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with
reservation prices�

H.M. Webersy
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Abstract

In this paper, we analyze a variant of the standard Hotelling model

of spatial competition where �rms �rst choose locations along the line

and then, given these locations, compete in prices. Consumers have a

�nite reservation price and they incur a quadratic transportation cost.

We show that there exists a unique subgame perfect Nash equilibrium

for the location-then-price game if the reservation price is high enough.

In that case the degree of di�erentiation is nondecreasing in the reser-

vation price, because di�erentiation relaxes price competition. If the

reservation price is lower, there is a continuum of subgame perfect Nash

equilibria due to the fact that �rms can act as local monopolists and

the other �rm's location choice becomes of less importance. However,

all equilibria yield the same pro�t.
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1 Introduction

In this paper, we analyze a variant of the standard Hotelling (1929) model of

spatial competition where �rms �rst choose locations along the line and then,

given these locations, compete in prices. Consumers have a �nite reservation

price, specifying how much they are willing to pay for the commodity o�ered

by the �rms. This idea of introducing a �nite reservation price goes back

to Lerner and Singer (1937) and Smithies (1941). Each consumer buys at

most one unit of the mutually exclusive commodities. If a consumer buys

the product, he buys from the �rm that o�ers the highest indirect utility.

The indirect utility function of a consumer incorporates both transportation

costs and the reservation price. Firms are aware of the reservation price and

take into account the impact of their location decisions on their pro�ts. To

make the analysis tractable we assume that �rms coordinate on their location

choices, which implies that �rms coordinate on the degree of di�erentiation.

If the reservation price is relatively high, the maximum di�erentiation result

of d'Aspremont, Gabszewicz and Thisse (1979) is obtained. If, however, the

reservation price is relatively low, the degree of di�erentiation is lower. On

the other hand, there cannot be minimal di�erentiation, because then price

competition would drive pro�ts down too much.

We show that there exists a unique subgame perfect Nash equilibrium for

the location-then-price game if the reservation price is high enough. In that

case the degree of di�erentiation is nondecreasing in the reservation price,

because di�erentiation relaxes price competition. If the reservation price is

lower, there is a continuum of subgame perfect Nash equilibria due to the

fact that �rms can act as local monopolists and the other �rm's location

choice becomes of less importance. However, all equilibria yield the same

pro�t.

In equilibrium the degree of di�erentiation between the �rms is non de-

creasing in the reservation price. Economides (1984) already indicates max-

imal 'pro�table' di�erentiation in the original Hotelling model with linear

transportation costs, whereas we consider the model with quadratic trans-

portation costs. Due to the fact that in case of linear transportation costs,

the existence of a price equilibrium is not guaranteed for all location pairs,

the analysis then has to be restricted to the local monopoly situation (see

also Friedman (1983)). In case of quadratic transportation costs, however,

we are able to analyze both the local monopoly situation and the competitive

situation.

In general the �rms can do better than locate at the end points of the
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line as in Boyer and Moreaux (1993). As long as there are consumers at the

edges of the markets that do not buy the product, �rms have an incentive

to move towards the edges.

The paper is organized as follows. In Section 2 the location-then-price

game with reservation prices is formulated. Section 3 and Section 4 dis-

cuss the price stage and the location stage, respectively. In Section 5 the

main result is stated, being the existence of a unique subgame perfect Nash

equilibrium for the location-then-price game if the reservation price is high

enough, and otherwise there exists a continuum of subgame perfect Nash

equilibria. In Section 6 we look at the situation where the �rms are located

at the endpoints of the line, in more detail. The proofs are gathered in the

Appendix.

2 The model

There is a continuum of consumers distributed uniformly with density one

along the line segment [0,1]. Disposable income for the consumers to buy

one unit of a certain commodity is given by some �xed number p 2 IR+.

The number p will be referred to as the reservation price and speci�es how

much the consumers are willing to pay for the product. There are two �rms

on the market, denoted �rm 1 and �rm 2. Firm i 2 I = f1; 2g locates at

xi along the real line and sells the commodity at price pi 2 P = [0; p]. It is

clear that a �rm will not charge a price higher than p, because then demand

for the commodity of this �rm is always zero. We assume that �rm 1 locates

to the left of �rm 2.

Assumption 2.1 Firm 1 locates to the left of �rm 2, i.e., x1 < x2.

To make the analysis tractable we furthermore assume that both �rms

locate symmetrically, which includes the benchmark case x1 = 1 � x2 = 0,

originally considered by Boyer and Moreaux (1993). Essentially this as-

sumption means that, in the �rst stage, �rms coordinate on the degree of

di�erentiation.

Assumption 2.2 Firm 1 and �rm 2 locate symmetrically, i.e., x1 = 1�x2.

If a consumer buys one unit of the commodity from �rm i 2 I at price

pi 2 P the indirect utility is given by

Vi(x; xi; pi) = p� pi � t(x; xi); (1)
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where x is the consumer's location in the unit interval. The number t(x; xi) is

the transportation cost for shipping the product of �rm i to this consumer's

location. We assume this transportation cost to be quadratic in distance

with unit cost equal to one, i.e., t(x; xi) = (x � xi)
2. Each consumer buys

from the �rm that o�ers the highest non-negative indirect utility. A con-

sumer does not buy if he is o�ered a negative indirect utility by both �rms.

The market area of the product of �rm i 2 I at given locations x1 and x2
and prices p1 2 P and p2 2 P is therefore given by

Mi(x1; x2; p1; p2) = fx 2 [0; 1] j Vi(x; xi; pi) � maxf0; Vj(x; xj; pj)g; j 6= ig;

i.e., the set of consumers that prefer to buy the commodity from �rm i.

At locations x1 and x2 = 1 � x1 and at prices p1 and p2, the demand

Xi(x1; p1; p2) for the commodity of �rm i 2 I is equal to

Xi(x1; p1; p2) =

Z
Mi(x1;x2;p1;p2)

dx: (2)

We may distinguish three di�erent types of indi�erent consumers, namely

two or less consumers being indi�erent between buying from �rm 1 and

not buying at all, two or less consumers being indi�erent between buying

from �rm 2 and not buying at all, and, �nally, a consumer being indi�erent

between buying from �rm 1 and buying from �rm 2.

For i 2 I , let

x�i = xi � (p� pi)
1

2

and x+i = xi + (p� pi)
1

2 ;
(3)

for given locations x1 and x2 and prices p1 and p2.

If x+1 � x�2 , the location x of the consumer being indi�erent between

buying from �rm 1 and buying from �rm 2 is given by

x =
x1 + x2

2
+

p2 � p1

2(x2 � x1)
; (4)

being the midpoint between the �rms' locations corrected for price di�er-

ences. Otherwise x+1 and x�2 denote the locations of the consumers indi�er-

ent between not buying at all and buying from�rm 1 and �rm 2, respectively.

Furthermore, if x�1 � 0, x�1 and, if x+2 � 1, x+2 denote the locations of the

consumers indi�erent between not buying at all and buying from �rm 1 and

�rm 2, respectively. Notice that when there are two consumers being indif-

ferent between buying from a �rm and not buying at all, they are located

symmetrically around the �rm's location.
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Given the locations x1 and x2 = 1 � x1, at prices p1 2 P and p2 2 P ,

the demand for the commodity of �rm 1 can be expressed as

X1(x1; p1; p2) =

8>>><
>>>:

x if x+1 � x and x�1 � 0

x � x�1 if x+1 � x and x�1 � 0

x+1 if x+1 � x and x�1 � 0

x+1 � x�1 if x+1 � x and x�1 � 0;

(5)

and the demand for the commodity of �rm 2 can be expressed as

X2(x1; p1; p2) =

8>>><
>>>:

1� x if x�2 � x and x+2 � 1

x+2 � x if x�2 � x and x+2 � 1

1� x�2 if x�2 � x and x+2 � 1

x+2 � x�2 if x�2 � x and x+2 � 1:

(6)

At locations x1 and x2 = 1 � x1 and at prices p1 and p2, the pro�t of

�rm i 2 I is equal to

�i(x1; p1; p2) = piXi(x1; p1; p2): (7)

Given the locations x1 and x2 = 1 � x1 we look for a Nash equilibrium

for the price stage where the two �rms simultaneously choose prices as to

maximize their pro�t. The price stage is solved by prices p�1(x1) 2 P and

p�2(x1) 2 P such that

�1(x1; p
�

1(x1); p
�

2(x1)) � �1(x1; p1; p
�

2(x1))

�2(x1; p
�

1(x1); p
�

2(x1)) � �2(x1; p
�

1(x1); p2)

for all p1 2 P and p2 2 P , respectively. For ease of notation, we denote

��i (x1) = �i(x1; p
�

1(x1); p
�

2(x1)); i 2 I:

An equilibrium of the location stage is then given by some pair (x�1; 1�

x�1) 2 IR2 satisfying x�1 <
1
2
and for any x1 <

1
2

��i (x
�

1) � ��i (x1) for all i 2 I:

A subgame perfect Nash equilibrium for the location-then-price game

is de�ned by (x�1; 1� x�1) and (p�1(x1); p
�

2(x1)) for all location pairs (x1; 1�

x1) with x1 < 1
2
. The corresponding equilibrium path is (x�1; 1 � x�1) and

(p�1(x
�

1); p
�

2(x
�

1)).
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3 The price stage

In this section we consider the price stage. With symmetric locations we

may restrict ourselves to the situation x1 2 [�1
4
; 1
2
], because for x1 = 1 �

x2 = �1
4
the degree of di�erentiation is relatively maximal (see for example

Tirole (1988)). The solution to the price stage is most easily found by

looking at three di�erent cases, because in these three cases the structure

of competition di�ers. First we consider the case �1
4
� x1 = 1� x2 � 0. In

this case the demands for the commodity of �rm 1 and �rm 2 as expressed

in equations (5) and (6), respectively, reduce to

X1(x1; p1; p2) =

(
x if x+1 � x

x+1 if x+1 � x
(8)

and

X2(x1; p1; p2) =

(
1� x if x�2 � x

1� x�2 if x�2 � x;
(9)

because x�1 � 0 and x+2 � 1 then. It is clear that this case, which includes

the result of Boyer and Moreaux (1993) for x1 = 1 � x2 = 0, is the easiest

because of the relatively simple demand function.

Proposition 3.1 Let �1
4
� x1 = 1 � x2 � 0. Then, there exists a unique

symmetric Nash equilibrium (p�1(x1); p
�

2(x1)) 2 P � P for the price stage

given by p�1(x1) = p�2(x1) =8><
>:

2p
3
� 2

9
(x1)

2 + 2
9
x1((x1)

2 + 3p)
1

2 if �1 � p � �2
p� (1

2
� x1)

2 if �2 � p � �3
1� 2x1 if �3 � p;

where �1 = (x1)
2, �2 = (x1)

2 � 2x1 +
3
4
, �3 = 1 � 2x1 + (1

2
� x1)

2. If

0 � p � �1, for both �rms pro�ts are zero and a possible Nash equilibrium

(p�1(x1); p
�

2(x1)) for the price game is given by p�1(x1) = p�2(x1) = 0 then.

Proof See Appendix.

It is easy to check that for p � �1, equilibrium prices are nondecreasing

in the reservation price p and also that the corresponding equilibrium de-

mands are nondecreasing in p. For p = �1 the consumer located at zero is

just indi�erent between buying from �rm 1 and not buying at all. Equilib-

rium demand is equal to 0 for 0 � p � �1,
1
2
for p � �2, and it increases

continuously from 0 to 1
2
for �1 � p � �2.
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Next we consider the case 0 � x1 = 1 � x2 �
1
4
. The demands for the

commodity of �rm 1 and �rm 2 are given by equations (5) and (6) then,

respectively.

Proposition 3.2 Let 0 � x1 = 1 � x2 �
1
4
. Then, there exists a unique

symmetric Nash equilibrium (p�1(x1); p
�

2(x1)) 2 P � P for the price stage

given by p�1(x1) = p�2(x1) =8>>>>><
>>>>>:

2p
3

if 0 � p � �1
p� (x1)

2 if �1 � p � �2
2p
3
� 2

9
(x1)

2 + 2
9
x1((x1)

2 + 3p)
1

2 if �2 � p � �3
p� (1

2
� x1)

2 if �3 � p � �4
1� 2x1 if �4 � p;

where �1 = 3(x1)
2, �2 = 5(x1)

2, �3 = (x1)
2�2x1+

3
4
, �4 = 1�2x1+(

1
2
�x1)

2.

Proof See Appendix.

Again equilibrium prices are nondecreasing in the reservation price p

and also the corresponding equilibrium demands are nondecreasing in p.

Equilibrium demand increases continuously from 0 to 2x1 for 0 � p � �1, it

is equal to 2x1 for �1 � p � �2, it increases continuously from 2x1 to 1
2
for

�2 � p � �3, and it is equal to 1
2
for p � �3. In equilibrium the situation

in which both x+1 � x�2 and x�1 > 0 or x+2 < 1 cannot occur. If equilibrium

prices are relatively so low that x+1 � x�2 , then it holds that x�1 � 0 and

x+2 � 1.

Finally we consider the case 1
4
� x1 = 1� x2 �

1
2
. The demands for the

commodity of �rm 1 and �rm 2 are given again by equations (5) and (6),

respectively.

Proposition 3.3 Let 1
4
� x1 = 1 � x2 �

1
2
. Then, there exists a unique

symmetric Nash equilibrium (p�1(x1); p
�

2(x1)) 2 P � P for the price stage

given by p�1(x1) = p�2(x1) =8>>>>><
>>>>>:

2p
3

if 0 � p � �1
p� (1

2
� x1)

2 if �1 � p � �2
p� (z + 2x1 � 1)2 if �2 � p � �3
p� (x1)

2 if �3 � p � �4
1� 2x1 if �4 � p;
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where z = 2(
p+2(1�2x1)

2

3
)
1

2 cos(�
3
) with � 2 [0; �] satisfying the condition

cos(�) = �
(1�2x1)

3

2
(p+2(1�2x1)

2

3
)�

3

2 , �1 = 3(1
2
� x1)

2, �2 is the unique value

of p for which z = 3
2
� 3x1, �3 is the unique value of p for which z = 1� x1,

�4 = 1� 2x1 + (x1)
2.

Proof See Appendix.

One can check that in Proposition 3.3 it holds that �2 = �3 = 11
48

for

x1 = 1 � x2 = 1
4
. Contrary to the previous two cases, equilibrium prices

may be decreasing now in the reservation price for �2 � p � �3. The

reason is that price competition may be increasing in the reservation price,

because the �rms are located 'too' close. The equilibrium demands, however,

are nondecreasing in the reservation prices. Equilibrium demand increases

continuously from 0 to 1 � 2x1 for 0 � p � �1, it is equal to 1 � 2x1 for

�1 � p � �2, it increases continuously from 1 � 2x1 to 1
2
for �2 � p � �3,

and it is equal to 1
2
for p � �3.

As we know from Economides (1984) and Boyer and Moreaux (1993)

there also may exist asymmetric equilibria in case the local monopoly situ-

ation and the competitive situation are touching, i.e., x+1 = x = x�2 .

Lemma 3.4 Let �1
4
� x1 = 1 � x2 �

1
2
. Then, there are no asymmet-

ric Nash equilibria for the price stage, unless the local monopoly situation

and the competitive situation are touching. In the situation of touching,

there exists a continuum of Nash equilibria. The symmetric solution in this

situation is p�1(x1) = p�2(x1) = p� (1
2
� x1)

2.

Proof

In the situation of touching the reaction functions, when intersecting, are in

fact overlapping. For given p and x1, the pro�t maximizing price for �rm

i 6= j 2 I is given then by

p�i (pj) = p� (1� 2x1 � (p� pj)
1

2 )2:

Because p�i (p
�

j (pi)) = pi the two reaction functions are overlapping, which

proves the existence of a continuum of Nash equilibria. It is easy to see then

that p�1(x1) = p�2(x1) = p� (1
2
� x1)

2 is the unique symmetric solution. For

the strict local monopoly situation and competitive situation it is obvious

that there do not exist asymmetric equilibria.

2
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The question arises, which 'touching' equilibrium is going to be picked

up by the competitors. Symmetry and Harsanyi's (1975) tracing procedure

suggest equal Nash equilibrium prices for both �rms. Following Economides

(1984) we pick up the symmetric Nash equilibrium as 'the' Nash equilibrium.

4 The location stage

In this section we look at the location stage. Given the (symmetric) equilib-

rium prices in the price stage we determine the optimal locations in each of

the three cases for all possible values of the reservation price. In Section 5

then, we combine the three cases in order to determine the subgame perfect

Nash equilibria for the location-then-price game.

Proposition 4.1 Suppose the location choice of �rm 1 is restricted to �1
4
�

x1 = 1�x2 � 0. Then, the optimal locations for the location stage are given

by

x�1 = 1� x�2 =

8><
>:

0 if 0 � p � 5
4

3
2
� (p+ 1)

1

2 if 5
4

� p � 33
16

�1
4

if 33
16

� p:

Proof See Appendix.

In case �1
4
� x1 = 1� x2 � 0, the degree of horizontal di�erentiation is

nondecreasing in the reservation price. When the reservation price is rela-

tively low, the horizontal di�erentiation is relatively minimal, because of the

demand e�ect. When the reservation price is relatively high, the horizontal

di�erentiation is relatively maximal, because of the price e�ect. When the

reservation price is intermediate, horizontal di�erentiation is increasing in

the reservation price in order to soften price competition.

At the locations speci�ed in Proposition 4.1, demand equals (p
3
)
1

2 for

0 � p � 3
4
and 1

2
otherwise. The corresponding prices are 2p

3
for 0 � p � 3

4
,

p� 1
4
for 3

4
� p � 5

4
, 2(p+ 1)

1

2 � 2 for 5
4
� p � 33

16
, and 3

2
for p � 33

16
.

Proposition 4.2 Suppose the location choice of �rm 1 is restricted to 0 �

x1 = 1�x2 �
1
4
. Then, the optimal locations for the location stage are given

by

x�1 = 1� x�2 =

8><
>:

1
4

if 3
16

� p � 9
16

3
2
� (p+ 1)

1

2 if 9
16

� p � 5
4

0 if 5
4

� p;
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and by x�1 = 1� x�2 2 [(p
3
)
1

2 ; 1
4
] if 0 � p � 3

16
.

Proof See Appendix.

In case 0 � x1 = 1 � x2 �
1
4
, the degree of horizontal di�erentiation is

nondecreasing in the reservation price. When the reservation price is rela-

tively low, the horizontal di�erentiation is relatively minimal, because of the

demand e�ect. When the reservation price is relatively high, the horizontal

di�erentiation is relatively maximal, because of the price e�ect. When the

reservation price is intermediate, horizontal di�erentiation is increasing in

the reservation price in order to soften price competition.

At the locations speci�ed in Proposition 4.2, demand equals 2(p
3
)
1

2 for

0 � p � 3
16

and 1
2
otherwise. The corresponding prices are 2p

3
for 0 � p � 3

16
,

p� 1
16

for 3
16
� p � 9

16
, 2(p+ 1)

1

2 � 2 for 9
16
� p � 5

4
, and 1 for p � 5

4
.

Proposition 4.3 Let 1
4
� x1 = 1 � x2 �

1
2
. Then, the optimal locations

for the location stage are given by x�1 = 1 � x�2 = 1
4
if p � 3

16
, and by

x�1 = 1� x�2 2 [1
4
; 1
2
� (p

3
)
1

2 ] if 0 � p � 3
16
.

Proof See Appendix.

In case 1
4
� x1 = 1 � x2 �

1
2
, the degree of horizontal di�erentiation

again is nondecreasing in the reservation price. When the reservation price

is relatively high, horizontal di�erentiation is relatively maximal in order to

soften price competition.

At the locations speci�ed in Proposition 4.3, demand equals 2(p
3
)
1

2 for

0 � p � 3
16

and 1
2
otherwise. The corresponding prices are 2p

3
for 0 � p � 3

16
,

p� 1
16

for 3
16
� p � 9

16
, and 1

2
for p � 9

16
.

5 Subgame perfect Nash equilibria

In the sequel, the game in which �rms �rst choose locations and then com-

pete in prices is referred to as G. In the previous two sections we have

derived all the ingredients to prove the following two theorems.

Theorem 5.1 For 0 � p � 3
16
, there is a continuum of subgame perfect

Nash equilibria for the game G. In equilibrium the �rms' locations are given

by x�1 = 1� x�2 2 [(p
3
)
1

2 ; 1
2
� (p

3
)
1

2 ].
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Proof See Appendix.

When the reservation price is low enough, we are in a local monopoly

situation. The two �rms have some freedom in their location choices. For

equilibrium it is only required that the �rms do not locate too close to

each other on the one hand and do not locate too close to the endpoints

on the other hand. Indeed, when the �rms locate too close to each other,

competition drives pro�ts down. When the �rms locate too close to the

endpoints, demand decreases. In equilibrium, for all location choices pro�ts

are the same and are equal to the local monopoly pro�t 4(p
3
)
3

2 .

Theorem 5.2 For p � 3
16
, there is a unique subgame perfect Nash equilib-

rium for the game G. In equilibrium �rms' locations are given by

x�1 = 1� x�2 =

8><
>:

1
4

for 3
16

� p � 9
16

3
2
� (p+ 1)

1

2 for 9
16

� p � 33
16

�1
4

for 33
16

� p:

Proof See Appendix.

When the reservation price is relatively high, we are in a situation of

competition. The degree of di�erentiation is non-decreasing in the reserva-

tion price. Firms will not locate too close because then competition drives

pro�ts down too much. In contrast to the previous situation, �rms will

locate close to the endpoints and possibly outside the interval when the

reservation price is relatively very high. The reason is that this relaxes price

competition.

The following corollary states the equilibrium outcome or path. The

proof follows immediately from Theorems 5.1 and 5.2 and the propositions

in Section 3.

Corollary 5.3 The subgame perfect Nash equilibrium outcome for the game

G is given by locations x�1 = 1� x�2 = x� and prices p�1 = p�2 = p� satisfying

x� 2 [(p
3
)
1

2 ; 1
2
� p

3

1

2 ] and p� = 2p
3

for 0 � p � 3
16

x� = 1
4

and p� = p� 1
16

for 3
16

� p � 9
16

x� = 3
2
� (p+ 1)

1

2 and p� = 2(p+ 1)
1

2 � 2 for 9
16

� p � 33
16

x� = �1
4

and p� = 3
2

for 33
16

� p:
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Equilibrium pro�t �� for both �rms as a function of p equals 4(p
3
)
3

2 for

0 � p � 3
16
, 1
2
(p � 1

16
) for 3

16
� p � 9

16
, (p + 1)

1

2 � 1 for 9
16
� p � 33

16
, and

3
4
for p � 33

16
. Equilibrium locations and equilibrium pro�ts are drawn in

Figures 1 and 2, respectively.

-

6

p

3
16

9
16

21
16

33
16

p

�1
4

0

1
4

1
2

x1

x�

Figure 1: Equilibrium locations as a function of the reservation price p.
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-

6

�
�
�
��

p

3
16

9
16

21
16

33
16

p

1
4

1
2

3
4

�

��

Figure 2: Equilibrium pro�ts as a function of the reservation price p.

6 A special case

In this section we look at the situation where both �rms choose as location

the two endpoints of the unit interval, i.e., x1 = 1� x2 = 0, in more detail.

First we describe the price reaction functions.

Proposition 6.1 Suppose the �rms choose x1 = 1 � x2 = 0. For given

reservation price p 2 IR+ the price reaction function of �rm i 2 I as a

function of price pj 2 P of �rm j 6= i is given by pi(pj) =8><
>:

pj+1

2
if 0 � pj � ~pj

pj � 1 + 2(minf3; pg � pj)
1

2 if ~pj � pj � p̂j

max f2p
3
; pj � 1g if p̂j � pj � p;

where

~pj =

8><
>:

0 if 0 � p � 9
16

�5 + 4(p+ 1)
1

2 if 9
16

� p � 3

3 if 3 � p
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and

p̂j =

(
2p
3
� 1 + 2(p

3
)
1

2 if 0 � p � 3

3 if 3 � p:

Proof See Appendix.

It is easily checked that the price reaction function of �rm i 6= j 2 I is

continuous in pj . Moreover, in case 0 � p � 3, pi(pj) is linearly increasing

for relatively low values of pj , constant for relatively high values of pj , and

decreasing and concave for intermediate values of pj . More precisely, in

this case the prices are strategic complements for 0 � pj � ~pj , strategic

substitutes for ~pj � pj � p̂j , and strategically independent for p̂j � pj � p.

Note that in case p � 3 prices are strategic complements, because then

pi(pj) = pj � 1 for p̂j � pj � p and furthermore ~pj = p̂j .

From the price reaction functions we get the unique symmetric Nash

equilibrium

p�1 = p�2 =

8><
>:

2p
3

if 0 � p � 3
4

p� 1
4

if 3
4

� p � 5
4

1 if 5
4

� p;

which also follows directly from Proposition 3.1.

Equilibrium pro�ts �� for both �rms as a function of p in case x1 =

1� x2 = 0 are equal to

�� =

8><
>:

2(p
3
)
1

2 if 0 � p � 3
4

1
2
(p� 1

4
) if 3

4
� p � 5

4
1
2

if 5
4

� p:

These pro�ts are drawn in Figure 3. From Figures 2 and 3 we see that

for any given reservation price p equilibrium pro�ts in case �rms choose

for the endpoints are at most equal to the equilibrium pro�ts in case �rms

choose their locations strategically. Equal pro�ts only occur for p = 0 and

p = 5
4
. For these values of the reservation price, x1 = 1� x2 = 0 is indeed

the optimal location choice.
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-
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�
�
�
�
�
�
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4

21
16
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4

1
2

3
4
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��

Figure 3: Equilibrium pro�ts in case x1 = 1� x2 = 0.

Appendix

Proof of Proposition 3.1 Let �1
4
� x1 = 1 � x2 � 0. Firm i 2 I

wants to maximize its pro�t piXi(x1; p1; p2), where Xi(x1; p1; p2) is given

by equations (8) and (9). A price equilibrium with x+1 � x and x�2 � x

or with x+1 � x and x�2 � x cannot exist because it must hold that either

x+1 � x � x�2 or x�2 � x � x+1 . But then a price equilibrium is a pair of

prices (p1; p2) such that p1x and p2(1 � x) are maximal in case x�2 � x+1
and such that p1x

+
1 and p2(1 � x�2 ) are maximal in case x+1 � x�2 . For

p � 1�2x1+(
1
2
�x1)

2 this yields the competitive outcome p�1(x1) = p�2(x1) =

1�2x1. For (x1)
2�2x1+

3
4
� p � 1�2x1+(1

2
�x1)

2 we have the boundary

solution p�1(x1) = p�2(x1) = p � (1
2
� x1)

2 with per �rm demand equal to
1
2
. For (x1)

2 � p � (x1)
2 � 2x1 +

3
4
we have the one-sided local monopoly

outcome p�1(x1) = p�2(x1) = 2p
3
� 2

9
(x1)

2 + 2
9
x1((x1)

2 + 3p)
1

2 . Finally, for

p � (x1)
2 the reservation prices are relatively too low to have the �rms

in the market. For any price in the interval [0; p] pro�ts are zero. Hence,

p�1(x1) = p�2(x1) = 0 yields a Nash equilibrium.



15

Proof of Proposition 3.2 Let 0 � x1 = 1 � x2 �
1
4
. Firm i wants to

maximize its pro�t piXi(x1; p1; p2), whereXi(x1; p1; p2) is given by equations

(5) and (6). Similar as in the proof of Proposition 3.1 a price equilibrium is

a pair of prices such that p1x and p2(1� x) are maximal in case x�2 � x+1 ,

x�1 � 0, x+2 � 1. In case x+1 � x�2 , x
�

1 � 0, x+2 � 1 prices are such that

p1x
+
1 and p2(1 � x�2 ) are maximal. Finally, in case x+1 � x�2 , x

�

1 � 0,

x+2 � 1 prices are such that p1(x
+
1 � x�1 ) and p2(x

+
2 � x�2 ) are maximal.

The case x�2 � x+1 , x
�

1 � 0, x+2 � 1 cannot occur because then x1 �
1
2
maxfx; 1 � xg which contradicts 0 � x1 �

1
4
. For p � 1 � 2x1 + (1

2
�

x1)
2 this yields the competitive outcome p�1(x1) = p�2(x1) = 1 � 2x1. For

(x1)
2 � 2x1 +

3
4
� p � 1 � 2x1 + (1

2
� x1)

2 we have the boundary solution

p�1(x1) = p�2(x1) = p � (1
2
� x1)

2 with per �rm demand equal to 1
2
. For

5(x1)
2 � p � (x1)

2�2x1+
3
4
we have the one-sided local monopoly outcome

p�1(x1) = p�2(x1) =
2p
3
� 2

9
(x1)

2 + 2
9
x1((x1)

2 + 3p)
1

2 . For 3(x1)
2 � p � 5(x1)

2

we have the boundary solution p�1(x1) = p�2(x1) = p � (x1)
2 with per �rm

demand equal to 2x1. Finally, for p � 3(x1)
2 we have the two-sided local

monopoly outcome p�1(x1) = p�2(x1) =
2p
3
.

Proof of Proposition 3.3 Let 1
4
� x1 = 1� x2 �

1
2
. Firm i 2 I wants to

maximize its pro�t piXi(x1; p1; p2), whereXi(x1; p1; p2) is given by equations

(5) and (6). We look for a pair of prices such that p1x and p2(1 � x) are

maximal in case x�2 � x+1 , x
�

1 � 0, x+2 � 1. In case x�2 � x+1 , x
�

1 � 0,

x+2 � 1 prices are such that p1(x�x�1 ) and p2(x
+
2 �x) are maximal. Finally,

in case x+1 � x�2 , x
�

1 � 0, x+2 � 1 prices are such that p1(x
+
1 � x�1 ) and

p2(x
+
2 � x�2 ) are maximal. The case x+1 � x�2 , x

�

1 � 0, x+2 � 1 cannot occur

because then x1 �
1
2
minfx; 1 � xg which contradicts 1

4
� x1 �

1
2
. For

p � 1 � 2x1 + (x1)
2 this yields the competitive outcome p�1(x1) = p�2(x1) =

1 � 2x1. For 0 � p � 3(1
2
� x1)

2 we have the two-sided local monopoly

outcome p�1(x1) = p�2(x1) =
2p
3
. The most di�cult part is to �nd the price

equilibrium in case x�2 � x+1 , x
�

1 � 0, x+2 � 1, where prices are such that

p1(x�x�1 ) and p2(x
+
2 �x) are maximal. The �rst order conditions for pro�t

maximization are given by

x2 � x1

2
+

pj � 2pi

2(x2 � x1)
+ (p� pi)

1

2 � pi(2(p� pi))
�

1

2 = 0; for j 6= i 2 I: (10)

Due to symmetry the �rst order conditions are solved by p�1 = p�2 = p� where

p� solves the cubic equation

(p�p�)
3

2+3(x2�x1)(p�p
�)+((x2�x1)

2�p)(p�p�)
1

2�(x2�x1)p = 0: (11)
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By substituting y = (p � p�)
1

2 + (x2 � x1) into equation (11) we get the

reduced form of the cubic equation,

y3 � (p+ 2(x2 � x1)
2)y + (x2 � x1)

3 = 0: (12)

Because � =
((x2�x1)

3)2

4
�

(p+2(x2�x1)
2)3

27
< 0 the reduced form equation (12)

has three real roots. The three solutions y0, y1, and y2 are given by

yk = 2(
p+ 2(x2 � x1)

2

3
)
1

2 cos(
�+ 2k�

3
); k 2 f0; 1; 2g; (13)

where � follows from cos(�) = �
(x2�x1)

3

2
(
p+2(x2�x1)

2

3
)�

3

2 . For more details

about the derivation see for example Turnbull (1952) or Uspensky (1948).

From equation (11) it is easy to see that there is a unique value for p� such

that p � p� � 0. Without loss of generality we take � 2 [0; �]. Then it

is easy to see that y1 < y2 � y0 where the equality sign holds for � = �.

This implies that the unique equilibrium price is found for k = 0. But then

(p � p�)
1

2 = y0 + 2x1 � 1 which yields the result stated in the proposition.

Finally it can be checked that p� (x1)
2 � p� (z+2x1� 1)2 � p� (1

2
�x1)

2

requires that the reservation price p is between some bounds, where the

lower bound is greater than or equal to 3(1
2
� x1)

2 and the upper bound is

smaller than or equal to 1�2x1+(x1)
2. The boundary solutions p�(1

2
�x1)

2

and p� (x1)
2 can be determined easily then.

Proof of Proposition 4.1 Let �1
4
� x1 = 1 � x2 � 0. The Nash

equilibrium for the price stage is given then by Proposition 3.1. If the

equilibrium prices are given by p�1(x1) = p�2(x1) = p�(x1) =
2p
3
� 2

9
(x1)

2 +
2
9
x1((x1)

2+3p)
1

2 , equilibrium pro�t ��i (x1) for �rm i 2 I is increasing in x1
because

@��i (x1)

@x1
= p�(x1)+

@p�(x1)

@x1
(x1+(p�p�(x1))

1

2 �
1

2
(p�p�(x1))

�
1

2 ) = p�(x1):

This means that the optimal value for x1 is the maximal value for x1 such

that x1 � �(p)
1

2 , x1 � 1�(p+ 1
4
)
1

2 and �1
4
� x1 � 0. Note that this requires

that p � 21
16
. We �nd x�1 = 0 for 0 � p � 3

4
and x�1 = 1� (p+ 1

4
)
1

2 for 3
4
�

p � 21
16
. If the equilibrium prices are given by p�1(x1) = p�2(x1) = p�(x1) =

p� (1
2
� x1)

2, for �rm i 2 I equilibrium pro�t ��i (x1) =
1
2
(p� (1

2
� x1)

2) is

increasing in x1. This means that the optimal value for x1 is the maximal

value for x1 such that x1 � 1�(p+ 1
4
)
1

2 , x1 �
3
2
�(p+1)

1

2 , and �1
4
� x1 � 0.
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This requires that 3
4
� p � 33

16
. We �nd x�1 = 0 for 3

4
� p � 5

4
with per

�rm pro�t equal to 1
2
(p � 1

4
) and x�1 = 3

2
� (p + 1)

1

2 for 5
4
� p � 33

16
with

per �rm pro�t equal to (p + 1)
1

2 � 1. If the equilibrium prices are given

by p�1(x1) = p�2(x1) = p�(x1) = 1 � 2x1, for �rm i 2 I equilibrium pro�t

��i (x1) = 1
2
(1 � 2x1) is decreasing in x1. This means that the optimal

value for x1 is the minimal value for x1 such that x1 �
3
2
� (p + 1)

1

2 and

�1
4
� x1 � 0. This requires that p � 5

4
. We �nd x�1 = 3

2
� (p + 1)

1

2 for
5
4
� p � 33

16
with per �rm pro�t equal to (p+1)

1

2 �1 and x�1 = �1
4
for p � 33

16

with per �rm pro�t equal to 3
4
. Finally, pro�ts are zero if x1 � �(p)

1

2

and �1
4
� x1 � 0, which requires that p � 1

16
. Combining these di�erent

cases yields maximum pro�ts for the locations stated in the proposition.

Note that for 3
4
� p � 5

4
, per �rm pro�t is higher at x1 = 0 than at

x1 = 1� (p+ 1
4
)
1

2 because both the price and demand are higher in the �rst

case. For 5
4
� p � 21

16
per �rm pro�t is higher at x1 =

3
2
� (p+ 1)

1

2 than at

x1 = 1� (p+ 1
4
)
1

2 for the same reason.

Proof of Proposition 4.2 Let 0 � x1 = 1�x2 �
1
4
. The Nash equilibrium

for the price stage is given then by Proposition 3.2. If the equilibrium prices

are given by p�1(x1) = p�2(x1) = p�(x1) = 2p
3
, for �rm i 2 I equilibrium

pro�t ��i (x1) = 4(p
3
)
3

2 does not depend on x1, so any (p
3
)
1

2 � x1 �
1
4
yields

maximum pro�ts for 0 � p � 3
16
. If the equilibrium prices are given by

p�1(x1) = p�2(x1) = p�(x1) = p � (x1)
2, for �rm i 2 I equilibrium pro�t

��i (x1) = 2x1(p � (x1)
2) is increasing in x1. This means that the optimal

value for x1 is the maximal value for x1 such that (p
5
)
1

2 � x1 � (p
3
)
1

2 and

0 � x1 �
1
4
. This requires that p � 5

16
. We �nd x�1 = (p

3
)
1

2 for 0 � p � 3
16

with per �rm pro�t equal to 4(p
3
)
3

2 and x�1 = 1
4
for 3

16
� p � 5

16
with

per �rm pro�t equal to 1
2
(p � 1

16
). If the equilibrium prices are given by

p�1(x1) = p�2(x1) = p�(x1) =
2p
3
� 2

9
(x1)

2 + 2
9
x1((x1)

2 + 3p)
1

2 , equilibrium

pro�t ��i (x1) for �rm i 2 I is increasing in x1 as we have seen in the proof

of Proposition 4.1. This means that the optimal value for x1 is the maximal

value for x1 such that x1 � (p
5
)
1

2 , x1 � 1 � (p + 1
4
)
1

2 , and 0 � x1 � 1
4
.

Note that this requires that p � 3
4
. We �nd x�1 = (p

5
)
1

2 for 0 � p � 5
16

and x�1 = 1 � (p + 1
4
)
1

2 for 5
16
� p � 3

4
. If the equilibrium prices are given

by p�1(x1) = p�2(x1) = p�(x1) = p � (1
2
� x1)

2, for �rm i 2 I equilibrium

pro�t ��i (x1) =
1
2
(p � (1

2
� x1)

2) is increasing in x1. This means that the

optimal value for x1 is the maximal value for x1 such that x1 � 1� (p+ 1
4
)
1

2 ,
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x1 �
3
2
� (p + 1)

1

2 , and 0 � x1 �
1
4
. This requires that 5

16
� p � 5

4
. We

�nd x�1 = 1
4
for 5

16
� p � 9

16
with per �rm pro�t equal to 1

2
(p � 1

16
) and

x�1 =
3
2
� (p+ 1)

1

2 for 9
16
� p � 5

4
with per �rm pro�t equal to (p+ 1)

1

2 � 1.

If the equilibrium prices are given by p�1(x1) = p�2(x1) = p�(x1) = 1 � 2x1,

for �rm i 2 I equilibrium pro�t ��i (x1) =
1
2
(1 � 2x1) is decreasing in x1.

This means that the optimal value for x1 is the minimal value for x1 such

that x1 � 3
2
� (p + 1)

1

2 and 0 � x1 � 1
4
. This requires that p � 9

16
.

We �nd x�1 = 3
2
� (p + 1)

1

2 for 9
16

� p � 5
4
with per �rm pro�t equal to

(p+1)
1

2 �1 and x�1 = 0 for p � 5
4
with per �rm pro�t equal to 1

2
. Combining

these di�erent cases yields, after some calculations, maximum pro�ts for the

locations stated in the proposition.

Proof of Proposition 4.3 Let 1
4
� x1 = 1�x2 �

1
2
. The Nash equilibrium

for the price stage is given then by Proposition 3.3. If the equilibrium

prices are given by p�1(x1) = p�2(x1) =
2p
3
, for �rm i 2 I equilibrium pro�t

��i (x1) = 4(p
3
)
3

2 does not depend on x1, so any 1
4
� x1 �

1
2
� (p

3
)
1

2 yields

maximum pro�ts for 0 � p � 3
16
. If the equilibrium prices are given by

p�1(x1) = p�2(x1) = p� (x1)
2 or by p�1(x1) = p�2(x1) = p� (1

2
� x1)

2, for �rm

i 2 I equilibrium pro�t is decreasing in x1. The optimal value for x1 equals
1
4
then, which yields �2 = �3. But then x�1 =

1
4
for 3

16
� p � 9

16
. Finally, if

the equilibrium prices are given by p�1(x1) = p�2(x1) = 1� 2x1, for �rm i 2 I

equilibrium pro�t ��i (x1) =
1
2
(1 � 2x1) is decreasing in x1. Consequently

x�1 =
1
4
for p � 9

16
.

Proof of Theorem 5.1 Recall that for every x1 there exists a unique

price equilibrium given by Propositions 3.1, 3.2, 3.3. We prove that for

0 � p � 3
16
, pro�ts are maximal for all x�1 2 [(p

3
)
1

2 ; 1
2
� (p

3
)
1

2 ], which gives the

required result. Let 0 � p � 3
16
. In case �1

4
� x1 � 0 maximum pro�ts are

achieved for x�1 = 0 and are equal to 2(p
3
)
3

2 . In case 0 � x1 �
1
2
maximum

pro�ts are achieved for all x�1 2 [(p
3
)
1

2 ; 1
2
� (p

3
)
1

2 ] and are equal to 4(p
3
)
3

2 . It

is obvious that pro�ts are higher for x�1 2 [(p
3
)
1

2 ; 1
2
� (p

3
)
1

2 ] than for x�1 = 0.

Proof of Theorem 5.2 Recall that for all x1 there exists a unique price

equilibrium given by Propositions 3.1, 3.2, 3.3. Let p � 3
16

and de�ne

x�1(p) =

8><
>:

1
4

if 3
16

� p � 9
16

3
2
� (p+ 1)

1

2 if 9
16

� p � 33
16

�1
4

if 33
16

� p:

(14)
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We prove that for p � 3
16
, pro�ts are maximal for x�1 = x�1(p). For

3
16
� p �

9
16
, maximum pro�ts in case �1

4
� x1 � 0 are 2(p

3
)
3

2 . In case 0 � x1 �
1
2

maximum pro�ts are 1
2
(p � 1

16
), being achieved for x�1 = 1

4
. It is easily

checked that 1
2
(p� 1

16
) � 2(p

3
)
3

2 for 3
16
� p � 9

16
. For 9

16
� p � 3

4
, maximum

pro�ts in case �1
4
� x1 � 0 are 2(p

3
)
3

2 . In case 0 � x1 �
1
4
, pro�ts are

(p+1)
1

2 , and in case 1
4
� x1 �

1
2
, pro�ts are 1

4
. For 9

16
� p � 3

4
we have that

2(p
3
)
3

2 � 1
4
� (p + 1)

1

2 � 1. This means that pro�ts are maximal for x�1 =
3
2
� (p+ 1)

1

2 2 [0; 1
4
]. For 3

4
� p � 5

4
, maximum pro�ts in case �1

4
� x1 � 0

are 1
2
(p� 1

4
). In case 0 � x1 �

1
4
, pro�ts are (p+1)

1

2 , and in case 1
4
� x1 �

1
2
,

pro�ts are 1
4
. For 3

4
� p � 5

4
we have that 1

4
� 1

2
(p � 1

4
) � (p + 1)

1

2 � 1.

This means that pro�ts are maximal for x�1 = 3
2
� (p + 1)

1

2 2 [0; 1
4
]. For

p � 5
4
, maximum pro�ts in case 0 � x1 �

1
4
are equal to 1

2
and are higher

than pro�ts 1
4
in case 1

4
� x1 �

1
2
. For p � 5

4
we thus only need to compare

pro�ts in case �1
4
� x1 � 0 and in case 0 � x1 �

1
4
. For 5

4
� p � 33

16
,

maximum pro�ts in case �1
4
� x1 � 0 are (p+1)

1

2 �1 and maximum pro�ts

in case 0 � x1 �
1
4
are 1

2
. Because (p+ 1)

1

2 � 1 � 1
2
for 5

4
� p � 33

16
, pro�ts

are maximal for x�1 = 3
2
� (p + 1)

1

2 2 [�1
4
; 0]. For p � 33

16
it is easy to see

that pro�ts are maximal for x�1 = �1
4
.

Proof of Proposition 6.1 We prove the proposition for p � 3. For

0 � p � 3 we refer to Boyer and Moreaux (1993). The proof goes for �rm

1, but for �rm 2 the proof is similar. There are two relevant maximization

problems for �rm 1. Either it maximizes its competitive pro�t p1x subject

to the constraints x � x+1 and x � 1, or it maximizes its local monopoly

pro�t p1x
+
1 subject to the constraints x+1 � x and x+1 � 1. For 0 � p2 � 3

the competitive solution equals p1 =
p2+1
2

with pro�t (p2+1)
2

8
. For 3 � p2 �

p the competitive solution equals p1 = p2 � 1 with pro�ts p2 � 1. The

relevant local monopoly solution equals p1 = p2�1+2(p�p2)
1

2 with pro�ts

(p2� 1+ 2(p� p2)
1

2 )(1� (p� p2)
1

2 ) � p2� 1 � (p2+1)
2

8
. Therefore, the price

reaction function of �rm 1 is given by

p1(p2) =

(
p2+1
2

if 0 � p2 � 3

p2 � 1 if 3 � p2:
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