is equal to ZT;k, with

IP (ZT;k = 0) > 0. To obtain tractable results for the �rst two moments of Z1 we have to

assume that the ZT;k's are independent random variables, which is not necessarily true in

practice. We note here that this assumption is often made in practice and most text books

without checking its validity.

Due to the transformation of the continuous time axis to a slotted time axis, events of

several types may coincide in time with positive probability. Therefore, we have to specify

the priority rule in which sequence the events are handled. Notice that di�erent priority rules

lead to a di�erent value for the reorder point. We assume that the depletions ZT;k are handled

before replenishment orders at the end of a time unit. This reects the situation where stock

depletions during a time unit are accumulated until the end of the time unit, just before the

net stock and inventory position are adjusted, and subsequently the arrivals of replenishment

orders are handled. In Figure 2 the same sample path is used as in Figure 1, to illustrate the
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Figure 2: Evolution of the net stock and inventory position during the �rst replenishment
cycle

transformation to a lattice time basis and the impact of the priority rule. This priority rule,

as can be seen in Figure 2, leads to a service which is lower than the service when measured

continuously. Under this priority rule the demand during the lead time is given by

Z(�1; �1 + L1) =
�1+L1X
j=�1+1

ZT;j (2)

Because the ZT;j's are non-negative i.i.d. random variables we can apply a well-known result

for the �rst two moments of a stochastic number of i.i.d. random variables:

IEZ(�1; �1 + L1) = IEL1IEZT;1 (3)

IEZ(�1; �1 + L1)
2 = IEL1�

2(ZT;1) + IEL2
1(IEZT;1)

2 (4)

Furthermore we have

ZR;0 =
RX
j=1

ZT;j (5)

and hence

IEZR;0 = RIEZT;1 (6)

IEZ2
R;0 = R�2(ZT;1) +R2(IEZT;1)

2 (7)
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When, for example, we assume that ZR;0 is gamma distributed the third moment of ZR;0 is

given by

IEZ3
R;0 = (1 + c2ZR;0)(1 + 2c2ZR;0)(IEZR;0)

3 (8)

Because the ZT;k's are i.i.d. and the ZR;i's are disjunct collections of an identical number

of ZT;k's, it can be concluded that also the ZR;i's are i.i.d. The distribution function of UR;1

can be approximated by the asymptotic residual lifetime distribution of the renewal process

generated by the sequence (ZR;0; ZR;1; : : :). Using well-known results from renewal theory

yields (see Tijms (1994), pp. 10):

IEUR;1 '
IEZ2

R;0

2IEZR;0
(9)

IEU2
R;1 '

IEZ3
R;0

3IEZR;0
(10)

It is known from numerical investigations that for practical purposes the relations (9) and

(10) hold when Q � t0, (see Tijms (1994), pp.14) where

t0 =

8>><
>>:

3
2c

2
ZR;0

IEZR;0 if c2ZR;0 > 1

IEZR;0 if 0:2 < c2ZR;0 � 1
1

cZR;0
IEZR;0 if 0 < c2ZR;0 � 0:2

(11)

Substition of the two moments of ZT;1 and the �rst two moments of L1 (which can be

obtained from historical data) in (3),(4) and (6) to (10) enables us to calculate the �rst two

moments of Z1. Next the distribution function of Z1 is approximated by a generalized Erlang

distribution (see e.g. Tijms and Groenevelt (1984)) and relation (1) is used to compute the

reorder point s.

Remark 4.1 : Note that Zk for k = 1; 2; : : : also can be written as the undershoot Uk under

s at Tk plus the demand during the pseudo lead time (L̂k := Lk + �k � Tk). However, it can

be proven that both approaches result in the same expressions for the �rst two moments of Zk.

5. The Compound Renewal Method (CRM)

In this situation we assume that the demand process is modelled as a compound renewal

process (A1; D1); (A2; D2); : : :. We again assume that the process is already going on for an

9



in�nite time period. Because zero is an arbitrary point in time, it can be concluded that

A1 represents a residual interarrival time, whereas A2 denotes a generic interarrival time. In

contrast with the previous two sections we don't focus on demand during a time unit but on

demand per customer.

The approach is again based on the application of formula (1), where we assume that the

distribution of Z1 can be approximated by that of a generalized Erlang distribution, which

implies that for application of (1) we only need the �rst two moments of Z1, where Z1 was

de�ned as Z1 = Z(�1; �1 + L1) + UR;1.

In order to obtain expressions for UR;1, the same approach as described in the DTM is

followed. Analoguously to the derivation of relation (6) and (7), we �nd

IEZR;0 = IEN(0; R)IED1 (12)

IEZ2
R;0 = IEN(0; R)�2(D1) + IEN(0; R)2(IED1)

2 (13)

where the moments of N(0; R) can be approximated by asymptotic relations derived with

renewal theory (for the �rst two moments see Tijms(1994), whereas the third moment can be

obtained in a similar way)

IEN(0; R) '
R

�1
(14)

IEN(0; R)2 '
R2

�21
+R

 
�2

�31
�

1

�1

!
+

�22

2�41
�

�3

3�31
(15)

where �k := IEAk
2.

These asymptotic relations are valid when R � t1 (see Tijms(1994), pp 14) where

t1 =

8><
>:

3
2
c2A2

IEA2 if c2A2
> 1

IEA2 if 0:2 < c2A2
� 1

1
cA2

IEA2 if 0 < c2A2
� 0:2

(16)

Notice that relation (15) contains the third moment of A2. However, the estimates of

higher moments (third and higher) of a stochastic variable are very sensitive for extreme

values in the data. Therefore, we propose to approximate the distribution function of A2 by

a gamma distribution in order to calculate IEA3
2 based on the �rst two moments of A2. Then
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combining relations (12) and (13) with the asymptotic relations (14) and (15) yields

IEZR;0 '
R

�1
IED1 (17)

IEZ2
R;0 '

�R2

�21
+

R

�1
(c2A2

+ c2D1
) + 1

6
(1� c4A2

)
�
IED2

1 (18)

Using that �(ZR;0) � 0, it is easy to see that (18) is only valid when:

c2A2
2 [0;

3R

�1
+

s
9R2

�21
+

6R

�1
c2D1

+ 1): (19)

Hence, when IEA2 is large with respect to R the region of application is restricted through

the condition (19) for c2A2
. However, if R � IEA2, the frequency with which the inventory

position is monitored (in order to make a replenishment decision) when the (R,s,Q) inventory

model is applied is larger than the frequency of customer arrivals in that inventory system,

and therefore it is evident to use a continuous review inventoy model, such as the (s; Q) or

(s; S) inventory model.

Now, using the fact that the distribution of the undershoot has approximately a residual

lifetime distribution and applying results from renewal theory, we �nd

IEUR;1 '
IEZ2

R;0

2IEZR;0
(20)

IEU2
R;1 '

IEZ3
R;0

3IEZR;0
(21)

which can be calculated by again using (8) in addition to (17) and (18). In order to derive

expressions for the �rst two moments of Z1, in addition to (20) and (21) we also need expres-

sions for the �rst two moments of de demand during the lead time. Again, it is easily seen

that

IEZ(0; L) = IEN(0; L)IED1 (22)

IEZ(0; L)2 = IEN(0; L)�2(D1) + IEN(0; L)2(IED1)
2 (23)

where the moments of N(0; L) can be approximated by its asymptotic relations

IEN(0; L) '
IEL1

�1
(24)

IEN(0; L)2 '
IEL2

1

�21
+ IEL1

 
�2

�31
�

1

�1

!
+

�22
2�41

�
�3

3�31
(25)
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which only hold when IEL � t1 see (16). For the special case that A2 is gamma distributed

the following simple approximate relations can be derived

IEZ(0; L1) '
IEL1

�1
IED1 (26)

IEZ(0; L2)
2 '

�IEL2
1

�21
+
IEL1

�1
(c2A2

+ c2D1
) + 1

6
(1� c4A2

)
�
(IED1)

2 (27)

Analoguously to condition (19) for (18) we derive the following condition for the validity

of (27):

c2A2
2 [0;

3IEL1

�1
+

s
9(IEL1)2

�21
+
6�(L1)2

�21
+

6IEL1

�1
c2D1

+ 1): (28)

For example, when �2L = 0 and c2D = 1 it is easy to see that c2A2
2 [0; 6 IEL

IEA2
+1). Hence, when

the number of customer arrivals during the lead time goes to zero the maximal value for c2A2

is equal to one.

Thus using (12) to (18) and (20) to (25) we can �nd expressions for the �rst two moments of

Z1, which enables us to calculate the reorder point s.

6. Simulation experiments

In the experiments we consider two criteria for comparison, namely the reorder point

s calculated for each method and the associated actual service level. We use a compound

renewal process to model the demand process. More speci�cally the interarrival times and

the demand size of a customer are independent and identically distributed (i.i.d.) random

variables with generalized Erlang distributions. Moreover, the lead times are also i.i.d. ran-

dom variables with a generalized Erlang distribution function. Thus, in order to describe

the inventory model, we have to specify values for the �rst two moments of the interarrival

times, demand sizes of customers and lead times, the length of the review period (R), the

replenishment quantity (Q), and the target service level (�). In table 6.1 the parameters of

our experiments are given.

Table 6.1: Input parameters for simulation experiments

12



Q � R IEA2 �(A2) (IEL1; �(L1)) IED1 �(D1)

50,100 0.90, 0.95 5 0.5,1,2, 10 0.25, 0.5, 1, 1.5, 2, 3 (4,0),(10,2) 5 5

To obtain su�ciently accurate values for the relevant input variables (e.g. the �rst two

moments of the demand per time unit) for the various methods, all the required input values

are derived from a preceding simulation run. In operational settings this coincides with exact

knowledge about the moments of the relevant random variables. It is well-known that small

sample sizes can lead to bad estimates, especially for the second moment of a random variable;

see e.g. Silver and Peterson (1985).

For each of the three methods a simulation is performed with the same seeds for the pseudo

random generator, in order to sample the required random variables. We �rst simulated 1

subrun of 100,000 time units to obtain reliable values for moments of the relevant random

variables. Secondly, the reorder point s is calculated by the associated method. We simulated

10 times 100,000 time units and calculated the 95% con�dence interval for the actual service

level achieved in the simulation experiments. The results are tabulated in Appendix 1.

Basically three major conclusion can be drawn from the simulation experiments (which

are explained below), namely

� the performance of the DTM is bad for situations with cA2
6= 1;

� the performance of the CRM is good for most situations, except when Q is too small or

IEA2 is too large;

� the AIM is superior to CBM and DTM.

The performance of the DTM depends heavily on the coe�cient of variation of the in-

terarrival times. When the interarrival times are almost constant (cA2
< 1), the DTM tends

to overestimate the reorder point s; when the interarrival times are erratic (cA2
> 1), the

DTM tends to underestimate the reorder point; see Figures 3 and 4. The explanation for

this behaviour is that in situations where cA2
6= 1 the independency assumption of the Dn

is violated. Only when cA2
= 1, which represent the compound Poisson process, the Dn are

13
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Figure 3: Actual service levels in case
(IEL; �(L)) = (10; 2), IEA2 = 2, Q = 50
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Figure 4: Actual service levels in case
(IEL; �(L)) = (4; 0), IEA2 = 1:0, Q = 50

i.i.d. This means that the DTM is valid only when the demand process is a compound Poisson

case. In situation with cA2
6= 1 the DTM is not valid; thus even in those situations where

the moments of the demand and lead time processes are known exactly, the method performs

badly.
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Figure 5: Actual service levels in case
(IEL; �(L)) = (10; 2),IEA2 = 2, Q = 100
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Figure 6: Actual service levels in case
(IEL; �(L)) = (10; 2), IEA2 = 10, Q = 50

The second conclusion is that the CRM performs excellently in almost every situation.

However, in situations where the interarrival times are very erratic (e.g. �(A2) = 4; IEA2 =

14



0:5) and the lead times are relatively short, this method performs badly. This can be explained

by the well-known fact (see Tijms (1994) pag. 14) that the asymptotic approximations for

the moments of the number of renewals in a short time interval are of poor quality (for a good

bound see expression (11)). Furthermore, in situations where Q is relatively small compared

to the expected demand size per customer, the CRM not always performs satisfactorily. When

IEA2 is large with repect to R, the CRM also does not perform very well, but as argued before

the continuous (s; Q) inventory model should be considered in that case.

Finally, we see that AIM is superior to the others. All complications of determining the

complex stochastic quantities U1 and Z1 are avoided, simply by collecting information about

these measurable quantities. As has been noted before, we use exact knowledge about these

quantities, which requires many occurrences of those quantities. In practice this information

is often not available.

7. Conclusions and future research

In this paper we compared three methods for the determination of the reorder point s in

an (R; s;Q) inventory model subject to a service level constraint. The three methods di�er

in the modelling assumptions for the demand process, and therefore require di�erent levels

of information to feed the inventory models. We compared the quality of the methods by

discrete event simulation, and conclude that each method is applicable only in a restricted

area. Furthermore, it turns out that the AIM is applicable in every situation. However, in

using this method the problem of determining moments of complex stochastic variables is

shifted to the problem of properly estimating these complex stochastic variables. The choice

of method to use in practical situations should be based on the quality of the information

available. Hence, when good estimates are available for the demand during the lead time plus

undershoot, it is evident to aim at AIM. If the quality of the aggregated variables is doubtful,

more disaggregated approaches such as the DTM and CRM should be considered. The choice

must be based on the coe�cient of variation of the interarrival times.

15



For future reseach we would like to point out two extensions. Firstly, when using these

models in practice, estimates for the moments of the relevant stochastic variables are in-

evitable. Hence, the impact of the quality of the estimates on the performance of the methods

should be investigated; see also Vaughan (1995). Secondly, instead of using estimates for the

moments of the variables, one could also integrate forecasting procedures (e.g. exponential

smoothing methods) directly in inventory models.
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Appendix 1: Results of numerical experiments

Table A.1.

�
R = 5; (IED ; �D) = (5 ; 5)); (IEL ; �L) = (10 ; 2); � = 0:95

�
DTM CRM AIM

Q (IEA; cA) s �̂ s �̂ s �̂

50 (0.50 , 0.25) 173.4 0.9607 ( � 0.0034) 170.8 0.9562 ( � 0.0043) 173.4 0.9617 ( � 0.0039)
50 (0.50 , 0.50) 176.2 0.9613 ( � 0.0029) 174.3 0.9558 ( � 0.0038) 176.1 0.9606 ( � 0.0024)
50 (0.50 , 1.00) 189.1 0.9626 ( � 0.0028) 187.1 0.9578 ( � 0.0025) 190.0 0.9626 ( � 0.0027)
50 (0.50 , 1.50) 202.6 0.9536 ( � 0.0033) 206.1 0.9591 ( � 0.0019) 208.4 0.9612 ( � 0.0031)
50 (0.50 , 2.00) 215.9 0.9394 ( � 0.0022) 229.6 0.9562 ( � 0.0025) 232.0 0.9588 ( � 0.0038)
50 (0.50 , 3.00) 233.6 0.8899 ( � 0.0019) 283.8 0.9539 ( � 0.0016) 284.0 0.9544 ( � 0.0016)

50 (1.00 , 0.25) 89.2 0.9591 ( � 0.0037) 86.7 0.9515 ( � 0.0045) 87.6 0.9554 ( � 0.0047)
50 (1.00 , 0.50) 91.9 0.9599 ( � 0.0018) 89.5 0.9517 ( � 0.0020) 89.2 0.9513 ( � 0.0038)
50 (1.00 , 1.00) 99.9 0.9550 ( � 0.0053) 99.8 0.9556 ( � 0.0044) 98.2 0.9513 ( � 0.0067)
50 (1.00 , 1.50) 108.8 0.9419 ( � 0.0055) 115.0 0.9550 ( � 0.0053) 113.6 0.9539 ( � 0.0065)
50 (1.00 , 2.00) 116.0 0.9179 ( � 0.0050) 133.0 0.9542 ( � 0.0040) 128.7 0.9465 ( � 0.0035)
50 (1.00 , 3.00) 124.0 0.8514 ( � 0.0033) 170.0 0.9507 ( � 0.0025) 173.0 0.9540 ( � 0.0019)

50 (2.00 , 0.25) 49.5 0.9673 ( � 0.0020) 44.5 0.9507 ( � 0.0029) 44.7 0.9507 ( � 0.0035)
50 (2.00 , 0.50) 50.6 0.9654 ( � 0.0030) 46.7 0.9505 ( � 0.0031) 45.4 0.9436 ( � 0.0041)
50 (2.00 , 1.00) 54.6 0.9554 ( � 0.0076) 54.5 0.9549 ( � 0.0075) 55.1 0.9568 ( � 0.0063)
50 (2.00 , 1.50) 59.7 0.9324 ( � 0.0049) 65.8 0.9514 ( � 0.0052) 64.6 0.9495 ( � 0.0041)
50 (2.00 , 2.00) 62.7 0.8998 ( � 0.0080) 78.0 0.9488 ( � 0.0037) 76.6 0.9429 ( � 0.0059)
50 (2.00 , 3.00) 65.2 0.8035 ( � 0.0041) 92.6 0.9154 ( � 0.0033) 107.0 0.9508 ( � 0.0028)

50 (10.00 , 0.25) 15.2 0.9786 ( � 0.0012) 11.1 0.9599 ( � 0.0021) 10.0 0.9538 ( � 0.0017)
50 (10.00 , 0.50) 15.3 0.9746 ( � 0.0017) 12.2 0.9608 ( � 0.0020) 10.8 0.9512 ( � 0.0022)
50 (10.00 , 1.00) 15.9 0.9576 ( � 0.0022) 15.6 0.9564 ( � 0.0022) 15.5 0.9558 ( � 0.0022)
50 (10.00 , 1.50) 16.8 0.9309 ( � 0.0031) 15.9 0.9251 ( � 0.0031) 20.8 0.9528 ( � 0.0017)
50 (10.00 , 2.00) 17.2 0.8959 ( � 0.0047) 7.2 0.7876 ( � 0.0038) 25.0 0.9436 ( � 0.0030)
50 (10.00 , 3.00) 17.3 0.8367 ( � 0.0052) -6.1 0.4675 ( � 0.0044) 33.7 0.9522 ( � 0.0034)

100 (0.50 , 0.25) 158.7 0.9582 ( � 0.0031) 156.3 0.9531 ( � 0.0032) 157.7 0.9548 ( � 0.0031)
100 (0.50 , 0.50) 161.1 0.9564 ( � 0.0035) 159.3 0.9537 ( � 0.0040) 161.2 0.9557 ( � 0.0033)
100 (0.50 , 1.00) 172.8 0.9590 ( � 0.0050) 170.8 0.9556 ( � 0.0047) 169.6 0.9543 ( � 0.0038)
100 (0.50 , 1.50) 185.2 0.9524 ( � 0.0028) 188.5 0.9551 ( � 0.0042) 187.9 0.9539 ( � 0.0039)
100 (0.50 , 2.00) 197.7 0.9408 ( � 0.0033) 210.7 0.9564 ( � 0.0038) 206.8 0.9530 ( � 0.0041)
100 (0.50 , 3.00) 214.5 0.8933 ( � 0.0022) 263.2 0.9541 ( � 0.0019) 260.1 0.9511 ( � 0.0023)

100 (1.00 , 0.25) 77.7 0.9560 ( � 0.0019) 75.7 0.9503 ( � 0.0023) 75.7 0.9502 ( � 0.0023)
100 (1.00 , 0.50) 79.9 0.9554 ( � 0.0032) 77.9 0.9508 ( � 0.0029) 77.5 0.9495 ( � 0.0032)
100 (1.00 , 1.00) 86.6 0.9521 ( � 0.0029) 86.5 0.9517 ( � 0.0028) 85.5 0.9497 ( � 0.0025)
100 (1.00 , 1.50) 94.2 0.9418 ( � 0.0031) 99.7 0.9540 ( � 0.0043) 98.4 0.9506 ( � 0.0040)
100 (1.00 , 2.00) 100.5 0.9203 ( � 0.0047) 116.0 0.9530 ( � 0.0032) 113.6 0.9491 ( � 0.0028)
100 (1.00 , 3.00) 107.7 0.8620 ( � 0.0036) 150.7 0.9499 ( � 0.0020) 150.6 0.9495 ( � 0.0022)

100 (2.00 , 0.25) 39.8 0.9635 ( � 0.0029) 36.2 0.9504 ( � 0.0030) 36.5 0.9516 ( � 0.0028)
100 (2.00 , 0.50) 40.7 0.9608 ( � 0.0036) 37.8 0.9497 ( � 0.0048) 38.2 0.9516 ( � 0.0042)
100 (2.00 , 1.00) 43.8 0.9550 ( � 0.0055) 43.8 0.9550 ( � 0.0055) 43.7 0.9545 ( � 0.0057)
100 (2.00 , 1.50) 47.8 0.9357 ( � 0.0063) 52.9 0.9500 ( � 0.0041) 52.1 0.9472 ( � 0.0038)
100 (2.00 , 2.00) 50.3 0.9107 ( � 0.0071) 63.3 0.9469 ( � 0.0043) 62.7 0.9458 ( � 0.0045)
100 (2.00 , 3.00) 52.3 0.8352 ( � 0.0055) 76.0 0.9164 ( � 0.0028) 89.5 0.9460 ( � 0.0017)
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Table A.2.

�
R = 5; (IED ; �D) = (5 ; 5)); (IEL ; �L) = (4 ; 0); � = 0:95

�
DTM CRM AIM

Q (IEA; cA) s �̂ s �̂ s �̂

50 (0.50 , 0.25) 93.3 0.9577 ( � 0.0017) 91.7 0.9530 ( � 0.0018) 95.6 0.9641 ( � 0.0024)
50 (0.50 , 0.50) 95.8 0.9573 ( � 0.0018) 94.4 0.9528 ( � 0.0026) 97.2 0.9610 ( � 0.0015)
50 (0.50 , 1.00) 106.0 0.9591 ( � 0.0020) 104.7 0.9566 ( � 0.0018) 107.8 0.9630 ( � 0.0021)
50 (0.50 , 1.50) 117.5 0.9532 ( � 0.0033) 120.2 0.9580 ( � 0.0029) 124.1 0.9644 ( � 0.0030)
50 (0.50 , 2.00) 128.8 0.9373 ( � 0.0024) 139.1 0.9559 ( � 0.0039) 140.7 0.9582 ( � 0.0034)
50 (0.50 , 3.00) 144.6 0.8936 ( � 0.0020) 182.2 0.9560 ( � 0.0015) 181.9 0.9556 ( � 0.0015)

50 (1.00 , 0.25) 48.4 0.9575 ( � 0.0023) 46.7 0.9513 ( � 0.0028) 46.9 0.9519 ( � 0.0028)
50 (1.00 , 0.50) 50.6 0.9573 ( � 0.0015) 48.8 0.9518 ( � 0.0020) 49.2 0.9529 ( � 0.0018)
50 (1.00 , 1.00) 57.0 0.9568 ( � 0.0032) 56.9 0.9563 ( � 0.0029) 56.8 0.9563 ( � 0.0029)
50 (1.00 , 1.50) 64.5 0.9432 ( � 0.0037) 68.8 0.9564 ( � 0.0038) 69.1 0.9572 ( � 0.0036)
50 (1.00 , 2.00) 70.5 0.9224 ( � 0.0032) 83.2 0.9561 ( � 0.0047) 81.1 0.9512 ( � 0.0037)
50 (1.00 , 3.00) 77.8 0.8562 ( � 0.0026) 110.1 0.9502 ( � 0.0016) 113.9 0.9566 ( � 0.0018)

50 (2.00 , 0.25) 27.8 0.9676 ( � 0.0028) 24.1 0.9511 ( � 0.0032) 24.3 0.9517 ( � 0.0032)
50 (2.00 , 0.50) 28.6 0.9638 ( � 0.0027) 25.7 0.9513 ( � 0.0031) 25.3 0.9496 ( � 0.0035)
50 (2.00 , 1.00) 32.1 0.9563 ( � 0.0046) 31.9 0.9553 ( � 0.0048) 31.8 0.9548 ( � 0.0050)
50 (2.00 , 1.50) 36.2 0.9382 ( � 0.0059) 40.6 0.9552 ( � 0.0051) 40.2 0.9535 ( � 0.0049)
50 (2.00 , 2.00) 38.8 0.9042 ( � 0.0074) 49.7 0.9485 ( � 0.0028) 48.4 0.9450 ( � 0.0032)
50 (2.00 , 3.00) 41.5 0.8264 ( � 0.0037) 53.7 0.8988 ( � 0.0028) 68.2 0.9503 ( � 0.0028)

50 (10.00 , 0.25) 10.0 0.9824 ( � 0.0010) 6.6 0.9674 ( � 0.0018) 4.8 0.9547 ( � 0.0016)
50 (10.00 , 0.50) 10.0 0.9751 ( � 0.0016) 7.6 0.9624 ( � 0.0013) 6.5 0.9551 ( � 0.0014)
50 (10.00 , 1.00) 10.6 0.9589 ( � 0.0023) 10.3 0.9574 ( � 0.0024) 9.5 0.9531 ( � 0.0025)
50 (10.00 , 1.50) 11.4 0.9374 ( � 0.0024) 9.4 0.9219 ( � 0.0018) 13.7 0.9514 ( � 0.0026)
50 (10.00 , 2.00) 11.8 0.9164 ( � 0.0034) -36.1 0.0995 ( � 0.0021) 16.9 0.9508 ( � 0.0032)
50 (10.00 , 3.00) 12.0 0.8867 ( � 0.0028) -3.3 0.6481 ( � 0.0042) 21.2 0.9532 ( � 0.0017)

100 (0.50 , 0.25) 81.5 0.9559 ( � 0.0024) 80.1 0.9515 ( � 0.0022) 81.0 0.9541 ( � 0.0022)
100 (0.50 , 0.50) 83.4 0.9563 ( � 0.0022) 82.3 0.9530 ( � 0.0019) 83.0 0.9552 ( � 0.0020)
100 (0.50 , 1.00) 92.2 0.9557 ( � 0.0016) 91.0 0.9532 ( � 0.0018) 90.5 0.9522 ( � 0.0016)
100 (0.50 , 1.50) 102.2 0.9514 ( � 0.0042) 104.6 0.9554 ( � 0.0040) 104.3 0.9551 ( � 0.0041)
100 (0.50 , 2.00) 112.4 0.9398 ( � 0.0033) 121.9 0.9551 ( � 0.0019) 119.4 0.9510 ( � 0.0020)
100 (0.50 , 3.00) 126.9 0.8974 ( � 0.0020) 162.7 0.9554 ( � 0.0018) 158.6 0.9505 ( � 0.0018)

100 (1.00 , 0.25) 39.3 0.9557 ( � 0.0025) 38.0 0.9510 ( � 0.0019) 37.7 0.9499 ( � 0.0022)
100 (1.00 , 0.50) 40.9 0.9536 ( � 0.0012) 39.6 0.9500 ( � 0.0007) 39.0 0.9478 ( � 0.0010)
100 (1.00 , 1.00) 46.0 0.9543 ( � 0.0037) 45.9 0.9540 ( � 0.0036) 44.3 0.9496 ( � 0.0051)
100 (1.00 , 1.50) 52.0 0.9452 ( � 0.0039) 55.7 0.9538 ( � 0.0026) 54.9 0.9520 ( � 0.0027)
100 (1.00 , 2.00) 57.0 0.9262 ( � 0.0042) 68.0 0.9534 ( � 0.0042) 66.8 0.9502 ( � 0.0040)
100 (1.00 , 3.00) 63.2 0.8717 ( � 0.0023) 92.8 0.9478 ( � 0.0011) 94.3 0.9503 ( � 0.0013)

100 (2.00 , 0.25) 20.0 0.9619 ( � 0.0026) 17.4 0.9504 ( � 0.0024) 18.0 0.9527 ( � 0.0027)
100 (2.00 , 0.50) 20.6 0.9597 ( � 0.0032) 18.5 0.9518 ( � 0.0025) 18.4 0.9508 ( � 0.0029)
100 (2.00 , 1.00) 23.0 0.9549 ( � 0.0038) 23.0 0.9547 ( � 0.0038) 22.3 0.9513 ( � 0.0037)
100 (2.00 , 1.50) 26.2 0.9367 ( � 0.0068) 29.7 0.9486 ( � 0.0067) 27.6 0.9412 ( � 0.0069)
100 (2.00 , 2.00) 28.2 0.9080 ( � 0.0064) 37.1 0.9454 ( � 0.0041) 36.1 0.9409 ( � 0.0053)
100 (2.00 , 3.00) 30.3 0.8547 ( � 0.0049) 40.6 0.9039 ( � 0.0047) 54.4 0.9479 ( � 0.0029)
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