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On the existence of

unique equilibria

in location models�

H.M. Webersy

February 1996

Abstract

In this paper we study a variant of the two-stage location-then-price

game where consumers are distributed piecewise uniformly, each piece

being referred to as an interval. Clearly, only the exact interval in which

the indi�erent consumer is located may be uncertain for the �rms.

Therefore, we encompass the �rms with beliefs about the interval in

which the indi�erent consumer is located. Given their beliefs, the

�rms' expected demands are di�erentiable everywhere and the �rms'

expected pro�t functions are quasi-concave. We de�ne the game where

�rms �rst choose beliefs and then maximize the corresponding expected

pro�t in two stages to be a psychological game. We show that there

exists a unique psychological equilibrium for this game, which consists

of a subgame perfect Nash equilibrium for the two-stage game given

certain beliefs and the beliefs are such that the equilibrium outcome

is consistent with these beliefs. We give a coordination argument in

order to easily �nd this equilibrium.

�This research is part of the VF program "Competition and Cooperation". The author

would like to thank Chris van Raalte and Dolf Talman for their valuable comments on

previous drafts of this paper.
yDepartment of Econometrics and CentER, Tilburg University, P.O. Box 90153, 5000

LE Tilburg, The Netherlands, e-mail: h.m.webers@kub.nl.
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1 Introduction

In this paper, we present a generalization of the standard Hotelling (1929)

model of spatial competition where �rms �rst choose locations and then,

given these locations, compete in prices. In the model consumers are dis-

tributed according to a piecewise uniform density along a line segment,

whereas in the standard model consumers are distributed with uniform den-

sity. The di�erent pieces are referred to as intervals. This speci�cation of the

consumers' density could make our results widely applicable, because any

density function can be approximated with a piecewise uniform density, by

passing to �ner partitions. As a consequence the �rms' pro�t functions are

piecewise quasi-concave and they are not di�erentiable everywhere due to

the fact that demand is kinked. For any given locations and prices, however,

both �rms know that there is a unique indi�erent consumer. This means

that only the exact interval in which the indi�erent consumer is located,

may be uncertain for both �rms. Therefore we encompass the �rms with

beliefs about the interval in which the indi�erent consumer is located, called

the state. Recently Geanakoplos, Pearce, and Stacchetti (1989) and Kolpin

(1992) introduced the psychological game to provide a framework for the

formal analysis of strategic settings in which expectations play a role1. The

principal characteristic of a psychological game is that the �rms' expected

pro�ts depend on what everybody believes. Given their beliefs, the �rms' ex-

pected demands are di�erentiable everywhere and the �rms' expected pro�t

functions are quasi-concave. We de�ne the game where �rms �rst choose

beliefs and then maximize the corresponding expected pro�t in two stages

to be a psychological game.

We show that there exists a unique psychological equilibrium for this

game. Such an equilibrium consists of a subgame perfect Nash equilibrium

for the two-stage game given certain beliefs and the beliefs are such that

the equilibrium outcome is consistent with these beliefs, i.e., the state cor-

responds to the location of the indi�erent consumer. In equilibrium, the

indi�erent consumer is exactly the median consumer while both �rms have

identical pro�ts. Furthermore we present a natural way to �nd the psy-

chological equilibrium, which implicitly requires �rms to coordinate on the

interval that contains the indi�erent consumer.

This paper is related to the work of Goeree and Ramer (1994), who

generalize the results for the traditional two-stage location-then-price game,

1In another context these, subjective, expectations are often referred to as emotions.
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by allowing for log-concave densities, and to the work of Tabuchi and Thisse

(1995), who look at the speci�c example of a triangular density in more

detail. They �nd that in general equilibrium pro�ts di�er over the two

�rms. In case of a triangular density we show, however, that the �rm with

the lower pro�t has a pro�t that is lower than the psychological equilibrium

pro�t, which casts doubt on the credibility of the asymmetric outcome.

As Geanakoplos, Pearce, and Stacchetti (1989) argue, the usual solution

concepts are valid only as long as the correct payo� function is employed.

There are several reasons to favour the psychological game approach.

First, the psychological equilibrium outcome is robust in the sense that the

indi�erent consumer is exactly the median consumer. The �rms' locations

and prices are determined completely by the density function then. Second,

equilibrium outcomes are such that both �rms have the same pro�t, so,

even without restricting one �rm to locate to the left of the other �rm,

neither �rm has an incentive to deviate. In that sense the coordination

problem arising in Goeree and Ramer (1994) does not appear. Third, the

psychological game approach is also applicable in case of density functions

that are not log-concave.

This paper is based on Webers (1994) and is organized as follows. In

Section 2 the model is presented and the de�nition of psychological game

is given. In Section 3 the psychological equilibrium for this game is intro-

duced and the equilibrium conditions are derived. In Section 4 we prove the

existence of a, generically, unique psychological equilibrium with consistent

beliefs. In Section 5 we use a coordination argument to �nd this equilib-

rium. In Section 6 we discuss the case of a triangular density and in Section

7 we brie
y look at the two-dimensional case. The proofs are gathered in

the Appendix.

2 The model

There is a continuum of consumers distributed along the line segment [0; 1]

with cumulative density function F1 : [0; 1] 7! [0; 1]. There are two �rms,

indexed i 2 I = f1; 2g. Firm i 2 I locates at xi along the real line and sells

the commodity at price pi 2 IR+. Real income of the consumers is given by

w. Each consumer buys one unit of the commodity from the �rm that o�ers

the highest indirect utility, for �rm i 2 I being given by

Vi(x; xi; pi) = w � pi � t(x; xi); (1)
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where x is the consumer's location in the unit interval. The number t(x; xi) is

the transportation cost for shipping the product of �rm i to this consumer's

location. We assume this transportation cost to be quadratic in distance

with unit cost equal to one, i.e., t(x; xi) = (x�xi)
2. The market area of the

product of �rm i 2 I at given locations x1 and x2 and prices p1 and p2 is

therefore given by

Mi(x1; x2; p1; p2) = fx 2 [0; 1] j Vi(x; xi; pi) � Vj(x; xj; pj); j 6= ig;

i.e., the set of consumers that prefer the commodity of �rm i over the com-

modity of �rm j, j 6= i 2 I . The demandXi(x1; x2; p1; p2) for the commodity

of �rm i 2 I then is equal to

Xi(x1; x2; p1; p2) =

Z
Mi(x1;x2;p1;p2)

dx: (2)

By de�nition, the sum of the commodity demands equals one. Given x1,

x2, p1 and p2 the location of the consumer indi�erent between buying from

�rm 1 and buying from �rm 2 is given by

x(x1; x2; p1; p2) =
x1 + x2

2
+

p2 � p1

2(x2 � x1)
; (3)

being the midpoint between the �rms' locations corrected for price di�er-

ences. Under the assumption that the price di�erences are not too large,

both �rms will sell their products. From equations (2) and (3) it follows

that for i 2 I

Xi(x1; x2; p1; p2) = Fi(x(x1; x2; p1; p2)); (4)

where for all x 2 [0; 1], F2(x) = 1 � F1(x). Given the locations x1 and x2

and prices p1 and p2 the pro�t of �rm i 2 I is equal to piFi(x(x1; x2; p1; p2)),

where costs are assumed to be normalized to zero.

The function F1 is assumed to be continuous, but is allowed to be non-

di�erentiable in a �nite number of, say n � 1, points t1; : : : ; tn�1, with 0 =

t0 < t1 < : : : < tn�1 < tn = 1. For k 2 K = f0; : : : ; n� 1g, we assume there

is a di�erentiable function Fik : [0; 1] 7! IR+ such that Fi coincides with Fik

for tk � x � tk+1, i 2 I . We assume that each �rm has beliefs about the

state, being the interval in which the indi�erent consumer is located. The

beliefs bik �rm i 2 I has about the location of the indi�erent consumer to

lie in the interval [tk ; tk+1], k 2 K, is represented by the vector of beliefs

bi = (bi0; : : : ; bi(n�1)) in the set Bi = fy 2 [0; 1]n j
Pn�1

k=0 yk = 1g. At beliefs
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bi 2 Bi and with the indi�erent consumer located at x 2 [0; 1], the expected

demand Fi(bi; x) for �rm i 2 I is given by

Fi(bi; x) =
n�1X
k=0

bikFik(x): (5)

Clearly, for given bi 2 Bi, the expected demand function Fi(bi; :), i 2 I , is

di�erentiable. For simplicity, given bi 2 Bi the function Fi is assumed to be

three times continuously di�erentiable. Note that in case F1 is (three times)

continuously di�erentiable and hence n = 1, expected demand is equal to

demand.

For given beliefs bi 2 Bi, the expected pro�t for �rm i 2 I is equal to

�i(bi; x1; x2; p1; p2) = piFi(bi; x(x1; x2; p1; p2)): (6)

Now we are able to introduce the psychological game.

De�nition 2.1 The game where �rms �rst choose beliefs and then max-

imize the corresponding expected pro�t in a two-stage location-then-price

game is a (strategic form) psychological game G.

At given beliefs b = (b1; b2) 2 B = B1 � B2, the two-stage game with

payo�s �1(b1; :) and �2(b2; :) is a conventional two-stage location-then-price

game, which we refer to as G(b).

3 The equilibrium concept

First we de�ne the solution concept for the two-stage location-then-price

game G with beliefs. At given beliefs b 2 B and at given locations x1 < x2,

suppose p�i (b; x1; x2) is the unique corresponding Nash equilibrium price for

�rm i 2 I . Given these prices the �rms choose locations as to maximize

their expected pro�ts. Because equilibrium prices depend on the other �rm's

beliefs, also the �rm's location choices for the game G(b) will depend on the

other �rm's beliefs. Suppose the corresponding Nash equilibrium locations

are unique also, to be denoted by x�1(b) for �rm 1 and x
�
2(b) for �rm 2. The

subgame perfect Nash equilibrium strategy at beliefs b 2 B for the game

G(b) is denoted by s�(b) = < x
�
1(b); x

�
2(b); f(p

�
1(b; x1; x2); p

�
2(b; x1; x2)) j x1 <

x2g >. Consequently, at given beliefs b 2 B, the indi�erent consumer is

located at

x
�(b) =

x
�
1(b) + x

�
2(b)

2
+
p
�
2(b; x

�
1(b); x

�
2(b))� p

�
1(b; x

�
1(b); x

�
2(b))

2(x�2(b)� x
�
1(b))

: (7)
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We say that beliefs b 2 B are consistent if for all i 2 I and for all k 2 K

bik = 1 if tk < x
�(b) < tk+1

bik = 0 if x�(b) < tk or x�(b) > tk+1

bik 2 [0; 1] otherwise;

(8)

so, expected demand is equal to realized demand.

De�nition 3.1 A psychological equilibrium for a psychological game G with

unique subgame perfect Nash equilibria at any beliefs is a pair of strategies

s
� and beliefs b� 2 B such that b� is consistent and s

� is a subgame perfect

Nash equilibrium strategy for the game G(b�), i.e., s� = s
�(b�).

First we determine the solution to the location-then-price game for �xed

beliefs b 2 B. For i 2 I , let fi denote the �rst order derivative of Fi with

respect to x, let f 0i denote the second order derivative of Fi with respect to

x and let f 00i denote the third order derivative of Fi with respect to x. For

simplicity we let fi(bi; x) > 0 for all bi 2 Bi and x 2 [0; 1]. For �rm i 2 I ,

the corresponding �rst order condition for the price stage at locations x1
and x2 reads

pi = �
Fi(bi; x)

fi(bi; x)

�
@x

@pi

��1
; (9)

while the second order condition for a maximum is given by�
2fi(bi; x)�

Fi(bi; x)

fi(bi; x)
f
0
i(bi; x)

�
@x

@pi

< 0; (10)

where x is given by equation (3). In general, the set of equations (9) and

(10) has multiple solutions, or no solutions at all. For the case where F1 is

three times continuosly di�erentiable and consequently F1 = F1, i.e., beliefs

do not matter, Goeree and Ramer (1994) prove the existence of a unique

price equilibrium assuming log-concavity of F1. They apply a theorem of

Caplin and Nalebu� (1991) in order to show the quasi-concavity of the

pro�t functions. For the case where F1 is continuous but not di�erentiable

everywhere, in the next section, for any beliefs b 2 B, we prove the existence

of a unique price equilibrium for the situation of piecewise linearity of F1.

In this case pro�t is piecewise quasi-concave. With a piecewise linear F1 we

are able to approximate any cumulative density function by passing to �ner

partitions, i.e., by increasing n.

However, for the time being we need only the existence of a unique so-

lution p
�
i (b; x1; x2) for i 2 I to the price stage at any beliefs b 2 B. For ease
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of notation we write x�(b; x1; x2) = x(x1; x2; p
�
1(b; x1; x2); p

�
2(b; x1; x2)). The

pro�t of �rm i 2 I at the equilibrium prices is denoted by ��
i (b; x1; x2) =

�i(b; x1; x2; p
�
1(b; x1; x2); p

�
2(b; x1; x2)). Given these prices, �rm i 2 I strate-

gically chooses at b 2 B location xi as to maximize its pro�t ��
i (b; x1; x2).

For �rm i 6= j 2 I , the corresponding �rst order condition for the location

stage yields

Fi(bi; x
�(b))fi(bi; x

�(b)) =
�
2(fi(bi; x

�(b)))2� Fi(bi; x
�(b))f 0i(bi; x

�(b))
�
�

(x�j(b)� x
�
i (b))

@x�(b;x1;x2)
@xi

j(x�
1
(b);x�

2
(b));

(11)

while the second order condition for a maximum is given by

@
@xi
j(x�

1
(b);x�

2
(b))

n�
2�

Fi(bi;x
�(b;x1;x2))

fi(bi;x�(b;x1;x2))
f
0
i(bi; x

�(b; x1; x2))
�
@x�(b;x1;x2)

@xi
�

(xj � xi)Fi(bi; x
�(b; x1; x2))�

�
(Fi(bi;x

�(b;x1;x2)))
2

fi(bi;x�(b;x1;x2))

�o
< 0:

(12)

It is easily checked that for all i 2 I it holds

@x
�(b; x1; x2)

@xi

=
1

2

0
@3�X

j2I

Fj(bj ; x
�(b; x1; x2))f

0
j(bj; x

�(b; x1; x2))

(fj(bj ; x�(b; x1; x2)))2

1
A
�1

:

(13)

Consequently, assuming that x�1(b) and x
�
2(b) are the unique solutions to

(11), s�(b) =< x
�
1(b); x

�
2(b); f(p

�
1(b; x1; x2); p

�
2(b; x1; x2)) j x1 < x2g > is the

unique subgame perfect Nash equilibrium strategy for the game G(b).
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4 Existence of psychological equilibria

We consider a piecewise uniform density function having a piecewise linear

cumulative density. We assume that for some n 2 IN, on each interval

[ k
n
;
k+1
n
], k 2 K, consumers are located with density dk+1 > 0 such that

n�1X
k=0

dk+1 = n:

This means that tk =
k
n
for k 2 K. The density will be denoted by the tuple

< d1; : : : ; dn >. Note that we have the standard uniform case when n = 1

or dk+1 = 1 for each k 2 K. We denote Dk =
Pk

m=0 dm for all k 2 K, where

we de�ne d0 = 0. For given beliefs bi 2 Bi, the expected demand for �rm

i 2 I is linear in x and can be written as

Fi(bi; x) = 
i(bi) + �i(bi)x; (14)

where


1(b1) =
1
n

Pn�1
k=1 b1k(Dk � kdk+1); 
2(b2) = 1� 1

n

Pn�1
k=1 b2k(Dk � kdk+1);

�1(b1) =
Pn�1

k=0 b1kdk+1; �2(b2) = �
Pn�1

k=0 b2kdk+1:

Clearly, fi(bi; x) = �i(bi) and f
0
i(bi; x) = f

00
i (bi; x) = 0 for all i 2 I and

bi 2 Bi. Equation (9) can be rewritten then as

pi(b; x1; x2) = �(x+

i(bi)

�i(bi)
)

�
@x

@pi

��1
(15)

and the second order conditions for a maximumare ful�lled because �1(b1) >

0 and �2(b2) < 0. Note that 
2(b2) = 1�
1(b1) and �2(b2) = ��1(b1) in case

�rms have identical beliefs, i.e., b1 = b2.

Proposition 4.1 For any density < d1; : : : ; dn > with n 2 IN, any b 2 B

and any x1 < x2, there exists a unique solution to the price stage for the

game G(b) given by

p
�
i (b; x1; x2) =

x2 � x1

3

 
x1 + x2 +

4
i(bi)

�i(bi)
�
2
j(bj)

�j(bj)

!

for i 6= j 2 I.
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Proof

Substitution of the prices from equation (15) into equation (3) yields

x
�(b; x1; x2) =

x1 + x2

6
�


1(b1)

3�1(b1)
�


2(b2)

3�2(b2)
:

The corresponding prices are given then by

p
�
i (b; x1; x2) =

x2 � x1

3

 
x1 + x2 +

4
i(bi)

�i(bi)
�
2
j(bj)

�j(bj)

!

for i 6= j 2 I

2

Requiring the prices to be positive yields a condition on x1 and x2,

namely

2
2(b2)

�2(b2)
�
4
1(b1)

�1(b1)
< x1 + x2 <

2
1(b1)

�1(b1)
�
4
2(b2)

�2(b2)
: (16)

Furthermore it is easily found from equation (13) that for all i 2 I it

holds that
@x

�(b; x1; x2)

@xi

=
1

6
: (17)

Given the prices p
�
i (b; x1; x2), i 2 I , the �rms choose locations as to

maximize their expected pro�ts. The pro�t of �rm i 6= j 2 I can be written

then as

��
i (b; x1; x2) =

�i(bi)(x2 � x1)

18

 
x1 + x2 +

4
i(bi)

�i(bi)
�

2
j(bj)

�j(bj)

!2

: (18)

Proposition 4.2 For any density < d1; : : : ; dn > with n 2 IN and any

beliefs b 2 B, there exists a unique solution to the location stage for the

game G(b) given by

x
�
i (b) =

1

4
(

j(bj)

�j(bj)
�

5
i(bi)

�i(bi)
)

for i 6= j 2 I.
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Proof See Appendix.

It is easily checked that equation (16) is satis�ed at the solution x
�
1(b)

and x�2(b) in case of identical beliefs. In equilibrium the indi�erent consumer

is located at

x
�(b) = �

1

2
(

1(b1)

�1(b1)
+

2(b2)

�2(b2)
): (19)

From this we derive the following theorem.

Theorem 4.3 For any density < d1; : : : ; dn > with n 2 IN, generically,

there exists a unique psychological equilibrium (s�; b�) with s
� = s(b�). In

equilibrium, for all i 2 I, b�ik� = 1 for the (generically) unique value k� 2 K

for which Dk�

n
�

1
2
�

Dk�+1

n
and b

�
ik = 0 for k 6= k

�
2 K.

Proof See Appendix.

In the non-generic case, Dk�

n
= 1

2
for some k

�
2 K, i.e., the median

consumer is exactly located at a corner, and both k
�
� 1 and k

� induce a

psychological equilibrium. Pro�ts for both �rms, however, are maximized for

the value of k 2 fk��1; k�g for which the corresponding value dk is minimal,

because then equilibrium prices are higher while demand is 1
2
in both cases.

When dk��1 = dk� , pro�ts are the same for both values of k. Consequently,

for all i 2 I and for all symmetric beliefs b 2 B with bi(k��1) = 1 � bik�

and bik� 2 [0; 1], pro�ts are maximized then and the indi�erent consumer is

exactly the median consumer.

For convenience we write 

�
1 = 1 � 


�
2 = 1

n
(Dk� � k

�
dk�+1) and �

�
1 =

��
�
2 = dk�+1, which are the corresponding values in case b�1 and b

�
2 are such

that b�1k� = b
�
2k� = 1. Equilibrium beliefs b� 2 B are such that both �rms

have the same (expected) demands. We denote x� = x
�(b�). In equilibrium

the indi�erent consumer is located at

x
� =

1� 2
�1
2��1

(20)

which is exactly the median consumer because F1(x
�) = 1� F2(x

�) = 1
2
. In

case of symmetric densities equation (20) reduces to x� = 1
2
. For n odd, we

have k� = n�1
2

then, which gives x� =
n�2(Dk��k

�dk�+1)

2ndk�+1
= 2k�+1

2n
= 1

2
. For n

even, k� is either n
2
� 1 or n

2
and similarly it follows x� = 1

2
.
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Corollary 4.4 For any density < d1; : : : ; dn > with n 2 IN, generically,

the unique subgame perfect Nash equilibrium outcome for the game G(b�) is

given by locations x�1 =
�1�4
�

1

4��
1

and x
�
2 =

5�4
�
1

4��
1

and by prices p�1 = p
�
2 =

3
2(��

1
)2
.

Proof

For the equilibrium beliefs b� 2 B speci�ed in Theorem 4.3 it is easy to

calculate that x�i = x
�
i (b

�) and p
�
i = p

�
i (b

�
; x

�
1(b

�); x�2(b
�)) for i 2 I from

Propositions 4.1 and 4.2 by substituting 
�1 , 

�
2 , �

�
1 , and �

�
2.

2

Thus the two �rms always charge the same price in equilibrium and

furthermore both �rms have di�erent locations in equilibrium. This means

that the principle of minimum di�erentiation no longer holds. Note that

these results are similar to the results Lederer and Hurter (1986) �nd for the

situation of discriminatory pricing. In case of a symmetric density the result

in Corollary 4.4 reduces to locations x�1 =
1
2 �

3
4d�

k�+1

and x
�
2 =

1
2 +

3
4d�

k�+1

.

Intuitively this 'symmetric' result is what we could expect. It is exactly the

result Goeree and Ramer (1994) �nd for symmetric densities in case F1 is

di�erentiable. Because the prices and demands are the same for both �rms,

equilibrium pro�ts are the same for both �rms,

��
1 = ��

2 =
3

4(dk�+1)2
:

Finally we look at the degree of di�erentiation in equilibrium.

Lemma 4.5 For any density < d1; : : : ; dn > with n 2 IN, generically, the

degree of di�erentiation in equilibrium is equal to x
�
2 � x

�
1 =

3
2dk�+1

.

Proof

In equilibrium x
�
1 and x

�
2 are according to Corollary 4.4. But then we can

write x�2 � x
�
1 =

5�4
�
1

4��
1

�
�1�4
�

1

4��
1

= 3
2��
1

= 3
2dk�+1

.

2

In particular if the consumers are distributed uniformly then the degree

of di�erentiation is equal to 3
2
with locations x�1 = �

1
4
and x

�
2 =

5
4
. Further-

more, if dk�+1 � 1 then x
�
2 � x

�
1 �

3
2
and if dk�+1 � 1 then x

�
2 � x

�
1 �

3
2
.

Consequently, for the limiting case dk�+1 = n, i.e., demand is concentrated
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entirely in an in�nitesimal interval, the degree of di�erentiation tends to

zero if n goes to in�nity. Only for this case, Hotelling's principle of min-

imum di�erentiation is restored. In general we �nd that, when demand is

more concentrated at the centre both �rms will locate closer to the centre,

and, when demand is concentrated at the endpoints, both �rms will locate

further away from the centre.

5 A coordination argument

As argued before, both �rms know that for any tuple of locations and prices,

generically, there is a unique interval in which the indi�erent consumer is

located. The only uncertainty the �rms face is that a priori they do not know

what interval will result. Let the beliefs of �rm i 2 I about the location

of the indi�erent consumer to lie in any of the intervals [ k
n
;
k+1
n
], k 2 K,

be represented by the vector bi = (bi0; : : : ; bi(n�1)) in the set Bc
i = fy 2

f0; 1gn j
Pn�1

k=0 yk = 1g. This means that the vector bi 2 B
c
i , i 2 I , is a unit

vector. We will write bi(k) 2 B
c
i for the kth unit vector, k 2 K. Because of

consistency, it is natural to assume that the �rms coordinate on the same

beliefs. Let these identical beliefs be denoted by b(k) 2 B
c = f(y; y) 2

B
c
1 � B

c
2g. The corresponding conventional two-stage location-then-price

game with beliefs b(k) 2 B
c is referred to as G(b(k)). Because, generically,

equilibrium beliefs b� are in B
c, the unique equilibrium stated in Theorem

4.3 will be found again, generically, but the approach in this section to �nd

this equilibrium is based on coordination. At beliefs b(k) 2 B
c, expected

demand for �rm i 2 I is linear in x and can be written as

F
k
i (x) = 


k
i + �

k
i x (21)

where


k
1 = 1� 


k
2 =

1
n
(Dk � kdk+1);

�
k
1 = ��

k
2 = dk+1:

Applying Proposition 4.1 then yields the solution

p
�
i (b(k); x1; x2) =

x2 � x1

3

�
x1 + x2 +

2n+ 2(Dk � kdk+1)

ndk+1

�
(22)

to the price stage for the game G(b(k)) by substituting 
ki and �
k
i for 
i(bi)

and �i(bi), respectively, for all i 2 I . The solution to the location stage is
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found from Proposition 4.2 and is given by

x
�
1(b(k)) =

k
n
�

n+4Dk

4ndk+1
;

x
�
2(b(k)) =

k
n
+ 5n�4Dk

4ndk+1
:

(23)

Note that the �rms are located symmetrically around k
n
if Dk =

n
2 . At these

locations and prices the indi�erent consumer is expected to be located at

x
�(b(k)) =

k

n
+
n � 2Dk

2ndk+1
: (24)

We say that this outcome is consistent if k
n
� x

�(b(k)) � k+1
n
. Rewriting

equation (24) then yields the following result.

Lemma 5.1 For any density < d1; : : : ; dn > with n 2 IN, the subgame

perfect Nash equilibrium outcome for the game G(b(k)) is consistent if k 2 K

satis�es the condition

0 � n� 2Dk � 2dk+1:

As we know already from Theorem 4.3, generically, there exists a unique

psychological equilibrium.

Proposition 5.2 For any density < d1; : : : ; dn > with n 2 IN, there is at

least one value k� 2 K for which b(k�) induces a psychological equilibrium. If

k
�
2 K is not unique, either b(k��1) or b(k�+1) also induces a psychological

equilibrium.

Proof See Appendix.

From Lemma 5.1 we know that k� must satisfy the condition

Dk�

n
�

1

2
�
Dk�+1

n
:

If Dk =
n
2
for some k 2 K then we end up at the corner solution k

n
where the

equilibria are paired, i.e., the indi�erent consumer is the same. Otherwise

we end up at an interior solution, as we saw already in Theorem 4.3.
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Corollary 5.3 For any density < d1; : : : ; dn > with n 2 IN, generically,

the unique subgame perfect Nash equilibrium outcome for the game G(b(k�))

where b(k�), generically, induces the psychological equilibrium is given by

locations xc�1 = k�

n
�

n+4Dk�

4ndk�+1
and xc�2 = k�

n
+

5n�4Dk�

4ndk�+1
and prices pc�1 = p

c�
2 =

3
2(dk�+1)

2 .

Proof

This follows easily from Corollary 4.4.

It is easy to check that, given k
�, xc�1 <

k�

n
� x

�(bc�) � k�+1
n

< x
c�
2 ,

where the last inequality results from the fact that 5n� 4Dk�+1 is positive.

This means that the indi�erent consumer is located to the right of �rm 1

and to the left of �rm 2 and, furthermore, the �rms are located outside the

interval [k
�

n
;
k�+1
n

]. This formalizes Smithies' (1941) notions of 'competitive

region' for the region [xc�1 ; x
c�
2 ] and of 'hinterlands' for the regions (�1; x

c�
1 )

and (xc�2 ;1). It is obvious by now that the size of the competitive region

crucially depends on the density. Nevertheless the density is irrelevant for

the size of the market areas.

6 The triangular density

In this section we apply the psychological game approach to an example

introduced by Tabuchi and Thisse (1995). Consider the cumulative density

function F1 : [0; 1] 7! [0; 1] given by

F1(x) =

(
F10(x) for 0 � x �

1
2

F11(x) for 1
2
� x � 1;

where F1k : [0; 1] 7! IR, k 2 f0; 1g, are given by F10(x) = 2x2 and F11(x) =

4x�2x2�1. Note that at x = 1
2 , F1 is continuously di�erentiable only once.

In case of identical beliefs b̂ = (bs; bs) 2 B, expected demand for �rm i 2 I

is quadratic in x and can be written as

Fi(bs; x) = 
̂i(bs) + �̂i(bs)x+ �̂i(bs)x
2
; (25)

where

̂1(bs) = 1� 
̂2(bs) = �bs1;

�̂1(bs) = ��̂2(bs) = 4bs1;

�̂1(bs) = ��̂2(bs) = 2(bs0 � bs1) = 2� 4bs1:
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Because F1 is logconcave there exists a unique solution to the price stage

for all b̂ 2 B, given implicitly by equation (9). The solution to the location

stage can be found from equation (11).

Lemma 6.1 For beliefs bs = (1; 0), the subgame perfect Nash equilibrium

outcome for the game G(b̂) is given by < �
2
3
(6)�

1

2 ;
5
3
(6)�

1

2 ;
7
18
;
14
18

> and

the indi�erent consumer is located at (6)�
1

2 . For beliefs bs = (0; 1), the

subgame perfect Nash equilibrium outcome for the game G(b̂) is given by

< 1 � 5
3
(6)�

1

2 ; 1 + 2
3
(6)�

1

2 ;
14
18
;
7
18

> and the indi�erent consumer is located

at 1 � (6)�
1

2 . For beliefs bs = (12 ;
1
2), the subgame perfect Nash equilibrium

outcome for the game G(b̂) is given by <
1
8
;
7
8
;
3
8
;
3
8
> and the indi�erent

consumer is located at 1
2 .

Proof See Appendix.

Because (6)�
1

2 <
1
2
< 1 � (6)�

1

2 , it is easy to see that all these three

equilibrium outcomes are consistent. In fact these are the only three consis-

tent equilibrium outcomes. The �rst two, asymmetric, solutions are the ones

found by Tabuchi and Thisse (1995) and Goeree and Ramer (1994), which

in fact require �rms to be treated asymmetrically. The third, symmetric,

solution is the one which follows by approximating the cumulative density

function with a piecewise linear cumulative density.

Consider therefore the following piecewise uniform density with n+1
2
2 IN,

i.e., n odd. On each interval [ k
n
;
k+1
n
], k 2 K, consumers are located with

density dk+1 > 0 such that

dk+1 =

(
4n(k+1)

(n+1)2
for k 2 f0; : : : ; n�1

2
g

dn�k for k 2 f
n�1
2

+ 1; : : : ; n� 1g:
(26)

Then we get the following result.

Lemma 6.2 For the density < d1; : : : ; dn > with n+1
2

2 IN speci�ed in

equation (26), the unique psychological equilibrium outcome is found for

k
� = n�1

2
and is equal to <

n�3
8n

;
7n+3
8n

;
3(n+1)2

8n2
;
3(n+1)2

8n2
>. For n ! 1 we

get the unique symmetric equilibrium outcome <
1
8
;
7
8
;
3
8
;
3
8
> as a limiting

case.
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Proof

For n 2 IN odd it is clear from Theorem 4.3 that k� = n�1
2 . But then we

can calculate Dk� =
n(n�1)

2(n+1)
and dk�+1 = 2n

n+1 from which it follows that



�
1 = �

n�1
2(n+1)

and �
�
1 = 2n

n+1
. Corollary 4.4 then gives the required result.

The limiting result is found immediately.

It is clear by now that approximating a cumulative density function

with a piecewise linear cumulative density lets the asymmetric equilibria

disappear. In equilibrium the indi�erent consumer is exactly the median

consumer. Consequently, �rms' demands, prices and pro�ts are the same.

7 The two-dimensional case

In this section we point out brie
y the applicability of our results to the two-

dimensional case, i.e., the case where consumers are located on the square

S = [0; 1]� [0; 1]. For ease of exposition we let consumers be distributed

uniformly over S. Firm i 2 I is located at xi 2 S and sells the commodity at

price pi. For convenience we let x1 6= x2. Because transportation costs are

assumed to be quadratic in distance, the set of indi�erent consumers is a line

segment perpendicular to the line passing through the �rms' locations. For

any �xed location pair, the demand for the commodity of �rm i 2 I can be

approximated by a one-dimensional density < d1; : : : ; dn > with n 2 IN, and

consequently Theorem 4.3 can be applied. Note, however, that the density

depends on the line on which they are located. Essentially this means that

�rms also have to decide upon the line along which to locate. In Figure 1

the bold line depicts the possible equilibrium locations in case �rms locate

symmetrically on a �xed line through the centre (1
2
;
1
2
). The two dashed

lines depict the degree of di�erentiation at the corresponding equilibrium

con�guration.

We see that the degree of di�erentiation lies between its minimum 3
4(2)

1

2

for locations x1 = (1
8
;
7
8
) and x2 = (7

8
;
1
8
), and its maximum 3

2
for locations

x1 = (�1
4 ;

1
2) and x2 = (54 ;

1
2). The �rst result is exactly the result stated in

Lemma 6.2, but then on the interval [0; (2)
1

2 ] instead of [0; 1]. The second

result is exactly the result for the uniform case as can be seen from Lemma

4.5. In case the degree of di�erentiation equals 3
4(2)

1

2 per �rm pro�t is 3
8

and in case the degree of di�erentiation equals 3
2
per �rm pro�t is 3

4
. So

pro�ts for both �rms are maximized in case the degree of di�erentiation is

maximal.
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Figure 1: Possible equilibrium locations.
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Appendix

Proof of Proposition 4.2

Recall that for each density < d1; : : : ; dn > with n 2 IN and beliefs b 2 B,

expected demand for �rm i 2 I is linear in x. Equation (11) then reduces

to

i(bi)

�i(bi)
+ x

�(b) =
x
�
j(b)� x

�
i (b)

3
(27)

for i 6= j 2 I . Summation over i 2 I yields

x
�(b) = �

1

2
(

1(b1)

�1(b1)
+

2(b2)

�2(b2)
): (28)

Substitution of (28) into (27) then yields the required result

x
�
i (b) =

1

4
(

j(bj)

�j(bj)
�

5
i(bi)

�i(bi)
):

The second order conditions for a maximum are ful�lled (at least in case

of identical beliefs), because Fi(bi; :) being a�ne, equation (12) reduces to

2(b2)

�2(b2)
<


1(b1)

�1(b1)
for all i 2 I , where we use the fact that

@x�(b;xi;xj)

@xi
= 1

6
for all

i 6= j 2 I .

Proof of Theorem 4.3

From Propositions 4.1 and 4.2 we know that (up to symmetry) for any

beliefs b 2 B there is a unique subgame perfect Nash equilibrium s
�(b) =<

x
�
1(b); x

�
2(b); f(p

�
1(b; x1; x2); p

�
2(b; x1; x2)) j x1 < x2g > for the game G(b).

Given beliefs b� 2 B, there generically exists a unique corresponding state,

i.e., there is a unique value k� 2 K such that k�

n
� x

�(b�) � k�+1
n

. According

to (8), consistency requires that, for all i 2 I , b�ik� = 1 and b
�
ik = 0 for

k 6= k
�
2 K. This means that equilibrium beliefs are identical. From

equation (19) we �nd that x�(b�) =
1�2
�

1

2��
1

. Substitution in the constraint

k�

n
� x

�(b�) � k�+1
n

yields

Dk�

n
�

1

2
�
Dk�+1

n
: (29)

Finally we have to show that there is a unique value k� 2 K that satis�es

equation (29). Suppose without loss of generality that equation (29) is also

satis�ed for some k � k
� + 1. Then 1

2
�

Dk�+1

n
�

Dk

n
, which contradicts

Dk

n
�

1
2
, unless k = k

� + 1 and
Dk�+1

n
= 1

2
.
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Proof of Proposition 5.2

The �rst part we prove by contradiction using an induction argument. Let

Kk be de�ned as f0; : : : ; kg for any k 2 K. Suppose that there is no equi-

librium for k 2 K0. Then from Lemma 5.1 we know that the condition

0 � n�2Dk

2ndk+1
�

1
n
does not hold for k = 0. Since D0 = 0 the condition can be

rewritten as 0 � 1
2d1

�
1
n
. Clearly 0 � 1

2d1
always holds, therefore it must

be that d1 <
n
2
. Next suppose that there is no equilibrium for k 2 K1. If

there is no equilibrium for k = 1 then the condition 0 � n�2D1
2nd2

�
1
n
does

not hold. Because there is no equilibrium for k = 0 we furthermore know

that d1 <
n
2 . But then the condition simpli�es to D2 <

n
2 . By induction

we see that there is no equilibrium for all k 2 Kn�1 if and only if Dn <
n
2
,

which contradicts Dn = 1. Therefore there exists an equilibrium for some

k
�
2 Kn�1 = K. But then Dk�

n
�

1
2
�

Dk�+1

n
. Now suppose without loss of

generality that there also exists an equilibrium for some k > k
� where k 2 K.

This means that Dk

n
�

1
2
�

Dk+1

n
. But then

Dk+1

n
�

1
2
�

Dk

n
�

Dk�+1

n
�

Dk�

n

which means that
Dk�+1

n
must be equal to 1

2
and k be equal to k

� + 1. It

is easy to see that there are at most two equilibria. Suppose to the con-

trary that there exists a third equilibrium for say m > k 2 K, then we get
Dm

n
�

Dk+1

n
=

Dk+dk+1
n

�
1
2 +

dk+1
n

>
1
2 while Dm

n
�

1
2 is required.

Proof of Lemma 6.1

For beliefs bs = (1; 0) we have 
̂1 = 1 � 
̂2, �̂1 = �̂2 = 0, and �̂1 = ��̂2 = 2.

Consequently, F1(bs; x) = 2x2 and F2(bs; x) = 1� 2x2. From the �rst order

conditions for the location stage, equation (11), we then �nd the solution

x
�(b̂) = (6)�

1

2 . It is easily checked that x�1(b̂) = �
2
3
(6)�

1

2 and x
�
2(b̂) =

5
3(6)

�
1

2 . The corresponding prices are 7
18 and 14

18 , respectively. The proof

for the situation bs = (0; 1) is similar and is left to the reader. For beliefs

bs = (12 ;
1
2) we have 
̂1 = 1 � 
̂2 = �

1
2 , �̂1 = ��̂2 = 2, and �̂1 = ��̂2 = 0.

Consequently, F1(bs; x) = 2x� 1
2
and F2(bs; x) =

3
2
�2x. From equation (11)

we then �nd the solution x
�(b̂) = 1

2
. Furthermore x�1(b̂) =

1
8
and x

�
2(b̂) =

7
8
.

The corresponding price is 3
8
for both �rms.
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