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Abstract. This paper discusses the core of the game corresponding to the stan-
dard fixed tree problem. We consider the weighted adaptation of the con-
strained egalitarian solution of Dutta and Ray (1989). The core of the standard
fixed tree game equals the set of all weighted constrained egalitarian solutions.
Each weighted constrained egalitarian solution 1s determined (in polynomial
time) as a home-down allocation, which creates further insight in the local be-
haviour of the weighted constrained egalitarian solution. The constrained
egalitarian solution is characterized in terms of a cost sharing mechanism.
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1. Sharing the cost of a tree network

In this paper the focus will be on the class of cooperative cost games that arises
from standard fixed tree enterprises (ct. Granot et al. (1996)). A standard fixed
tree enterprise 1s the mathematical model for the following situation. There 1s
a fixed and finite set of agents who are connected via a fixed tree network to a
special location that is called the root. We seek to allocate the cost of this tree
for cases where the connections within the network are costly. Many real-life
situations can be modelled to fit in this general setting. For instance, consider

* We thank the anonymous referee in charge for useful suggestions on the paper.
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the problem of allocating the maintenance cost of an irrigation network or a
cable vision network, setting airport taxes for planes or setting dredging fees
for ships. In a natural way each standard fixed tree problem gives rise to a
cooperative cost game, the standard fixed tree game, such that the agents are
the players and the cost of a coalition of players 1s related to the mimimal ex-
penses for connecting all its members to the root. There 1s an extensive list of
papers which use techniques from cooperative game theory to mvestigate es-
sentially the same type of situations. In this respect we mention Bird (1976),
Megiddo (1978), Granot and Huberman (1981), (1984), Granot et al. (1996),
Granot and Maschler (1998), Bjorndal et al. (1999), and van Gellekom and
Potters (1999). The special case when the underlying structure of the game 1s a
chain. is also known as the airport problem and considered by several authors
such as Littlechild (1974), Littlechild and Thompson (1977), Dubey (1982),
Potters and Sudholter (1999), Aadland and Kolpin (1998) and Bergantino and
Coppejans (1997). Moulin and Shenker (1996), Young (1998) and Koster es
al. (2000) discuss noncooperative models on structures with standard fxed
trees as a special case.

[t is a well known fact that the standard fixed tree games constitute a well-
behaved class of cost games. A standard fixed tree game 1s known to be con-
cave, which encompasses a uniform incentive for cooperation. Concave cost
games are known to have a large core, 1.e. the set that consists of all cost al-
locations that are stable with respect to separating coalitions (cf. Shapley
(1971)). This paper studies the core of the standard fixed tree games and main-
tenance games in particular. In Section 3 we make use of the tree structure to
characterize the core of maintenance games in several ways, and we mvesti-
gate its geometrical structure. In a natural way, the results can be generahzed
to the class of standard fixed tree games. In Section 4 we show that the core of
maintenance games consists of all weighted constrained egalitarian allocations
(see, e.g., Koster (2002) and Ebert (1999)). These solutions are a weighted
adaptation of the egalitarian concept by Dutta and Ray (1989). This result re-
lates to Monderer et al. (1992) who show that each core element of a concave
cost game 1s obtained as a weighted Shapley value for some weight system.
Bjorndal er al. (1999) provides a constructive proof of this fact for standard
fixed tree games.

Dutta and Ray (1989) propose an algorithm for computing the constrained
egalitarian solution, which is easily generalized for computing weighted adap-
tations (Koster (2002)). Still the algorithms are of exponential complexity.
However, in Section 4 it 1s shown that in case of maintenance games the
weighted constrained egalitarian solutions can be calculated in polynomial
time. In a way that is very natural, but particular to the case of standard fixed
tree games, dual weighted Shapley values and weighted constrained egalitarian
allocations are duals of each other: both types of allocations can be seen as
the result of a dynamical process of /ocally distributing the costs of the arcs
forming the tree. Where in Bjorndal (1999) it 1s shown that a weighted Shap-
ley value 1s a down-home allocation in the sense that it 1s determined by split-
ting incremental costs from the root to the leafs of the tree, a weighted con-
strained egalitarian allocation 1s of home-down type, splitting the incremental
costs from the leafs to the root (Section 4). Monotonicity properties for both
above mentioned classes of solutions can be obtained easily from this dynamic
approach.

In Section 5 we focus on fixed tree networks that are equal up to the cost
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function. A cost sharing mechanism 1s a device that relates each cost struc-
ture to a vector of cost shares. The egalitarian cost sharing mechanism relates
each cost function to the constrained egalitarian solution for the correspond-
iIng maintenance game. The main theorem 1s that the egalitarian cost sharing
mechanism 1s the unique cost sharing mechanism that 1s monotonically de-
bending on the cost structure, while 1t specifies core elements in the corre-
sponding maintenance game and simultaneously minimizes the range of cost
shares. Analogously, within the bounds of the core and cost monotonicity, it
uniquely minimizes the maximal cost share.

2. The standard fixed tree game

Granot er al. (1996) study the cost games arising from fixed tree networks
I'=(V,E,b,c,N). Here (V,E) is a tree, 1.e. a directed graph' without cir-
cuits with vertex set I and arc set £. One vertex, r, has a special meaning and
1s called the root of the tree. There 1s a cost function ¢ : £ — IR on the arcs of
the tree, and for an arc ¢ the number ¢(¢) 1s interpreted as the total of corre-
sponding construction costs. Similarly, there 1s a cost function b : V' — IR on
the vertices of the tree. Notice that costs can be negative, with respect to arcs
as well as vertices. NV 1s the society of players, each of its members 7 1s located
at some vertex v(i) € V. A vertex v 1s occupied 1f 1t specifies the location of one
or more players. The coalition of players located at some vertex in 77 < V 1s
denoted N7.

A hxed tree network I = (V,E.b,c, N) 1s standard if the following addi-
tional properties hold:

ﬁh
FI'

The cost function assigns nonnegative numbers to arcs.

The costs on vertices are zero, 1.e. b(v) =0 forallve V.

The root 1s not occupied.

[f v1s aleaf, 1.e. a vertex from where no other vertex can be reached, then

v 1S occupied.

(e) If v1s not occupied, then there are (at least) two vertices v, # v> such that
(v,v1),(v,02) € E.

(f) There 1s exactly one vertex v € V" such that (r,v) € E.

P, GE—  —— e

o PO
e T N

For the sake of transparency we will leave out the cost function on the
vertices, b : V' — IR, from the definition of a standard fixed tree network. In
addition, we will frequently write G for the graph defined by (V. E). In this
way I' = (G, ¢, N) stands for the standard fixed tree network (V, E,b,¢c, N) In
the above terminology.

The objective of the players is to connect themselves through the network to
the root. For instance, think of players being households that want to hook up
the cable vision network, or water supply system. It 1s assumed that all arcs 1n
the network are directed away from the root. Then in order to establish a con-
nection with the root, a player needs to finance the pat/i from the root to his
vertex v, 1.e. the subgraph P, = (V, E)of (V,E) with V' = {r,v;,02,. ..,0,,0}
and E = {(r,v1), (v1,v2), ..., (vp—1,0p), (vp,v)}. Similarly, we say that a coali-

' Here we slightly deviate from the original setting of an undirected graph: nevertheless the in-
terpretation and results do not change.
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tion of players is connected to the root, if all the individual members are con-
nected. It is assumed that the players may share the use of arcs and vertices.
such that a coalition of players needs to pay only once for an arc or vertex.
We will model the above situation using the notion of a cooperative cost
game.

Definition. A (‘()()permfrc cost game 1s an ordered pair (M, ¢) where M 1s a fi-
nite set of players and ¢ : 2(M) — R 1s the characteristic function that assigns
a real number to each coahuon of players S in the powerset of M, (M ).
Moreover ¢(¢f) = 0. Then for each S = M, ¢(S) i1s interpreted as the minimal
cost of serving the members of S, independently from the players M\S. The
class of all cost games 1s denoted %.

For fixed tree networks, by the cost of a coalition S, ¢, (S), we mean the mini-
mal cost needed to join all members of S to the root. By putting ¢, (&) = 0.
the ordered pair (N. ;) defines a cooperative cost game that we will refer to
as the fixed tree game for I'. If I" is standard then we refer to (N.cr) as the
corresponding standard fixed tree game.

[n order to establish the necessary connections with the root, a coalition S
needs at least the union of all paths from the root to the vertices that the n-
dividual players occupy. This means, that if a player in S 1s located at v, then
all vertices preceding v, 1.e. the vertices on the path P, are indispensible. If v1s
on the path P,, then this is denoted ¢ < v. In this way (V. <) defines a prece-
dence relation on V. By a nunA ol G= ( I E) 1s meant a set 01 vertices T < V
that 1s closed under <, veT and vvimply veT. For S N, Ts de-
notes the smallest trunl\ Lontdmmg all VLI[ILCS at which the players in § are
located. The cost associated to a coalition S is easily restated in terms of the
cost of arcs connecting the vertices in 7. First we will introduce some addi-
tional notation. For v € V'\{r}, let z(v) be its direct predecessor, 1.e. the unique
vertex such that (z(v),v) € E. The arc (n(v),v) will be denoted by ¢,. The set
of vertices in V" with predecessor v is denoted 7' (v).

Lemma 2.1. For a standard fixed tree problem I' = (G, ¢, N) it holds

cr(S) =) cle;) forall SEN. (1)

U'E T},

Proof: Each of the players in S needs at least the path from the root to. his
location. In particular, S needs at least the union of all these paths. But then
by nonnegativity of costs this union is the optimal way to connect S to the
root.

An alternative way to express the costs of a coalition 1s in terms of (dual)
unanimity games. For each cooperative cost game (N, g) the dual cost game
(N g*) is defined by putting g*(S) := g(N) — g(N\S) for all § = N. Then

. g — ¢" defines a linear operator with the property that for all games (N, g)
we have (¢*)" = g. Formally, for S € N\{ @} the unanimity game (N,us) € 4

1s defined by
B S T A =

us(71) = < .
( 0 otherwise,
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3

N

J

/\ Fig. 1. A standard fixed tree problem.

tor all 7" = N. Then the dual unanimity game for S < N 1s given by (N, us),
where

u(1) =

{l it T S 2, )

(0 otherwise.

tor all 7" < N. The set of dual unanimity games forms a basis for 4. since for
all cost games (N, g) € 4 we have

g= N (T 3]

T N\{Jd)

where 4,- 1s the dividend given by Z&SET(—l')m_|‘giy*(S:), and |S| denotes
the cardinality of the player set S < N. The next proposition shows that a
standard fixed tree game (N.c,) 1s easily expressed using the basis of dual
unanimity games.

A player i € N 1s considered as a follower of ve V if v < v(i), 1.e. v 1s on
the path from the root to player /’s location. Then the set of all followers of v
is denoted F(v).” Then (N, c¢r) is a linear combination of the dual unanimity
games induced by the sets of followers for each of the vertices except the root.

Proposition 2.2. Let I = (G,c.N) be a standard fixed tree problem. Then the

associated cost game (N, cr) can be represented as

cF=" ¥ v dleguy: | (4)

ve V\{r}

Proof: Let S be a nonempty coalition. It follows from Lemma 2.1 that S has
to pay the cost of arc ¢, in E 1f and only 1f there 1s a player ; in § such that
/ € NF{!'I-

Example 2.3. Consider the three player standard fixed tree problem as 1s graphi-
cally depicted 1in Figure 1.

The different vertices are depicted as circles. Each of the encircled numbers
corresponds to the location ot the corresponding player. The black vertex has

> Note in this respect that F(r) = V', and that i € F(v(i)) for all i € N. Moreover, v is a follower of
v 1f v precedes v.
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no residing players. The root is depicted as a triangle. Furthermore, the arcs in
the tree network are represented by the line segments connecting the different
vertices. The cost of a specific link is put next to the corresponding line seg-
ment. For this situation we have

So each standard fixed tree game (N, ¢r) 1s a positive cost game, 1.€. ¢y 18 a
positive linear combination of dual unanimity games. In this way we obtain
the concavity of standard fixed tree games (cf. Granot et al. (1996)) in an 1m-
mediate and alternative way, by the fact that positive cost games are concave.
Koster and Tijs (2000) characterize the class of standard fixed tree games by
the representation as a linear combination of dual unanimity games.

3. The tree maintenance game and its core

To further fix ideas. for the next sections on standard fixed tree games, we will
focus on the special cases, where at each vertex, except the root, there 1s ex-
actly one player. Standard fixed tree problems with this property will be re-
ferred to as tree maintenance problems and the corresponding games are free
[ree maintenance games.

Assumption. Below we will assume that /7= (G,¢,N) 1s a fixed tree mainte-
nance problem. The player set N will be identified with the set of vertices
I’\{r}. In this terminology, for instance, an arc (7(i),i) € E for some i € N
will be denoted ¢;. In addition we will denote » ._¢c(e;) by ¢(S) forall § = N.

The ploblem under consideration is to divide the the cost ¢/ (N) dmong the
players in N. A vector of cost shares 1s by definition a vector x € R" such that
> ien Xi = cr(N). Here x; represents the amount player i has to pay according
to x. Special vectors of cost shares are those that are in the core of the game,
. the set of vectors that satisfy a coalitional rationality constraint. medlly,
the core of a cost game (N,g) € 4. core(N,g), consists of all vectors x € R
with the following two properties:

Z xi<:g(S)V forall SN, (1) Z.r,- > g(N).

ieS ie N

Property (i) expresses the idea that no coalition should contribute more than
the cost they are charged for if they do not cooperate. The property (11) states
that x is a feasible vector of cost shares, so that the cost of the grand coalition
can be covered. Then, trivially, (1) and (11) together imply that a core element x
1S a vector of cost shares.

The first part of the section deals with alternative expressions of the core,
while the last part is devoted to its geometric properties. There are easy ways
to characterize the core of the game (N, ¢, ). We show that the core consists of
those allocations according to which each agent has to make at least a zero
contribution and for which the core inequalities are met for those coalitions
being trunks.
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A Fig. 2. A tree maintenance problem.

Proposition 3.1. The vector x is a core element of (N.cr) if and only if x > ()
and x(T) < ¢(T) for each trunk T.’

Proof: Trivially, if x € core(N,cr), then x > 0 and x(7T) < ¢(T) for each trunk
I'. Conversely, let x be a nonnegative vector of cost shares such that x(7) <

¢(T) for each trunk 7. Let S < N be a nonempty coalition. Then § € T and
therefore 1t holds that ¢, (S) = ¢(Ts) > x(Ts) > x(.5).

Let e = (7,7) be an arc ol rand «dehine ‘Bi:=tl;, Ez) bye Vo= (j)+and
E..={(k,/)e E|/ e F(j)}. B, will be referred to as the branch rooted at e.*
Given some vector of cost shares x, the overflow over the arc e € E 18 given

by

Oc(x) =) (x/—c(er)).

!"‘EI".F

The overflow over some arc ¢ € £ 1s interpreted as the amount that the in-
habitants of 1, 1.e. the players located at some vertex in the branch B,, pay in
excess of the cost of the set of arcs E..

Example 3.2. Consider the tree maintenance problem as 1s depicted 1n
Figure 2. Here the first number at an arc indicates the corresponding
total costs, and the second the related overflow for the core element x =

(222433 4446, 3)T. For instance. the costs of ¢4 and es are 6 and 3, re-
spectively. The branches rooted at ¢> and ¢4 are given by

B., = ({2,5,4,7,8},{e>, e4,€5,€7,€3}) and

B, = ({6,9,10}, {eg,e9,€10}), respectively.

Then we calculate the overflows at ¢> and eg,

7 In fact a strengthening of this result appeared in Granot and Maschler (1998): one needs only to
consider trunks with one so called ourgoing arc.

* According to the terminology introduced in Granot er al. (1996), B, is the branch at / in the
direction of jif e = (4, j).
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O 6)i= (xj —c(e;))) =17—-16=1, and

If ¢ = (i. j), we will sometimes write O;(x) instead of O.(x). Proposition
3.1 can be easily restated in terms of overflows.

Proposition 3.3 (Bjorndal er al. (1999)). Let x be a vector of cost shares. Then x
is a core element if and only if x > 0 and O,(x) = 0 for all ¢ € E.

Proof: Let x be a vector of cost shares. We claim that x is a core element if
and only if x > 0 and for each arc e = (i, j) € E,

Z X Z cle’) (5)

[el, ¢'ekE,

where B, = (V.. E,) is the branch rooted at ¢.” The claim is proved as follows.
The complement in V' of J,\{i} is a trunk. Therefore the result follows from
budget balance and the application of Proposition 3.1.

The next proposition shows that every core element is obtained by means of
splitting, arbitrarily, the cost of each arc among 1ts users.

Proposition 3.4. The vector x is a core element if and only if there exist y', . . . . "
such that v’ is a point in the unit simplex in R"Y) forall j=1,..., n and
X; = E _l’f('(t’j) _ﬁ)!' all ie N. (6)

Proof: In Dragan et al. (1989) it is proved that the core 1s additive on the
cone of concave games. In short, a proof of this reads as follows. First,
for all cost games (N, v) and (N, w) 1t holds that core(N,v) @ core(N,w)
core(N.v+w). Here @ denotes the direct sum operator. The Weber set
W (N, v) corresponding to a game (N, v) is the convex hull of the |N|! mar-
ginal vectors of (N,v). W 1s subadditive as a multifunction with respect to
the characteristic function, 1.e. W(N,v+w) € W(N,v)® W(N,w) for all
(N,v), (N.w) e %. Furthermore on the class of concave games the Weber
set and the core coincide (see Driessen (1988) or Ichiishi (1981)). So 1f (N, v),
(N,w) € 4 are concave we also have the reversed inclusion, core(N,v+ w) =
W(N,v+w) € W(N,v) ® W(N,w) = core(N,v) @ core(N,w), and conse-
quently core(N,v + w) = core(N,v) @ core(N,w).

All elements of the basis {(N,ug)} gy (o) are concave, and consequently
all nonnegative linear combinations. Then the additivity of the core on the cone
of concave cost games together with Proposition 2.2 gives

> A proof of this claim is in Granot et al. (1996).
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core(N,cr) = Z c(ej) core(N,ug ;). (7)
JeiN |
Since core(N.u’, ..) is the unit simplex in R we are done. @&
F(j) P

Proposition 3.4 shows an easy way to generate core elements. Below we
show an alternative technique, by the notion of a pseudo subtree. Each tree
maintenance problem can be decomposed into smaller tree maintenance prob-
lems that are generated by a pseudo subtree. If we take core elements for each
of these components, then in a natural way these can be combined into a core
clement of the original problem. Morecover, we show that each core element
for the tree maintenance game can be obtained following such a procedure, by
choosing the right partition into pseudo subtrees. Conversely, at each core ele-
ment x there 1s a unique finest partition .7 (x) into pseudo subtrees such that
the restriction of x to each related subproblem 1s a core element of the corre-
sponding subgame. First we will formalize the notion of a pseudo subtree.

Definition. A pseudo subtree of a lree G = (V, E) 1s a connected subgraph G’ =
(V', E") such that there exists an r' € V"' such that

(1) r" 1s the minimal element in }J7" with respect to <.,
(11) there 1s exactly one vertex in V' that has »’ as predecessor.

A pseudo subtree G’ = (V' E") of G rooted at r' yields a restricted tree main-
tenance problem I'' = (G’ ¢’ N") where ¢’ 1s the restriction of c to E' and N’ =

A

Let (S; v {r:}, Er) with root r; be a pseudo subtree of Gfork=1,2---p.
Then thecollection {(Spwirgt, Ey)lke=1,2;..., pt is a partition of G into
pseudo subtrees it {S),S,,.... Sy} 1s a pdl‘[ltlon of the vertex set V.
Example 3.5. Consider the tree G = ({r, 4L L 1) 0015:2)5(2; 3);(1:4)F)

and the corresponding tree maintenance problem (see also Figure 3). Define
Gi =0 r 1.2 % S 1y (23,
G, = ({2,3},{(2,3)}), and

= (11,4}, 1(1,4)})

[t 1s easily checked that G,. G>, and Gj are pseudo subtrees, and together they
constitute a partition of G. q

0

A Fig. 3. Partitioning a tree by considering zero overflows.
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Each vector of cost shares x defines a partition ito pseudo subtrees. To

%e this let E(x) bc lhe set of arcs corresponding to positive overflows, 1.e.
= {ee€ E| O.(x) > 0}. The graph (V, E(x)) contains p connected sub-

ﬂlaphq (., where 1 < p < n. For each of these subgraphs Gy, for | <k <
we construct a pseudo subtree G* with player set N(Gy). Let rp € V\N( GL
be such that r, € V(P;) for every i e N(Gy), and rp = n(i) for exactly one
iie N(Gy). Let V(Gg):i=N(Gg)vw{r}t and E(Gr):=te = (i;j)|eecE,i,je€
l"’(Gk)}. Then G* := (V(Gy).E(Gy)) is a pseudo subtree with root rg, and
7 (x) = {G', G*, ....GP} is a partition of G into pseudo subtrees. We refer to
7( ) as the partltlon of G induced by x.

Example 3.6. Recall the tree maintenance problem /" = (G, ¢, N) as in Exam-
ple 3.5, where [ht. arc costs are given by ¢(e) = 10 for all ¢ € E. The allocation
v = (4,5,15,16)" is a core element. and the corrcsponding overflows are in-
dicated next to the arcs in Figure 3. By removing all the arcs with ZEro OVer-
flows, we obtain the par tition of G into the pseudo subtrees G' and G*, where

NG ) = {14}, N(G*)={2,3}, i =r,andry=1. <

[n the obvious way we will refer to branches, paths and followers restricted
to some pseudo subtree. More specifically for a pseudo subtree G* and i €
N(G*), ee E(G") we define
. E(f’) the set of followers of i 1In G™, 1.e. F(i)n N(G"),

+ P; the path from the local root r* of G™ to 1,
* B, the branch in G* rooted at e.
> 0,(x) lhe overflow at e in G* with respect to x, 1.e. the sum

ZKE\[B A/ _((Gr’))-

Example 3.7. Consider the tree maintenance problem as 1 Example
3.6. Two pseudo subtrees are determined, G' = ({r. 1.4}, {e;,e4}). and
I - . o
G=A({71; 2. D0t {ew e3}). Then, for instance, we have P; = G?, B, =

({2,3},{es,e3}), F, = {1,4}, and O,, = O,, = 0. q
Proposition 3.8.
(@) Let’'F = {G )i, G’} be a partition of G into pseudo subtrees. Then
!"?
H core(Si,cpr) S core(N, cr), (8)
k=]

where (Sy.. ¢+ ) is the cost game corresponding to the restricted maintenance
problem f‘{‘ (G* c"S5e):°

(ii) Let x be a core element for (N, cr). Then 7 (x) = {G',G>,. ... G} defines
the unique finest partition of G into pseudo whfwc’ such that x is contained
in the set kal core( Sk, crr), where I, Yo '’ are the corresponding
restricted maintenance problems.

Proof: Let x = (y!,..., y”) be an element of HA  core(Sk,cpv). Then x 1s a
vector of cost shares since

[ &

Here | [ denotes the Cartesian product operator.
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Y x=3 Y o= 35 cke) = 3 ele

ie N k=1 1€ 8 k=1 1€ 5 e N

Moreover, x > 0, since xgs € core(S;, c,;) imphes xg > 0 for all j. According
to Proposition 3.1 we only need to prove that _\'( ) <:e(T) tor each trunk' 7
[set: T-be: ‘a trunk of ‘G Fertanyic= 1. % . let T* be the set of vertices
T N Si. Then T% U {ry} is a trunk of G = (S u Ui} Eg)foralldae {140 p
for which 7% # ¢J. Therefore

D il S 11k i) ) o0

IE:‘{(E:F{ETL Iﬂf\*ﬁ:;l;gr'{ ieT

This proves part (1).

(11) First we will show that .7 (x) 1s the finest partition into pseudo subtrees
such that x 1s an element of the Cartesian product of the cores of the cor-
responding tree maintenance games. Suppose that {G|, G5, ..., G, } defines a
partition into pseudo subtrees such that xe [],_, core(N(Gyp),crr), where
I;' is the tree maintenance problem corresponding to G,. Then for all k €

i e L}, XN(G!) IS a vector of cost shares for (N(G}\'_)*c,:)i, and thus
Or-1(r)(x) = 0 for the root ;A of G,. But by construction this means that for
all k e WPy t} we have r, € {r;,ra,..., rpt, the set of roots corresponding

to the partition into pseudo subtrees 7 7 (x). But this means that .7 (x) 1s a re-
finement of {G{, G5, ., G}

Next, we use the core characterization in Proposition 3.3. Let | < k < p.
Because x € {'(H‘(’(N f',r) 1S a vector of cost shares with respect to the game
(N.cr), and since .7 has been constructed by removing only arcs with zero
overflows, 1t 1s ClE’:cll that xy g+ 1S a vector of cost shares with respect to the
game (N(G"), crk). Also, xygry = 0 follows from x € core(NV, ¢r) and Prop-
osition 3.3. We will complete ihe proof by showing that O;(x) = O;(x) = 0 for
all i e N(G"), where the mequality follows from x e c'm'e(N. cr) and Proposi-
tion 3.3. Note that, by the construction of  (x), Oi;(x) = x; — c(e;) = O;(x)
for any i € N(G*) such that i is a leaf in G*. s 1ce / must either be a leaf in G,
or we must have O;(x) =0 for every jen ) hen for every i € N(G*
such that i is not a leaf in G*, O;(x) = (x; — c(e;)) + Z;_ (ivaF() 9i(X)

(xi —c(ei)) + Z_;EH () O;(x) = Oi(x).

|2
|

4. Egalitarianism in tree maintenance games

The constrained egalitarian solution of Dutta and Ray (1989) 1s a solution con-
cept for cooperative cost games which combines commitment for egalitarian-
ism and promotion of individual interests in a consistent way. This solution
concept 1s developed in a framework where, on one hand, each member 1n the
society of players believes in egalitarianism as a social value, and on the other
hand. private preferences dictate selfish behaviour. For concave cost games,
and with the Lorenz ordering as the measure of inequality, the constrained
egalitarian solution 1s the unique Lorenz maximal core element. The con-
strained egalitarian solution, however, deals with completely symmetric play-
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ers. In many situations this seems an overly strong assumption. For a discus-
sion on examples where a lack of symmetry is present, the reader 1s refered
to Kalai and Samet (1987, 1988) and Shapley (1981). It 1s assumed that the
asymmetries between the players are reflected by an exogeneously given vector
of positive weights, which i1s based on considerations not captured by the
parameters of the game itself. Ebert (1999) studies a weighted variant of the
Lorenz ordering, by application of the Lorenz ordering on the weighted allo-
cations. Koster (2002) generalizes this idea, by the introduction of an hierar-
chical structure as in Kalai and Samet (1988). Then, given such a weighted
Lorenz ordering, Koster (2002) shows that, despite the partial nature of the
weighted (hierarchical) Lorenz orderings, there i1s at most one maximal stable
allocation: by stable we mean that a coalition may block only 1f they can pro-
pose a weighted egalitarian solution for the society of players 1t constitutes,
for the induced subgame. For concave cost games existence 1s proved. More-
over, in general an (exponential) algorithm is proposed for calculating the
solution. In this paper we will discuss the algorithm, and define the weighted
constrained egalitarian solution as the resulting allocation. First we need to
define the weighted cost of a coalition.

7

Definition. The weighted average cost of a coalition S 1n a cost game (N, c¢) € 4
for a given weight vector w € R}, is defined by

¢(.S)
w(S)

1{!!((.' S) =

Now the weighted constrained egalitarian solution 1s calculated by con-
secutively determining the maximal coalitions that minimize the weighted mar-
ginal cost.

Definition. The weighted constrained egalitarian solution for a concave cost
game (N, c) € ¥ and vector of positive weights @ equals ALG(N, ¢, w), the
vector of cost shares obtained at termination of the following algorithm:

Input. (N,c)e %, we RL_.

Seter. =0 N7 +=:INV:;

Repeat, as long as N; # . the following step.

Determine the unigue maximal coalition S;  N;, that minimizes the weighted
average cost in ¢;.' Put for all je S;, ALG;(N,c, ) := w;o,(S;, ;). Let
Niy1 := Ni\S;, and define (Niy1,ciy1) € G by |

Ci1(S) = e:{ S'S5)—¢;(iS;)  forall S S Niyi.
4 Output is ALG(N,c,w).

Dutta and Ray (1989) show that in case of a concave game (N, c¢) and with
equally weighted players, ALG(N, ¢, w) 1s the weighted constrained egalitarian

" For concave games the set of coalitions that minimize the average weighted value 1s closed
under union.
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solution, the Lorenz-dominant element in core( N, ¢). Koster (2002) shows that
this result carries over to various positive weights and corresponding Lorenz
ordering as in Ebert (1999).

Clearly, the above framework still lacks the possibility of dealing with
completely asymmetric situations, where it 1s socially desirable to enforce the
largest transfer of all the economic opportunities from a certain group of
players S to those in N\ S, such that it 1s not in the interest of any subcoalition
of § to separate. S should enjoy as less as possible from the beneficial coop-
eration of the grand coalition, apart from the cost savings they are able to
generate themselves through internal cooperation. Also within S there may be
a set S’ of players that should have zero impact compared to those in S\S’,
expressing that society demands the highest possible transfer of the economic
prosperity of this group to the higher rewarded players in N\.S and S\S’. We
will focus on the situation where the society can enforce these transfers, with-
out needing the consent of players of S’. Still we will allow a proposed allo-
cation to be attacked by S’ if some of its members are able to do better with-
out the support of other players. So society may enforce cooperation on a
large scale, but 1t has to be sensible to the possible disagreements raised by the
selfishness of the subgroups of players. A way to model fully asymmetric sit-
uations 1s by hierarchical systems. The concept 1s, iIn mathematical terms,
equivalent to the weight systems in Kalai and Samet (1987, 1988), Monderer
et al. (1992). Using hierarchical systems, we will be able to generalize weighted
constrained egalitarian 1deas.

Definition. A /iierarchical system tor N consists of an ordered pair 2" = (., »).
Where - " =0081.185: .4 S)) 1s an ordered partition of N, and w € IRL IS a Vec-
tor of positive weights.

[n order to determine the set of weighted constrained egalitarian solutions,
the following algorithm may be useful. It 1s based on the former algorithm
for cost games (N,c) with trivial hierarchical systems, according to which

Y = {N}. Firstly, given the hierarchical system for N, ((S},. ... Si). @), we de-
fine the game (S, cr) € 9 by ¢ (S) = ¢(S) for all § = Si. Then we proceed by
defining inductively the reduced games (S;,¢;)) e Y for j=k—-1,k—2,..., ]
by

k k
G(S)= el } ) Spru@ =gl L)"S; for all §' = §;.

(=j+] {=j+]1

Then, accordingly we first apply ALG to the game (S, ¢;) with the vector of
weights wg, . Then we proceed with determining the allocation for each of the
players in S;_;, by applying ALG on the reduced cost game (S;_, cx—1) with
corresponding weight vector wg, . Next, we continue with the players in Sy _»
and the 'game (Si-2,Cr-2), E1C......

Definition. The weighted constrained egalitarian solution for a concave cost
game (N, ¢) and hierarchical system 2 1s given by ALG (N, ¢,2), 1.e. the pro-
file of cost shares that 1s obtained by performing the following algorithm.
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. Input: game (N, c), hierarchical system £ = (Y, ).
2:.uFori=:lsitovl
o ALG(S, Cia (r)SJ)
Put ALGg (N, ¢, 2) := ALG(S;, ¢, ws,).

Output: ALG™(N,c,2).

The weighted constrained egalitarian solution for (N, ¢) € ¥ and hierarchical
system 2 = (%, w) 1s denoted CES~ (N, ¢), and CES™(N,c) if 2 1s trivial or
=N}

Firstly, notice that Step 3 of ALG 1s of exponential complexity, and conse-
quently this complexity is inherited by ALG". In this section we will reduce
the number of necessary operations for tree maintenance games, such that the
upperbound equals a multlple of |[N|~ operations at most. The polynomial al-
gorithm to calculate CES= (N, ¢;-) hinges on a dynamic approach similar to the
calculation of the nucleolus l“or standard fixed tree games in Maschler er al.
(1995).

Interpret the vertices in 17 as the villages of the different players and the
arcs in E as the roads to the capital city of the region (root). The roads are
deteriorated and before usage they need tarring. The tarring costs are assumed
| per unit of length, so that the cost of an arc 1s identified with its length. Fix a
hierarchical system 2 = (&, w) with & = (81,52,...,8) and w € IR\; The

corresponding weighted constrained egalitarian solution 1s determined as the
total individual tarring length provided that

(1) every worker keeps working as long as the road from the capital to his
residence has not been completed,®

(i1) every worker does his job on an unfinished segment between the capital
and his home village that 1s closest to his home village.

(111) the workers in layer S start, and the starting times for the other workers
are specified as the finishing time of the preceding lower layer in the hi-
erarchy (i.e. layer S, starts when S, 1s finished), and, finally,

(iv) the tarring speed of the individual worker 7 in layer 7 1s set to ;.

The individual cost shares are determined by the distance that the individual
agents cover until their corresponding paths are entirely tarred. In this way,
once players get to work in some group at one and the same road, each of
them 1s charged for the fraction of the incurred cost corresponding to tarring
the unfinished part that 1s proportional to his weight. Due to the way of dis-
tributing costs we will interpret the weights as contribution rates. We will see
that this dynamic approach amounts to calculating the individual cost shares
in a finite number of stages; each of the different stages corresponds to the
actual status of the work procedings at the very moments that tarring of a
specific road 1s realized. First we formally describe the algorithm and we prove
its validity for calculating weighted constrained egalitarian allocations.

Algorithm 4.1. Given the maintenance problem /" = ((V', E), ¢, N) and weight
system: 2 =(i(187%.:159; ¢ . =5 Si). ) for N, the home-down allocation h=(I") is the
output obtained below at Step 4.

® Notice that the direction of the procedure 1s opposed to the direction of the arcs in the network,
who are all directed away from the root.
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» Step |: Initialization

Set stage counter p = 1.

Set of connected players 1s N¢ = (.

The set of active players is N4(1) := Sk.

The set of active arcs is E4(1) = {e;|i € Si}.
The active players at e 1n stage | are given by

X K K K

4 . . =y A
i 1= {i} 1Ie—c.,eE (1),
Gl iotherwise.

* The set of finished arcs 1s E/(1)= .
* Put x/(e,1) =0 for all e € E, i.e., the proceedings for each arc e € E is
0 at the start.
o Dlep 2

(oY Lilp
(a) For e e E4(p), calculate t(e, p) := c(e) —xZ(ep)

w(N4(e, p))
i.e. the time that the active playvers at e need to finish e.
(b) Determine #(p) = min{t(e, p)|ee E*4(p)}
l.e. the time that the active players work at stage p.
(c) Determine E/ (p) := {ee E4(p) | (e, p) = t(p)}
L.e. the set of arcs that are finished at stage p.
(d) Determine E/(p + 1) := E/(p) u E/ (p)
L.e. the set of arcs that are finished at stage p and earlier.
(e) Foree E4(p)
determine x/ (e, p) := w(N4(e, p)) - t(p).
(i.e. the part of e that is completed at stage p).
put x/ (e,p + 1) := x/ (e, p) + x/ (e, p),
(i.e. the part of e that has been completed so far).
/F‘,\r t(e,p) *— h_.\r.r[{._m == WNA(e,p) f([?)
i.e. the individual efforts of the active playvers are accumulated
+ Step 3: Determine newly connected players, and add them to Nc. By setting
NA(p+1) = N4(p)\Nc, these players become inactive in the next stage.
Check if N4(p)\N¢c = @. If true then do (1), and (2) otherwise.
(1) Determine the highest index j with S;\N¢ # &, put N*(p+ 1) = S;\ N,
p:=p-+ 1, and go to Step 2. If there 1s no such j, terminate by going to
Step 4.
(2) Assign nonconnected active players to (new) arcs for the next stage, as
follows:
(1) Nonfinished active arcs remain active, as well as the corresponding
players located there
(1) For each finished arc ¢; such that n(i) ¢ Nc determine the closest
nonfinished arc ¢ on the path 7. Then, at the next stage. ¢ 1s active,
and together with the players N (e, p), the players N“(¢;, p) are
assigned to e. Increase the stage number, p = p + 1, and go to Step
.

- Step 4 %he output 1s /.

Clearly, the algorithm is well-defined, i.e. it stops after at most P < |V|
stages, since at each stage at least one arc is completed and |E| = |N|. The
way the algorithm works 1s clarified 1in the next example.
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A Fig. 4. The situation at stage 0.

A Fig. 5. Cost reduction through stage 1.

A Fig. 6. Stage 2 of Algorithm 4.1.

Example 4.2. Consider the tree network as in Figure 4. We show how the Al-
gorithm 4.1 determines the home-down allocation corresponding to the weight
system X with partition of the player set ({1,6,8},{2},{3.4,5,7}) and weight
=4 W T
veclorio = (11 552 s s 20 5
At the first stage the active p]aycrs are N4(1) = {3,4, 5,7}, which is Ql'dphi-
cally expressed by the stars in Figure 5. The b@l of activated arcs 1s given by

E4(1) = {e3,e4,e€5,€7}. We calculale the time needed to finish the different
active arcs:

t(es, 1) :%(10 D)=
tleg, 1) = %(10 —0) =5,
t(es, l):-:-(IO 0)=10"""and

t(e7,1)

‘Hence (1) = min{2,5,10,10} = 2. So the arc e; 1s finished first, and
E’(1) = E/(2) = {e3}. Consequently we determine the proceedings per active
arc at the first stage by

L(10 — 0) = 10.
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sl ez, 1) = #(1). 005 = 10;

x/ (eq,1) = 1(1) - w4 = 4,

x/(es,1) = t(1)-ws =2, and

.1"{({’7. B — (1) g = 2.
These amounts also specify the total contributions so far, thus x/ (e3, 1) = 10,

v/ (e4,1) =4, and x/ (es,1) = x/ (e7,1) = 2. The individual contributions at
the first stage equal the procedings of the corresponding arcs, 1.e.

hy = x/ (e3,1) = 10,

hy = x/ (eq,1) = 4,

e = _\'-’_(e‘_r,. L) =2, and
hy = x/(e7,1) = 2.

Now we turn to Step 3. Since N (1)\N¢ # ¢J., we continue with (2) No path
is finished, N4 (e3, 1) = {3} is transfered to arc e;, by putting N(e;,2) = {3}
and afterwards N“'(f;. 2) = .

Now the btdge number 1s increased, and we turn to stage 2. The set of active
playersis N4(2) = {3.4.5,7}. The players 4, 5 and 7 are assigned to their own
arc, and 3 1s dSSlgI]ed to e;. We calculate the different ﬁmshmg times:

|~.J

f(r;’;.z):{'fh (10 —0)

I((’_;.z):(ud (10 4)

t(es,2) = ws =(10=2) =18 .and
t(e7,2) = w5 (10 — 2) = 8.
Thus the minimal finishing time 1s 7(2) = min{2, 3,8} = 2. So plclyel 3 IS again

the only player finishing with the arc that he 1s assigned to. So El(2) = {eid
and E/ (3) = {e,.,e3}. Moreover, the proceedings per arc at stage 2 are gwen by

x4 (61, 2) = H2)-ews =10

v/ (e4,2) = 1(2) - w4 = 4,

and

-
—
—
"
J"«-
9
g
|
—
——
9
o
ﬁ
o
vy |
|
9

Then the total proceedings per arc are



584 M. Koster et al.

A Fig. 7. Arcs ¢s and ¢7 are completed at stage 4.

x/(es,2)=2+4+2=4, and
x/(e7,2) =2+2=4.

The newly accumulated contributions of the active players include the efforts
Xl€,2):

hy = hy + x/ (e;,2) = 10 + 10 = 20,
hy = hy + x7 (e4,2) =4+ 4 =38,

hs = hs + _\'-f_(e_-,*.fl) — 242 =4' " and
hy =hs+x/(e7,2) =242 =4,

We move to step 3 (see Figure 7). At step 3 (1) we put N¢ = {1,3}, N4(3) =
{4,5,7}, and E4(3) = {es, es,e6}. In particular, N“(2)\N¢ # O, so go to step
3 (2). Moreover, the active player sets are specified by (2): N“(e4,3) = {4},
N4(es,3) = {5}, and N“4(e7,3) = {7}. Now go to Step 2 (3). At this stage
player 4 completes ¢4 in 1 additional time unit. The remaining costs for arcs es
and e¢7 are at the same time lowered by | each. This follows from the following
calculations:

t(es,3) =5(10—8) =1
t(es,3) =10—-4=06 = $(3) =mn{l,; 6 = 1.
F({*7.3_) —10;=4 =6

Then the (total) contributions per active arc are

xliles:3) =2  xlfeq.3) = 10,
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4N Fig. 8. The final stage: players 6 and 8 get connected.

The total contributions of the players 4, 5, and 7 are

hy = hy + .1"}['(("4. =842 ="10:

hs = hs + .\'II({’;;.E) =4+1=5, and

hy =hy+x'(e;,2) =4+1=5.

Now 1n step 3 not much changes, except that 4 1s assigned to arc e>. So
N4(4)=1{4,5,7}, and E4(4) = {e,, e5, e7}. Increase the stage counter to 4, go
to step 2. Then at this stage, the active players simultaneously finish their arc
since:

{(e2,4) =3(10 — 0)
t(es,4) = 1(10 = 5)
t(e7,4) =31 (10=5) =

o
5. and.. 9 =24) =25;
il

|

v/ (es,4) =5, x/(es,4) = 10,
x/(e7,4) =5, x'(e1,4) = 10.
The total contributions of the players 4, 5, and 7 are
hy = hy + x/ (e5,4) = 10+ 10 = 20,
hs = hs + .1']-({*’5.4) =39+ 5=,10,, and
hy = hy + x/ (e7,4) = 5+ 5 = 10.

At step 3 we conclude that for all active arcs ¢; the paths P; are completed: the
players are connected. Hence No = {1, 2, 3,4,5,7}. Then there is just one layer
J left such that S;\N¢ # @ and that 1s layer 1. Consequently, the set of active
players becomes N (4) = {6, 8}, the set of active arcs is E(4) = {es, eg}, and
N4(eg,4) = {6}, N1(eg,4) = {8}. At the final stage (see Figure 8), players 6
and 8 both need 5 time units each to complete the corresponding arcs, and
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get connection to the completed component including the root, hence hg =
hs = 10. So the final allocation i1s # = (0, 0, 20, 20, 10, 10, 10, 10} 4 q

Let 4, be the set of active players finished at stage p. Denote the set of
active players that are finished at stage p or before by A(p). Recall that the
minimal trunk containing the players in S < N i1s denoted by 7s. Observe the
following facts:

(P,) The players in some set 4, all belong to the same layer in the hierarchy.

(P,) For all stages p, the active players that have finished here or before pay
exactly for the full cost of the minimal trunk that 1s needed to connect
them to the root. 1.c.

(Tup) = ) hi(I). (9)

e A(p)

Moreover, for all active players i within layer S, that got connected with
the root in stage p pay proportionally for the incremental cost of com-
pleting the arcs related to trunk 7 1in addition to what has been estab-
lished so far as part of 7T,_y), or

2 { ¥ TR TN
hff"(r) — f”f(( ‘IP\ A\p—) ;
w(A))

(10)

(P3) Within each layer S,, the weighted cost shares increase with the finishing
time induced by the home-down allocation for the corresponding player.
1.e. for all i, j € §,,

z h= (I
At ) < ey Py < Pl (1)

(1); (1)

where for each player / the stage at which he 1s first connected 1s denoted
P(/).
(P4) Players that do not occur in any set A, contribute 0.

The algorithm induces a partition of the player set as follows. Consider the

A 1 A (7 4! < ERREE ; {1 : i A
t]up.c (A seeang A) ), where p,e N and 4; S 5, i € 1.2 % Pk, dfe such
that

(i) A} is the set of agents in S, that did not become active at any stage during
the algorithm,
() (Al gk Bl 07 172 R ED Asyp—1) fOr some £ < P.

Now consider the ordered tuple

41 k 4k 4k-—1 k—1 41 q
AL AR A AR T 7 L ik o, ALY

Pk—1 T 74

Observe that some sets in this tuple may be empty. Especially, this 1s the case
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If at a certain stage an arc was finished and no player got connected. Also
one of the sets 4, can be empty as no player in §, got connected while the
players m Sk, Sy, » o3 S:+1 were active. Create a new ordered tuple out of
A by deleting all the empty sets 4/ and by re-indexing correspondingly the
remaining nonempty sets of players. Denote the resulting ordered tuple by
(A A e, A’ ). It will be referred to as the partition of the player set defined

i

by the finishing time induced by 4= (I").

Proposition 4.3. Let X be a hierarchical system. Then the home-down allocation
Ve . . . » [
h=(I") coincides with CES= (N, cr).

Proof: Let # = (B, B3, ..., B,) be the ordered partition of the player set in-
duced by ALG™ calculating CES~ (N, ¢r). Then, we claim that % coincides
with the ordered partition .o/ = (A4}, 4,, ..., A" ) defined by the finishing times
induced by the home-down allocation /h=(I7).

Recall that B; 1s the maximal set that minimizes the weighted average
cost of a coalition 1n the lowest layer S;. In particular, this means that the
welghted average cost of the corresponding trunk 1s minimal. If these costs are
0, then B, corresponds to the set of players that are already connected to the
root 1n the sense of Algorithm 4.1. By construction of the ordered partition it
must hold By = 4. Now consider the case that the average cost of connecting
B to the root 1s not 0. Then by (P3) the coalition By also constitutes A4, the
set of all players that are the first to complete all necessary arcs to the root. So
we have by property (P>) that forallie B) = A4/,

- (), (1),

v w(B))

(,r)'; Ry
= 'l B1)= CESS (N..iep).
“)(B!)(]( |_) B S; (J’ (;)

¢(1p,)
Now suppose that A7 = B, for/ =1,2,..., i — 1. We show that A’ = B;. Put
Bli) = U!_:_”. B, tor all ie {1,2,...,q} and B(0) = J. It 1s easily seen from
the definition of the weighted constrained egalitarian solution that for all j € B;
1t holds

) 0) _ _
CES; (N, cr) = —=<(cr(B(i)) — cr(B(i — 1))).
| @ (B;)
Thus we have
CESE(N, er) = —L (e Tagy) — e(Tapriny)) == o T\ Fgciy)s - 1(12)
N i - w(B) d ENS), - w(B;) U %

Let p be such that A" = A4, 1.e. the set of players finished at stage p. By (P)

these players all belong to the same layer in the hierarchy, say S,. Then by (11)
and (10) we have

q : ('( TS\IJ{;J—I})
A’ € argmin .

| (13)
ScS\A(p-1) (S)

Furthermore, since the right hand set 1s closed under union 1t holds that A 1s
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the unique largest set with this property. But then by our induction hypothesis
A equals the unique largest set in

argmin (Ts\Ta-1)
ses\B(i-1)  @©(S)

But then A7 = B; by (12). ]

Monderer et al. (1992) prove that by varying the hierarchical systems the
corresponding weighted Shapley values constitute the core of a concave cost
game. More specifically, Bjorndal er al. (1999) give a constructive proot of
this fact for tree maintenance games. As we are about to show, the class of
weighted constrained egalitarian solutions is just as flexible, in the sense that
each core element for a tree maintenance game 1s a weighted constrained egal-
itarian solution for an appropriate hierarchical system.

Theorem 4.4. The core of the game (N, cr) equalu the set of all weighted con-
strained egalitarian allocations {CES=(N.c;) |2 is a hierarchical system}.

Proof: Firstly, according to Algorithm 4.1 and Proposition 3.4 we have
[h=(I')| X is a hierarchical system} < core(N,cr).

Next. we will show the inverse inclusion. Let x be a core element of core(N, ¢ ).
We construct a hierarchical system Such that the corresponding home down
allocation 7% (I") equals x. Let .7 (x) ={G'....,GP} be the partition into
pseudo subtrees induced by x (Proposmon 3.8),. such /that for each ic =
1,2,..., p we have G* = (S u {rc}, Ex). Let I'/ be the maintenance problem
out of I that is mduced by G forall-jie {12004 pt. In addition, without
loss of genelallty we assume that the sets S, . ... .S, are mdexed such that
j > j* if there is a player i € S; such that S;. = F(i).

Partition each S; into S := {i € S; le >0} and S} := §;\S;". For the

moment assume that the duwed sets S and S} are d“ nonempty. Then let
PN = S S S ST o s S5 S )be the new ordered partition of the player

set N. Define w € IR“A by

{ .Yf' i[‘ .l.j > 0.
W; — .
] otherwise.

We will show that for 2 = (.7, w) we have /15(1“) — X.
First of all, we claim that for all j e {1,2,..., p} the zero contributors In
layer j are connected to the root via the pldyels In S More specifically, the

minimal trunk in G’ containing all the players Sf Tg contains all the players

in S7. Suppose that this is not the case. Then S?\?}-+ + @, and for all i e
S“\Tb it holds that ¢(e¢;) = 0. Suppose, on the contrary, that c(e;) > 0 for
some [ € S“\T5 Then by the combination of the fact that xg € core(S;. ¢, )

(Proposition 3.8 (1)) and nonnegativity of costs we obtain the desired contra-
diction:
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\(Sf") = x(5j) = c(E;) = f'(f?j) 02 Z c(ei) > c(Ts+) > -‘*'(Sf)-

| E -5‘;1 \ f‘b..:f.

j

So we may assume that ¢(¢;) = 0 for all i e S”\Tg Define the pseudo subtree
G/ that is induced by the set of players Tg , and for i€ SU\TS let G/ be

the pseudo subtree ({z(i), i}, {e;}). Then ( ). eSO\ GLUYG G, L. GG

G/t ..., G?} defines a partition of G into pseudo subtrees that 1s induced by
x. Moreover, the restriction of x to the corresponding player sets of each of
these pseudo subtrees specifies a core element for the corresponding tree main-
tenance game. But this contradicts the fact that .7 (x) 1s the finest partition
with this property (see Proposition 3.8 (11)). This proves our claim.

The remaining part of the proof depends on an induction argument. Ac-
cording to Algorithm 4.1 the first active layer becomes S+ Then the individ-
ual players get connected to the root simultaneously. Smce 1f this were not the
case, the first set of players to finish induces an autonomous trunk that 1is
smaller than that induced by the players in S,. Using an argument that 1s
stmilar to that above we construct a finer partition into pseudo subtrees than
7 (x), such that x 1s 1n the core of each of the undeﬂying tree maintenance
games. This leads to contradiction with the fact that .7 (x) 1s actually the finest
partition into subtrees.

By the above claim we see that S? gets connected at the same time as the
players in S", which means that the latter set of players are responsible for
completing all the arcs in E, = = Lo €150, X0STN=16(Sh) =, 2(:Sp). Butythen

[ES, P
by definition 1t holds that

X;
hi(I') = 1"_(SJI_)('(T.‘éfj;; ) = (S,)
: ’ P

c(iSy)="x;" “forall i€ S;f.

Now we distinguish between two cases:
(i) ‘Suppose ‘that' h=(F)'= x; for all" ‘i€ {SF,S;i1,St2;:--,S,}." Then

h=(I') =0 for all i € S?, since by the above claim we find the players of S
connected 1f the former layer., S, establishes their necessary connections. Then

of course h=(I') = 0.
(ii) Suppose that A= (I") = x; for all i € {S,+1, Si+2,- .-, S,}. We will show

that A~ (") = x; for all i e S'. By our indexation we have that the players
In U;}m S; constitute a trunk. Moreover, by our induction hypothesis this

trunk 1s autonomous, which means that all arcs in this component are con-
structed after completion of S ,. By our indexation and the fact that the

players in S? get connected by the players in S, we have that the players in

S,” need to construct precisely the arcs in £,. C]dlm the players in ;" finalize
the necessary connecting arcs simultaneously. If this 1s not the case, then con-
sider the first set S < S, that gets connected. Then S induces a decomposition
of G' into pseudo subtrees. As a result we obtain a partition into pseudo sub-
trees induced by x that is finer than {G', G*,..., G”}, which gives the desired
contradiction. So by our above claim we obtain for all i € S,

hE(T) = 5y (B = 5y €50 = %
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where the second equality follows by the fact that x(S;") = x(8;). Thus also
h;(F) X,

Suppose that some S;"'s or Sﬂ s are empty. Then remove these sets from
the ordered partition. Fcn the lemmmng partition essentially the above rea-

soning apples.

Suppose x € core(N,cr), and 2 = (.Y, ) 1s a hierarchical system such that
CES~ (N, ¢;) = x. Then it is easy to find other hierarchical systems such that
the conesponding weighted constrained egalitarian solution equals x. To see
this, consider the following. Let (A4,,45,...,. 4" ) be the (ordered) partition
of the player set defined by the ﬁnis.lmg times induced by /;“(F), and choose
a nondecreasing row of positive numbers A;,42,..., Ay, 16. L1 =24 > -0 >
/m > 0. Define a new ‘scaled” hierarchical system .E : by the partition . cor-
responding to X" and putting @j. := Ajwy- forall j=1,2,...,m. This means

that for each j,k e {1,2,..., m} the painting speeds of members in A4 relative

to those in A, increases if j < k. An easy induction argument can be given
to show that the new hierarchical system X1 induces the same ordered par-
tition of the player set defined by the finishing times. Then by (/>) 1t follows
that h=(I'") = h*"(I"), thus CES* (N, ¢;) = CES’ (N, ¢r). This indicates that
for the weighted constrained egalitarian solution essentially only the relative
welghts are important.

5. The constrained egalitarian maintenance cost sharing mechanism

In this section we consider the class of maintenance problems corresponding
to a fixed set of agents N and a fixed tree network G = (V, £). In contrast
with the previous sections we will focus on the class of tree maintenance prob-
lems induced by the class  of all cost functions ¢ : £ — IR, rather than the
single instances of tree maintenance problems. Suppose that for each single
instance of a tree maintenance problem a vector of cost shares 1s determined
as the solution of the cost sharing problem. Then a maintenance cost sharing
mechanism is the device that summarizes this information by relating each
cost structure ¢ € ¢ to the solution of the corresponding tree maintenance
problem. An example of a maintenance cost sharing mechanism 1s lhe Con-
strained egalitarian maintenance cost sharing mechanism, denoted 15, which
relates each cost function ¢ € ¢ to the constrained egalitarian solution for the
game (N, cr), where I" is given by (G, ¢, N). More formally, the notion of a
maintenance cost sharing mechanism reads as follows.

Definition. A maintenance cost sharing mechanism 1s a mapping g : ‘"/ — IR\
relating each cost function ¢ € € to a vector of cost shares u(c) € R

Below, the focus 1s on maintenance cost sharing mechanisms that are mon-
otonic, 1.e. basically those mechanisms that promote the 1dea that a cost re-
duction for the different arcs in £ should result in a lowering of all the indi-
vidual cost shares. More formally, a maintenance cost sharing mechanism
U:6 — ]Rf 1s cost monotonic if for ¢, ¢ € € such that ¢(e) < ¢(e) forall e e E
it holds u(c¢) < u(c). Cost monotonicity can be seen as a most intuitive and
compelling solidarity requirement.
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Moreover, we consider those maintenance cost sharing mechanisms x that
are consistent with the promotion of individual interests in the sense that each
vector of cost shares satisfies the core constraints for the corresponding coop-
erative tree maintenance game. A maintenance cost sharing mechanism x such
that u(c) € core(N,cp) forall ce ¢, and I' = (G, ¢, N) 1s said to have the core
property.

In our setting of tree maintenance problems, the combination of cost mo-
notonicity and the core property 1s not demanding at all; there 1s a continuum
of maintenance cost sharing mechanisms with the two properties. In this re-
spect we refer to the continuum of maintenance cost sharing mechanisms that
1s induced, for instance, by the class of weighted Shapley values for tree main-
tenance games (see Kalai and Samet (1988) or Bjorndal ez al. (1999)). Also the
egalitarian maintenance cost sharing mechanism satisfies both properties. For
the mentioned induced maintenance cost sharing mechanism the core property
holds by the concavity of the tree maintenance game. Earlier we showed that
the constrained egalitarian solution for any tree maintenance game specifies a
core element, which implies that " satisfies the core property. Moreover, by
the dynamic approach of the former section we easily obtain #* as a cost mon-
otonic maintenance cost sharing mechanism. As we are about to show, within
this class of maintenance cost sharing mechanism, " is the unique mechanism
that minimizes the range of cost shares.

Let (7,,...,7T,) be the ordered partition of the player set N associated to

the core element " (¢) induced by Algorithm 4.1. Let #(i) be the number such
that i € Ty(,;)), 1.e. the mmimal trunk containing the players that finish at stage
t(i) of the algorithm. Then conditions (P;), (P>) and (P3) imply the following
statements:

ur(c) < p(e) < 1(i) < 1)) (14)
> urle)=)_cle) forallk=1,...,p (15)
ie T(k) ieT(k)

where 7'(k) 1s the trunk of G defined as U:;I 1y.
The range of a vector x € R”, denoted range(x), is given by the interval

= —

min X;, max X;
ieN ie N

The next lemma shows that for any maintenance cost sharing mechanism for
a tree maintenance problem satisfying cost monotonicity and the core prop-
erty the range of the cost shares is at least the one according to the constrained
egalitarian maintenance cost sharing mechanism.

Proposition 5.1. If i is a maintenance cost sharing mechanism satisfying cost
monotonicity and the core property, then range(u(c)) = range(u*(c)) for all
CEG.

Proof: The constrained egalitarian maintenance cost sharing mechanism mini-
mizes the range of cost shares among the mechanisms satisfying cost monot-
onicity and the core property. To prove this, let # be any cost share mecha-



502 M. Koster et al.

nism satisfying these properties. We assert that for all ¢ € 4 the following
inequalities are satisfied:

max{u(c)|ie N} = max{u-(c)|ie N}, (16)
min{ x:(c)|i e N} < min{ ;zf(r) lie N}. (17)

Suppose that inequality (16) is not satisfied. Then condition (14) implies
max{y;(c)|je Tp} < p;i(c) forallieT,.

Therefore, it follows from efficiency and condition (15) that

Z ele) = Z ;fF(_'f') < Z w(c). (18)

ieT(p—1) ieT(p—1) ieT(p—1)

. )— | g
where 7'(p — 1) 1s the trunk U;’I T,. contradicting the core property. A
similar reasoning gives mequality (17). ]

The rest of this section is devoted to explore the full power of cost monoto-
nicity and the core property if they are combined with the egalitarian approach
of minimizing the range of cost shares.

Firstly, we will prove the theorem that if a cost sharing mechanism mini-
mizes the range of cost shares given the restrictions imposed by cost monoto-
nicity and the core property, then it has to be the egalitarian maintenance cost
sharing mechanism. Therefore, it can be considered to strengthen Proposition
5.1

Assume that the individual players are endowed with preferences over the
set of possible cost allocations, such that the utility of an agent equals minus
his cost share. We will show that within the context of cost monotonicity and
the core property the egalitarian maintenance cost sharing mechanism uniquely
maximizes Rawlsian welfare, that i1s measured by the opposite of the highest
cost share. The proof will be similar to that of Theorem 5.4.

Before getting more formal, we will sketch the proof of Theorem 5.4. Con-
sider a tree maintenance problem I' = (G,¢, N), and let (T, 75,...,T,) be
the partition of the player set induced by " (c¢). First we show that if s is a
maintenance cost sharing mechanism that minimizes the range of cost shares
subject to cost monotonicity and the core property, then u;(c) = it (c) for all
i € T,. The proof of Theorem 5.4 1s completed using a backward induction
argument: we show thatif u,(¢) = ;- (¢) foralli e T,, T,y . . ., T, then y,(c) =
;:F(c') for all 7 € 7, as well. We will need to construct a particular tree main-
tenance problem I"*~! = (G, ¢'~!, N) such that (i) ¢'~! < ¢, (ii) y;(c) = uf(c'™")
for all ie UA_EH T, vand (iii) g (e=") :;zf(c"'“') for all 7 e UA';;:—I L
Whereas (1) and (i1) will turn out to be obvious, (111) i1s more demanding and
results from Lemma 5.2 and Lemma 5.3. Finally, recalling properties (1), (11),
and (i11), cost monotonicity is invoked to finish the proof of the necessary 1n-
duction step.

First we will introduce the new cost functions ¢ and corresponding tree
maintenance problems 7°*. Given the partition of the player set (7, 7>, . . . . 1r)
ctly)

. Note that

and k e {1,2,..., p} denote the per capita cost of T} by ¢ =
by definition of the partition (77, 75, . ... I,) we have | 7|
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gl & &g wi & g (19)
Nextly: for each k'e 41,2, ..., p} we define a new cost function ¢* € % by
(e;) forie T, —{] 9 M I k.
{'k({";) = | (20)
—cle;) ftoriedy, / > k+1.

Under the new cost structure ¢*, by (19), the arcs identified with players in 7}
for / > k + 1 are (weakly) lowered, such that for each set 7; for j > k the
correqpondm average cost becomes r;\ The other arcs are as costly as before,
by definition. The new cost structure ¢ induces a new tree maintenance prob-
lem which is denoted 7%,

Lemma 5.2. For ke {1,2,..., p}. c € € define he RY by
b 2 J 15 (¢) _/{ur f:e T,x = k. (21)
&, forieT;, { > k+ 1

Then h € core(N, cp«).

Proof: Firstly, note that 2; > 0 for all i € N. Moreover, h specifies a vector of
cost shares. In order to see this note that for /7 > k& we have

£l T/
S %efe) = Y e o) = T
ieT, i
Therefore
: - - ‘;\. . X
cre(N) =) c*(e)
ieN

- - /
[<kieT, I=keter
= -~
= c(e;) + E | T |&x
[<kiel, £ >k
k R Y RTA of
— L"(e)+F E E h:= E hi,
{<kieT, {>k i€ T, ieN

where the second equality follows from condition (15). In addition, as the re-
sult of Proposition 3.1, it is enough to prove that >_._,/h; < 3., ¢"(e;) for
all trunks 7. Let 7 be any trunk of G, then we are left two cases:

Case ) It T'=s U,,{k 1,. then by definition c'(e-) — c*(¢;) for all ie T,

hence Y. 2 hr=Y o prle) = 300 ele)'= 3 2 “(e;). Here the inequality
is due to the fact that ut(c) € core(N,cr). Case (ii): T N ( U/ L I7) # D

Let- T = Tty T" where' T =Tini(\Ls S Tp)and i B =R\ T Thenidueito
1= (c) € core(N, cr) we get 3
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WT') =Y pE(e) < er(T") = o(T") = K(T"). (22)
ieT’

Next, for all 7, with /# > k we have, by construction of the partition induced
by 15(¢), that

o(T* o Tp) 2| T iy leg. (23)
Then by combining (21) and (23) we obtain

(T = e =Y | T T e

{ >k
El; ,
< Y ZE(T'nT)=)" ) e (24)
& (>k1el"nly

Hence h(T") < ¢*(T"). Then use this inequality together with (22) to see that
BETY = h(TYy 4 h(T")y L' (T +e(T") = ¢*(T), as'desired.

Lemma 5.3. The partition of the player set induced by h (see (21)) equals
(St B L1, Ur, s 1,), and thus h = }JE({‘k).

Proof: We will show that the partition generated by Algorithm 4.1 for calcu-
lating the constrained egalitarian solution of I™* coincides with the ordered
partition (7, 7>, . ... Ti-1,\ ), Tr). Let T be a trunk of G, then

where the first inequality follows from the fact of /i being a core element of
(N, cp«). The second inequality holds again by the fact that the average costs
c(1))
|75}
of 77 1s minimum. The trunk 7 induces a partition mto pseudo subtrees
G'.....G’. one for each outgoing arc of 7). In other words, for each
ie{l,2,...,/}, there is an outgoing arc e = (j,j') of T} such that G' =
(V. u{j}, E.) where (V,, E,) = B,, the branch rooted at ¢, and where j stands
for the root. Now repeated application of the previous reasoning to each of
the above pseudo subtrees yields the claim (observe that h' = (Bi)ien\r, 18 @
core element for each of the induced problems as was shown in the proof of
Proposition 3.8). This proves our claim.

are non-decreasing in j. Therefore, the average cost (with respect to o

Theorem 5.4. For tree maintenance problems, the constrained egalitarian cost
sharing mechanism is the unique maintenance cost sharing mechanism which
minimizes the range of the cost shares among those mechanisms satisfying cost
monotonicity and the core property.

Proof: By Proposition 5.1 we need only to establish uniqueness. Let ¢ be any
maintenance cost sharing mechanism satisfying cost monotonicity and the core
property such that range(u(c)) = range( " (c)) for all ¢ € €. We will prove that



Sharing the cost of a network: core and core allocations 595

1:(c) = puF(c) for all i € Ty and for all k = 1,..., p by backward induction on
the index k.

If range(u(c)) = range( 1" (c)), then in view of inequalities (16) and (17) it
holds max{;(c) |i e N} = max{y; (c)|ie N}. Therefore, y;(c) < ,uf(c) for all
Jj € T,, the set of players that contribute up to the last stage of the algorithm.
Now, suppose that u;(¢) < p; (c) for some i € T,. Then

MU chalef) ety k(e (25)

jeT(p—1) jeT(p—1)

which contradicts the core property. Thus, u,(c) = u-(c) for all i € T,,. So, u
and #F coincide on the last element of the partition.

Suppose that y;(¢) = ur(c) forallie T, forall/ =t,t+ 1,..., p. We show
that u;(c) = uf(c) forallie T,_;.

Recall the definition of the cost structure ¢! and corresponding mainte-
nance problem 7"~ as in (20). It holds

()" < g,

(i) ur(c) = pur(c~')forieT,and / <1t -1,
(iii) w:(c™=" =ur(c=") forie T, and £ = t=1.
Observe that condition (i11) follows from Lemma 5.3, stating that the partition
of the player set associated to u"(c¢’~') generated by Algorithm 4.1 is given
by ICT L, T:-»,\J),., | T,). At an earlier stage we concluded that on the last

element of the partition of the player set induced by ", both mechanisms z
and 1% coincide, which means in this situation that s, (¢'™") = p(¢"") for all
iel),., , T;. Thus we derive

SS wle™) =3 uF(c"!), and therefore

r’:_?'ffET; KEIIETJ
—1 — | (—|
— | 200 TR & — | Er
b0 T G K 1 A e (26)
/=1 ieT, (=1 ieT; =1 ieT,

The induction hypothesis gives

D0y o= Yl puale):

£>t1ieT) C>tvieid

So 1t holds that

Z i(le)= Z ,uF(r,'). (27)

ieT(r—1) ieT(r—1)

By cost monotonicity we have u;(¢) > u;(¢'") for all i, and for ie T'(t — 1)
in particular. Moreover, on 7(f— 1) we even have equality. Suppose, on
the contrary, that u;(c) > u;(¢"') for some i€ T(r— 1). Then (26) implies
> et M (€) < i1 Mic), which contradicts (27). Therefore, we have
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lic) = ;z,(c"') for all i e T(t — 1). Then conditions (1) and (1) imply g, (¢) =
w; (¢) for all i € T, ), which completes the necessary induction step.

Suppose that the individual players are endowed with preferences over the set
of possible cost allocations, such that the utility of an agent equals minus his
cost share. Taking these utilities mnto account, among all maintenance cost
sharing mechanisms satisfying cost monotonicity and the core property the
constrained egalitarian cost sharing mechanism can be considered as the most
egalitarian in the following sense. Within this class of maintenance problems
1t 1s the mechanism that uniquely minimizes the highest cost share. So the
constrained egalitarian cost sharing mechanism uniquely maximizes Rawlsian
welfare that 1s measured by the lowest utility level.

Theorem 5.5. The constrained egalitarian maintenance cost sharing mechanism
is the unique maintenance cost sharing mechanism that minimizes the maximal
cost share among those mechanisms that satisfy cost monotonicity and which
satisfy the core property.

Proof: The proof resembles that of Theorem 5.4 up to a high degree. First.
the constrained egalitarian maintenance cost sharing mechanism selects the
Lorenz maximal element in the core of a tree maintenance game (Dutta
and Ray (1989)), which implies Rawlsian maximality. Suppose u satisfies
also cost monotonicity and the core property thereby maximizing Rawlsian
welfare. Then of course by assumption for any ¢ € ¢, max{y(c)|ie N} =
max{ u (¢)|i e N}. Now proceed along the same lines as in the second part of
the proof of Theorem 5.4 in order to see that u equals z".

One can trace easily the following independencies between the character-
1zing properties in Theorem 5.5. Splitting the total costs equally between the
players gives a cost monotonic mechanism that minimizes both the range of
the weighted cost shares and the maximal weighted cost share. But the allo-
cation need not be a core element. Furthermore there are mechanisms that
minimize the range of the cost shares subject to the core property but are not
cost monotonic. A legitimate candidate would be the mechanism  that co-
incides with the constrained egalitarian solution for all problems except for
the following 4-player problem corresponding to the tree G = (V, E) with
Vi=34r 1,234} and..E ={(r, 1), (1,2),2,3),(3,4)} such that ¢; =1, ¢x =
c3 =2, ¢4 = 3 and u(c) is given by (1, 15,21 .3). The mechanism that relates
each cost function ¢ € 4 to the corresponding Shapley value for (N, ¢, ) with
I' = (G,c.,N), defines a cost monotonic mechanism for which the core prop-
erty 1s satisfied, however 1t does not always minimize the range of cost shares
or minimize the maximal cost share.

In fact, Theorem 5.4 and 5.5 are similar to results of Aadland and Kolpin
(1998). They look at airport games and propose the restrictive average mech-
anism that comncides with our egalitarian maintenance cost sharing mechanism.
Besides the fact that our results hold for a more general setting, Aadland and
Kolpin needed an additional characterizing property which 1s satishied by the
constrained egalitarian maintenance cost sharing mechanism. The property in
question 1s ranking, which requires that an agent with higher stand alone costs.
should contribute (weakly) more.
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6. Concluding remarks

Starting with fixed tree problems we firstly restricted our attention to standard
fixed tree problems and secondly to maintenance problems. Most of the im-
posed restrictions are not severe, as we will explain now.

Firstly, consider the restrictions in the definition of the standard fixed tree
network. The assumption (c) that the root 1s not occupied, can be relaxed. As
Granot et al. (1996) pointed out, we can always add a zero-cost arc from a
new unoccupied root to the original root without changing the associated cost
game. Similarly, the cost game 1s not changed 1f we just leave out the leafs at
which none of the players 1s located, so (d) 1s not indispensable. Also the re-
quirement (f) that there 1s only one arc leaving the source 1s not essential for
any of our results. Megiddo (1978), Granot and Huberman (1981), and Granot
and Maschler (1998) show how to decompose the problem in that case such
that the core of the game (N, ¢, ) 1s obtained by taking the Cartesian product
of the cores of the games corresponding to the different components.

In the paper we restricted the class of standard fixed tree problems to those
that are maintenance problems, 1.e. the problems such that there 1s exactly
one player per vertex. This assumption 1s not crucial for most of our results,
due to the following observations. First of all, consider a standard fixed tree
problem with empty vertices, 1.e., say, for the standard fixed tree network
I"'=(V,E,c,N) it holds that there 1s at most one player in each vertex and
IN| < |V\{r}|. We construct a new network 7™° with all occupied vertices
(outside the root) as follows. Define V* :={ve V|N, = ¢}, the nonempty
set of empty vertices in V' (outside the root). For each v e V" we create an
additional artificial player i, located at v, and let N* be the set of all the newly
introduced players, 1.e. N* :={i,|ve V*}. Consider the corresponding stan-
dard fixed tree network for the new situation, thati1s ' := (V,E,¢c, NUN?).
The relation between the cores of the corresponding standard fixed tree games
(N,cr) and (N U N*, cr-) 1s shown 1n the next proposition.

Proposition 6.1. Let x be a vector of cost shares for I'". Then the following two
statements are equivalent.

(1) xecore(NUN", cr+) and xy- =0,

(1) xn € core(N,cr).

Proof: Straighttorward and left to the reader.

We may invoke Proposition 6.1 to obtain results regarding the core of the
initial standard fixed tree game (N, ¢, ) by restricting the core of the larger
game to the elements that specify zero payments for each of the artificial
players.

Now assume that each vertex outside the root 1s occupied with at least one
player. We will show how to construct a related maintenance problem 7/ in-
ducing the same cost game. Let ve V\{r} be a vertex with |[N,| =k > 1.
Create £ — 1 new vertices vy, v2,...,0r—1 and redistribute the k players in N,
such that in the new situation there 1s exactly one player in each of the ver-
tices v, vy, vy, ...,0r—1. Call the new set of vertices V. Next, delete the arc
((v),v) from E and add the following & — | new ones, (n(v),v;), (v],02),...,
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e

(Vk—2,0k—1), (vk—1,v), resulting in a new set of arcs E. Basically, we keep the
cost structure intact by defining ¢ : £ — IR, through

c(e) if eec ENE,
c(e) = 4 e((n(v),v) if e = (n(v),v)),
0 otherwise.

-

Then I" = (V,E,é, N) defines a maintenance problem with the property that
cr(S) = cp(S) for all S < N. This procedure may be repeated as long as there
are still vertices in the new network with more than one player. Finally we
obtain a network I"'* = (V*, E*,¢*, N) with the property that |N,| = 1 for all

ve V*\{r} and cr+(S) = cr(S) for all S = N. Then, trivially, by studying the
related cost games we can not distinguish between the two cases, /- and /.
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