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A GENERAL LATENT CLASS APPROACH TO

UNOBSERVED HETEROGENEITY IN THE

ANALYSIS OF EVENT HISTORY DATA

Jeroen K. Vermunt
Tilburg University

INTRODUCTION

In the context of the analysis of survival and event history data, the problem of unobserved
heterogeneity, or the bias caused by not being able to include particular important explanatory
variables in the regression model, has received a great deal of attention (see, for instance,
Vaupel, Manton, and Stallard 1979; Heckman and Singer 1982, 1984; Trussell and Richards
1985; Chamberlain 1985; Yamaguchi 1986; Mare 1994; Guo and Rodriguez 1994). The reason
for this is that this phenomenon has a much larger impact in hazard models than in other
types of regression models: Unobserved heterogeneity may introduce, among other things,
downwards bias in the time effects, spurious effects of time-varying covariates, spurious time-
covariate interaction effects, and dependence among competing risks and repeatable events.
This may be true even if the unobserved heterogeneity is uncorrelated with the values of the
observed covariates at the start of the process under study.

The models which have been proposed to correct for unobserved heterogeneity differ mainly
with respect to the assumptions made about the distribution of the latent variable capturing
the unobserved heterogeneity. Heckman and Singer (1982, 1984) proposed a non-parametric
random-effects approach which is strongly related to latent class analysis (LCA). Vermunt
(1996a, 1997) proposed extending their latent class (LC) approach by specifying simultane-
ously with the event history model a system of logit models (or causal log-linear model) for
the covariates. By explicitly modeling the relationships among the observed and unobserved
covariates, it becomes possible to relax and test some of the assumptions which are generally
made about the nature of the unobserved heterogeneity. Models can be specified in which
the unobserved heterogeneity is related to observed (time-varying) covariates, in which the un-
observed heterogeneity itself is time-varying, and in which there are several mutually related
latent covariates.

The next section explains event history analysis by means of hazard models paying special
attention to situations in which unobserved heterogeneity may distort the results. Subsequently,
methods for dealing with unobserved heterogeneity are presented, including the standard and
the extended LC approach. The presented LC methodology is illustrated by two empirical
examples.
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EVENT HISTORY ANALYSIS

The purpose of event history analysis is to explain differences in the time at which individuals
experience the events under study. The best way to define an event is as a transition from
a particular origin state to a particular destination state. The time variables indicating the
duration of nonoccurrence of the events of interest may either be discrete or continuous vari-
ables. Although because of space limitations here we deal solely with continuous-time methods,
the results can easily be generalized to discrete-time situations (Vermunt 1997). Textbooks on
event history and survival analysis are Kalbfleisch and Prentice (1980), Tuma and Hannan
(1984), Allison (1984), Lancaster (1990), Yamaguchi (1991), Blossfeld and Rohwer (1995), and
Vermunt (1997).

Suppose that we are interested in explaining individual differences in women’s timing of the
first birth. In that case, the event is having a firth child, which can be defined as the transition
from the origin state no children to the destination state one child. This an example of what is
called a single non-repeatable event. The term single refers to the fact that the origin state no
children can only be left by one type of transition. The term non-repeatable indicates that the
event can occur only once. Below, situations in which there are several types of events (multiple
risks) and in which events may occur more than once (repeatable events) are presented. In the
first birth example, it seems most appropriate to assume the time variable to be a continuous
variable although it is, of course, measured discrete, for instance, in days, months, or years
after a woman’s 15th birthday.

Basic concepts

Suppose T is a continuous random variable indicating the duration of nonoccurrence of the first
birth. Let f(t) be the probability density function of T , and F (t) the distribution function of
T . As always, the following relationships exist between these two quantities,

f(t) = lim
∆t→0

P (t ≤ T < t + ∆t)

∆t
=

∂F (t)

∂t
,

F (t) = P (T ≤ t) =
∫ t

0
f(u)d(u) .

The survival probability or survival function, indicating the probability of nonoccurrence of an
event until time t, is defined as

S(t) = 1− F (t) = P (T ≥ t) =
∫ ∞

t
f(u)d(u) .

Another important concept is the hazard rate or hazard function, h(t), expressing the instan-
taneous risk of experiencing an event at T = t, given that the event did not occur before t. The
hazard rate is defined as

h(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)

∆t
=

f(t)

S(t)
,

in which P (t ≤ T < t + ∆t|T ≥ t) indicates the probability that the event will occur during
[t ≤ T < t + ∆t], given that the event did not occur before t. The hazard rate is equal to
the unconditional instantaneous probability of having an event at T = t, f(t), divided by the
probability of not having an event before T = t, S(t). It should be noted that the hazard
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rate itself cannot be interpreted as a conditional probability. Although its value is always non-
negative, it can take values greater than one. However, for small ∆t, the quantity h(t)∆t can
be interpreted as the approximate conditional probability that the event will occur between t
and t + ∆t.

Above h(t) was defined as a function of f(t) and S(t). It is also possible to express S(t)
and f(t) completely in terms of h(t), that is,

S(t) = exp
(
−

∫ t

0
h(u)d(u)

)
,

f(t) = h(t)S(t) = h(t) exp
(
−

∫ t

0
h(u)d(u)

)
.

This shows that the functions f(t), F (t), S(t), and h(t) give mathematically equivalent speci-
fications of the distribution of T .

Log-linear models for the hazard rate

When working within a continuous-time framework, the most appropriate method for regressing
the time variable T on a set of covariates is through the hazard rate. This makes is straightfor-
ward to assess the effects of time-varying covariates – including the time dependence itself and
time-covariate interactions – and to deal with censored observations (Yamaguchi 1991: 10-11;
Vermunt 1997: 91-92). Censoring is a form of missing data which is explained in more detail
below.

Let h(t|xi) be the hazard rate at T = t for an individual with covariate vector xi. Since the
hazard rate can take on values between 0 and infinity, most hazard models are based on a log
transformation of the hazard rate, which yields a regression model of the form

log h(t|xi) = log h(t) +
∑
j

βjxij .

This hazard model is not only log-linear but also proportional. In proportional hazard models,
the time-dependence is multiplicative and independent of an individual’s covariate values (Lan-
caster 1990: 42-43). Below it will be shown how to specify non-proportional log-linear hazard
models by including time-covariate interactions.

The various types of log-linear continuous-time hazard models are defined by the functional
form that is chosen for the time dependence, that is, for the term log h(t). In Cox’s model, the
time dependence is treated in a non-parametric way (Cox, 1972). Exponential models assume
the hazard rate to be constant over time, while piecewise exponential model assume the hazard
rate to be a step function of T , that is, constant within time periods. Other examples of
parametric log-linear hazard models are Weibull, Gompertz, and polynomial models (Blossfeld
and Rohwer 1995).

As was demonstrated by several authors (Holford 1980; Laird and Oliver 1981; Clogg and
Eliason 1987; Vermunt 1997: 106-117), log-linear hazard models can also be defined as log-linear
Poisson models, which are also known as log-rate models. Assume that we have – besides the
event history information – two categorical covariates denoted by A and B. In addition, assume
that the time axis is divided into a limited number of time-intervals in which the hazard rate
is postulated to be constant. In the first birth example, this could be one-year intervals. The
discretized time variable is denote by Z. Let habz denote the constant hazard rate in the zth
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time interval for an individual with A = a and B = b. To see the similarity with standard
log-linear models, it should be noted that the log hazard rate can also be written as

log habz = log(mabz/Eabz)

where mabz denotes the expected number of events and Eabz the total exposure time in cell
(a, b, z). Using the notation of hierarchical log-linear models, the saturated log-linear model for
the hazard rate habz can be written as

log habz = u + uA
a + uB

b + uZ
z + uAB

ab + uAZ
az + uBZ

bz + uABZ
abz , (1)

in which the u terms are log-linear parameters which are constrained in the usual way, for in-
stance, by means of ANOVA-like restrictions. It should be noted that this is a non-proportional
model as a result of the presence of time-covariate interactions.

As the standard log-linear model, the log-rate model can be formulated in a more general
way using a design matrix, i.e.,

log habz =
∑
j

βjxabzj . (2)

These log-rate models can be estimated using standard programs for log-linear analysis using
Eabz as a weight vector (Vermunt 1997: 112).

Restricted variants of the (saturated) model described in equation 1 can be obtained by
omitting some of the higher-order interaction terms. For example,

log habz = u + uA
a + uB

b + uZ
z

yields a model that is similar to the proportional log-linear hazard model described in equa-
tion ??. Different types of hazard models can be obtained by the specification of the time-
dependence. Setting the uZ

z terms equal to zero yields an exponential model. Unrestricted
uZ

z parameters yield a piecewise exponential model. Other parametric models can be approxi-
mated by defining the uZ

z terms to be some function of Z (or T ) (Yamaguchi 1991: 75-77). An
approximate Gompertz model, for instance, is obtained by linearly restricting the effect of Z
(or T ) in a similar way as in log-linear association models (Clogg 1982). And finally, if there
are as many time intervals as observed survival times and if the time dependence of the hazard
rate is not restricted, one obtains a Cox regression model (Laird Olivier 1981; Vermunt 1997:
113-115).

The presence of unobserved heterogeneity may bias the results obtained from the hazard
models discussed so far in various ways (Yamaguchi 1986; Vermunt 1997: 140-141). The best-
known phenomenon is the downwards bias of the time dependence that occurs even if – at T = 0
– the unobserved factors are uncorrelated with the values of covariates included in the model
(Vaupel, Manton, and Stallard 1979; Heckman and Singer 1982, 1984). In such situations,
covariate effects will be biased as well since the unobserved variables and the observed variable
become correlated after T = 0. When the unobserved factors are related with some of the
covariates at T = 0, that is, when there is some form of selection bias, not only the effects of
the covariates concerned are biased, but also spurious time-covariate interactions will be found.
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Censoring

A subject that always receives a great amount of attention in discussions on event history
analysis is the problem of censoring (Yamaguchi 1991: 3-9; Guo 1993; Vermunt 1997:117-130).
An observation is called censored if it is known that it did not experience the event of interest
during some time, but it is not known when it experienced the event. In fact, censoring is a
specific type of missing data. In the first-birth example, a censored case could be a woman
which is 30 years of age at the time of interview (and has no follow-up interview) and does not
have children. For such a woman, it is known that she did not have a child until age 30, but
be it not known whether nor when she will have her first child.

This is, actually, an example of what is called right censoring. Left censoring means that
it is known that the event did not occur, but the exact length of the period that the case
concerned did not experience the event is unknown. Left censoring is more difficult to deal
with than right censoring (Guo 1993).

As long as it can be assumed that the censoring mechanism is not related to the process under
study, dealing with censored observations in maximum likelihood estimation of the parameters
of hazard models is straightforward. Let δi be a censoring indicator taking the value 0 if
observation i is censored and 1 if it is not censored. The contribution of case i to the likelihood
function that must be maximized when there are censored observations is

Li = h(ti|xi)
δiS(ti|xi) = h(ti|xi)

δi exp
(
−

∫ ti

0
h(u|xi)du

)
.

This likelihood function is, however, only valid if the censoring mechanism can be ignored for
likelihood based inference. The presence of unobserved heterogeneity which is shared by the
process of interest and the censoring process will lead to a violation of the assumption that
censoring is ignorable.

Time-varying covariates

A strong point of hazard models is that one can use time-varying covariates. These are covari-
ates that may change their value over time. Examples of interesting time-varying covariates in
the first-birth example are a woman’s marital and work status. It should be noted that, in fact,
the time variable and interactions between time and time-constant covariates are time-varying
covariates as well (Kalbfleish and Prentice 1980: 121-122).

The saturated log-rate model described in equation 1, contains both time effects and time-
covariate interaction terms. Inclusion of ordinary time-varying covariates does not change the
structure of this hazard model. Suppose, for instance, that covariate B is time varying rather
than time constant. This has only implications for the matrix with exposure times Eabz. When
computing this matrix, it has to be taken into account that individuals can change their value
on B (Vermunt 1997: 144-145).

The presence of unobserved heterogeneity may seriously bias the effects of time-varying
covariates. Above, we already mentioned the effect of unobserved risk factors on the time
dependence and on time-covariate interactions. The effects of time-varying covariates may be
partially spurious as a result of the presence of unobserved risk factors which influence both
the covariate process and the dependent process (Yamaguchi 1991: 134-139; Vermunt 1997:
140-141).
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Multiple risks

Thus far, only hazard rate models for situations in which there is only one destination state
were considered. In many applications it may, however, prove necessary to distinguish between
different types of events or risks. In the analysis of the first-union formation, for instance, it
may be relevant to make a distinction between marriage and cohabitation. In the analysis of
death rates, one may want to distinguish different causes of death. And in the analysis of the
length of employment spells, it may be of interest to make a distinction between the events
voluntary job change, involuntary job change, redundancy, and leaving the labor force.

The standard method for dealing with situations where – as a result of the fact that there is
more than one possible destination state – individuals may experience different types of events
is the use of a multiple-risk or competing-risk model. For a discussion of the various types of
multiple-risk situations, see Allison (1984:42-44) or Vermunt (1997:146-150). A multiple-risk
variant of the general log-rate model described in equation 2 is

log habzd =
∑
j

βdjxabzdj .

Here D is a variable indicating the destination state or the type of event that one has experi-
enced. As can be seen, this variable can be used in the hazard model in the same way as the
other variables. Note that the index d is used in the parameters and the elements of the design
matrix to indicate that the covariate and time effects may be risk dependent.

Again the presence of unobserved heterogeneity may distort the results obtained from the
hazard model. More precisely, if the different types of events have shared unmeasured risks
factors, the results for each of the types of events is only valid under the observed hazard rates
for the other risks. In fact, the resulting dependence among risks is comparable to what in the
field of discrete choice modeling is known as the violation of the assumption of independence
of irrelevant alternatives (Hill, Axinn, and Thornton 1993).

Multivariate hazard models

Most events studied in social sciences are repeatable, and most event history data contains
information on repeatable events for each individual. This is in contrast to biomedical research,
where the event of greatest interest is death. Examples of repeatable events are job changes,
having children, arrests, accidents, promotions, and residential moves.

Often events are not only repeatable but also of different types, that is, we have a multiple-
state situation. When people can move through a sequence of states, events cannot only be
characterized by their destination state, as in competing risks models, but they may also differ
with respect to their origin state. An example is an individual’s employment history: an
individual can move through the states of employment, unemployment, and out of the labor
force. In that case, six different kinds of transitions can be distinguished which differ with
regard to their origin and destination states. Of course, all types of transitions can occur more
than once. Other examples are people’s union histories with the states living with parents,
living alone, unmarried cohabitation, and married cohabitation, or people’s residential histories
with different regions as states. Special multiple-state models are the well-known Markov and
semi-Markov chain models (Tuma and Hannan 1984: 91-115).

Hazard models for analyzing data on repeatable events and multiple-state data are special
cases of the general family of multivariate hazard rate models. Another application of these
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multivariate hazard models is the simultaneous analysis of different life-course events, or as
Willekens (1989) calls it, parallel careers. For instance, it can be of interest to investigate the
relationships between women’s reproductive, relational, and employment careers, not only by
means of the inclusion of time-varying covariates in the hazard model, but also by explicitly
modeling their mutual interdependence.

Another application of multivariate hazard models is the analysis of dependent or clustered
observations. Observations are clustered, or dependent, when there are observations from
individuals belonging to the same group or when there are several similar observations per
individual. Examples are the occupational careers of spouses, educational careers of brothers
(Mare 1994), child mortality of children in the same family (Guo and Rodriguez 1994), or in
medical experiments, measures of the sense of sight of both eyes or measures of the presence
of cancer cells in different parts of the body. In fact, data on repeatable events can also be
classified under this type of multivariate event history data, since in that case there is more
than one observation of the same type for each observational unit as well.

The log-rate model can easily be generalized to situations in which there are several origin
and destination states and in which there may be more than one event per observational unit
(Vermunt 1997: 169). The only thing we need to do is to define – besides the covariates and
the time variables – variables indicating the origin state (O), the destination state (D), and the
rank number of the event (M). The general log-rate model for such a situation is of the form

log habzodm =
∑
j

βodmjxabzodmj . (3)

Of course, notation could be simplified by replacing the variables D, O, and M by a single
variable indicating the type of event defined by origin, destination, and rank number.

The different types of multivariate event history data have in common that there are de-
pendencies among the observed survival times. These dependencies may take several forms.
The occurrence of one event may influence the occurrence of another event. Events may be
dependent as a result of common antecedents. And, survival times may be correlated because
they are the result of the same causal process, with the same antecedents and the same param-
eters determining the occurrence or nonoccurrence of an event. If these common risk factors
are not observed, the assumption of statistical independence of observation is violated, which
may seriously distort the results. This is, actually, the same type of problem that motivated
the development of multi-level models (Goldstein 1987; Bryk and Raudenbuch 1992).

DEALING WITH UNOBSERVED HETEROGENEITY

As described in the previous section, unobserved heterogeneity may have different types of
consequences in hazard modeling. The best-known phenomenon is the downwards bias of the
duration dependence. In addition, it may bias covariate effects, time-covariate interactions,
and effects of time-varying covariates. Other possible consequences are dependent censoring,
dependent competing risks, and dependent observations.

There are two main types of methods that have been proposed for correcting for unob-
served heterogeneity: random-effects and fixed-effects methods. Below these two methods are
described and a more general non-parametric random-effects method is presented.
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Random-effects approach

The random-effects approach is based on the introduction of a time-constant latent covariate
in the hazard model (Vaupel, Manton and Stallard 1979). The latent variable is assumed to
have a multiplicative and proportional effect on the hazard rate, i.e.,

log h(t|xi, θi) = log h(t) +
∑
j

βjxij + log θi

Here, θi denotes the value of the latent variable for subject i. In the parametric random-
effects approach, the latent variable is postulated to have a particular distributional form. The
amount of unobserved heterogeneity is determined by the size of the standard deviation of this
distribution: The larger the standard deviation of θ, the more unobserved heterogeneity there
is.

Vaupel, Manton, and Stallard (1979) proposed using a gamma distribution for θ, with a
mean of 1 and a variance of 1/γ, where γ is the unknown parameter to be estimated. Several
other authors have proposed incorporating a gamma distributed multiplicative random term
in hazard models (Tuma, and Hannan 1984: 177-179; Lancaster 1990: 65-70). According to
Vaupel, Manton and Stallard (1979), the gamma distribution was chosen because it is analyti-
cally tractable and readily computational. Moreover, it is a flexible distribution that takes on
a variety of shapes as the dispersion parameter γ varies: When γ = 1, it is identical to the
well-known exponential distribution; when γ is large, it assumes a bell-shaped form reminiscent
of a normal distribution.

Heckman and Singer (1982, 1984) demonstrated by an analysis of one particular data set
that the results obtained from continuous-time hazard models can be very sensitive to the
choice of the functional form of the mixture distribution. Therefore, they proposed using
a non-parametric characterization of the mixing distribution by means of a finite set of so-
called mass points, or points of support, whose number, locations, and weights are empirically
determined. In this approach, the continuous mixing distribution of the parametric approach is
replaced by a discrete density function defined by a set of empirically identifiable mass points
which are considered adequate to characterize fully the form of the heterogeneity. Often, two
or three points of support suffice (Guo and Rodriguez 1994).

It should be noted that Heckman and Singer’s arguments against the use of parametric
mixing distributions have been criticized by other authors who claimed that the sensitivity
of the results to the choice of the mixture distribution was caused by the fact that Heckman
and Singer misspecified the duration dependence in the hazard model they formulated for the
data set they used to demonstrate the potentials of their non-parametric approach. Trussell
and Richards (1985) demonstrated that the results obtained with Heckman and Singer’s non-
parametric mixing distribution can severely be affected by a misspecification of the functional
form of the distribution of T .

The non-parametric unobserved heterogeneity model proposed by Heckman and Singer
(1982, 1984) is strongly related to LCA. As in LCA, the population is assumed to be com-
posed of a finite number of exhaustive and mutually exclusive groups formed by the categories
of a latent variable. Suppose W is a categorical latent variable with W ∗ categories, and w is
a particular value of W . The non-parametric hazard model with unobserved heterogeneity can
be formulated as follows:

log h(t|xi, θw) = log h(t) +
∑
j

βjxij + log θw
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Here, θw denotes the (multiplicative) effect on the hazard rate for latent class w. It should
noted that this log-linear hazard model can also be written in the form of a log-rate model
using the parameter notation from hierarchical log-linear models. This is demonstrated below
in the examples.

The contribution of the ith subject to the likelihood function which must be maximized in
the case of a single nonrepeatable event is

Li =
W ∗∑
w=1

πwh(ti|xi, θw)δiS(ti|xi, θw) ,

where πw is the proportion of the population belonging to latent class w. In the terminology
used by Heckman and Singer (1982), the number of latent classes (W ∗), the latent proportions
(πw), and the effects of W (θw) are called the number of mass points, the weights, and the mass
points locations, respectively.

The most important drawback of the parametric and non-parametric random-effects ap-
proaches to unobserved heterogeneity is that the mixture distribution is assumed to be inde-
pendent of the observed covariates. This is, in fact, in contradiction to the omitted variables
argument which is often used to motivate the use of these types of mixture models. If one
assumes that particular important variables are not included in the model, it is usually implau-
sible to assume that they are completely unrelated to the observed factors. In other words, by
assuming independence among unobserved and observed factors, the omitted variable bias, or
selection bias, will generally remain (Chamberlain 1985; Yamaguchi 1986, 1991: 132). Below,
a non-parametric random-effects approach is presented which overcomes this weak point of the
standard approaches.

The use of parametric mixture distributions is relatively simple in models for a single non-
repeatable event. However, when there is more than one (latent) survival time per observational
unit, that is, when there is a model for competing risks, a model for repeatable events, or
another type of multivariate hazard model, this is generally not true anymore. It is not so easy
to include several possibly correlated parametric latent variables in a hazard model because
that makes it necessary to specify the functional form of the multivariate mixture distribution.
Therefore, in such cases, most applications use either several mutually independent cause, spell,
or transition-specific latent variables, or one latent variable that may have a different effect on
the several cause, spell or transition-specific hazard rates. The former approach was adopted,
for instance, by Tuma and Hannan (1984:177-183), and the latter, for instance, by Flinn and
Heckmann (1982) in a study in which they used a normal mixture distribution. These two
specifications of the unobserved factors have also been used in models with non-parametric
unobserved heterogeneity (Heckman and Singer 1985; Moon 1991). The general LC approach
which is presented below makes it possible to specify models with several mutually related latent
variables without the necessity of specifying a distributional form for their joint distribution.
The joint distribution of the latent variables is non-parametric as well and can, if necessary, be
restricted by means of a log-linear parameterization of the latent proportions.

Fixed-effects approach

A second method for dealing with unobserved heterogeneity involves adding cluster-specific
effects, or incidental parameters, to the model (Chamberlain 1985; Yamaguchi 1986). In fact, a
categorical variable is included in the hazard model which indicates to which cluster a particular
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observation belongs: observations belonging to the same cluster have the same value for this
“observed” variable while observations belonging to different clusters have different values.
Thus, besides the time and covariate effects, we have to estimate a separate parameter for each
cluster.

This approach to unobserved heterogeneity, which is called the fixed-effects approach, can
only be applied with multivariate survival data, that is, when there is more than one observation
for the largest part of the observational units. Note that actually the unobserved heterogeneity
is transformed into a form of observed heterogeneity capturing the similarity among observa-
tions belonging to the same cluster.

The advantage of using fixed-effects methods to correct for unobserved heterogeneity is
that they circumvent two objections against random-effects methods which were presented
above: No functional form needs to be specified for the (joint) distribution of the unobserved
heterogeneity and the unobserved heterogeneity is automatically related to both the initial state
and the time-constant covariates.

The major limitation of the fixed-effects approach is that since each cluster has its own
incidental parameter, no parameter estimates can be obtained for the effects of covariates which
have the same value for the different observations belonging to the same cluster: Only the effects
of observation-specific or of time-varying covariates can be estimated. Another problem is that
the incidental parameters cannot be estimated consistently, since by definition they are based
on a limited number of observations regardless of the sample size. This inconsistency may be
carried over to the other parameters if the parameters are estimated by means of maximum
likelihood methods (Yamaguchi 1986).

General non-parametric random-effects approach

To overcome the limitations of the fixed- and random-effects approaches, Vermunt (1997:189-
256) proposed a more general non-parametric latent variable approach to unobserved hetero-
geneity. The main difference between this latent variable method and Heckman and Singer’s
method is that in the former different types of specifications can be used for the joint distri-
bution of the observed covariates, the unobserved covariates, and the initial state. This means
that it becomes possible to specify hazard models in which the unobserved factors are related to
the observed covariates and to the initial state. A special case is, for instance, the mover-stayer
model proposed by Farewell (1982), in which the probability of belonging to the class of stayers
is regressed on a set of covariates by means of a logit model. Moreover, when hazard models
are specified with several latent covariates, different types of specifications can be used for the
relationships among the latent variables, one of which leads to a time-varying latent variable
as proposed by Böckenholt and Langeheine (1996). By means of a multivariate hazard model,
the latent covariates can also be related to observed time-varying covariates.

The model that is used for dealing with unobserved heterogeneity consists of two parts: a
log-linear path model in which the relationships among the time-constant observed covariates,
the initial state, and unobserved covariates are specified, and an event history model in which
the determinants of the dynamic process under study are specified.

Suppose there is a model with two time-constant observed covariates denoted by A and B
and two unobserved covariates denoted by W and Y . In the first part of the model, the relation-
ships between these four variables are specified by means of a log-linear path model (Goodman
1973; Hagenaars 1990; Vermunt 1996a, 1996b, 1997). Let πabwy denote the probability that an
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individual belongs to cell (a, b, w, y) of the contingency table formed by the variables A, B, W ,
and Y . Specifying a modified path model for πabwy involves two things, namely, decomposing
πabwy into a set of conditional probabilities on the basis of the assumed causal order among A,
B, W , and Y , and specifying log-linear or logit models for these conditional probabilities. At
least three meaningful specifications for the causal order among A, B, W , and Y are possible,
namely, all the variables are of the same order, the latent variables are posterior to the observed
variables, and the observed variables are posterior to the latent variables. In the first specifi-
cation, πabwy is not decomposed in terms of conditional probabilities. The second specification
is obtained by

πabwy = πab πwy|ab ,

and the third one by

πabwy = πwy πab|wy .

Note that the second type of specification in which the latent variable(s) depend on covariates
was used by Clogg (1981) in his LC model with external variables.

Suppose that the second specification is chosen. In that case, πab and πwy|ab can be re-
stricted by means of a non-saturated (multinomial) logit model. A possible specification of the
dependence of the unobserved covariates on the observed covariates is

πwy|ab =
exp

(
uW

w + uY
y + uAW

aw + uBW
bw

)
∑

wy exp
(
uW

w + uY
y + uAW

aw + uBW
bw

) .

Here, W depends on A and B, while Y is assumed to be independent of W and the observed
covariates. Other specifications are, for instance,

πwy|ab =
exp

(
uW

w + uY
y + uWY

wy

)
∑

wy exp
(
uW

w + uY
y + uWY

wy

) = πwy ,

where the joint latent variable is assumed to be independent of the observed variables, and

πwy|ab =
exp

(
uW

w + uY
y

)
∑

wy exp
(
uW

w + uY
y

) = πwπy ,

in which the two latent variables are mutually independent and independent of the observed
variables.

The second part of the model with non-parametric unobserved heterogeneity consists of an
event history model for the dependent process to be studied. The hazard model which is used
here is a log-rate model which, as was shown in equation 3, in its most general form involves
specifying a regression model for the hazard rate habzwyodm. As before, z serves as index for the
time variable, o for the origin state, d for the destination state, and m for the rank number of
the event.

When obtaining maximum likelihood estimates of the parameters of a hazard model with
the observed covariates A and B and latent covariates W and Y , the contribution of case i to
the likelihood function is

Li =
∑
wy

πabwyL∗i (h) ,
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in which L∗i (h) denotes the contribution of person i to the complete data likelihood function
for the hazard part of the model, and a and b are the observed values of A and B for person
i. Vermunt (1997:186-188) proposed estimating the parameters of a general class of event
history models with missing data by means of the EM algorithm. A computer program called
`EM (Vermunt 1993, 1997) has been developed in which this non-parametric random-effects
approach is implemented.

EXAMPLES

This section presents two applications of the general random-effects approach presented above.
The first application concerns a single non-repeatable event. In the second example, there is
information on the occurrence of four events for each observational unit.

Example I: first interfirm job change

In his textbook on event history analysis, Yamaguchi (1991) presented an example on employees’
first interfirm job change to illustrate the use of log-rate models. He reported the data taken
from the 1975 Social Stratification and Mobility Survey in Japan in Table 4.1. Here, the
same data set is reanalyzed to demonstrate a number of possible specifications of unobserved
heterogeneity.

The event of interest is the first interfirm job separation experienced by the sample subjects.
The time variable is measured in years. In the analysis, the last one-year time intervals are
grouped together in the same way as Yamaguchi did, which results in 19 time intervals. It should
be noted that contrary to Yamaguchi, we do not apply a special formula for the computation
of the exposure times for the first time interval.

Besides the time variable denoted by Z, there is information on one observed covariate: firm
size (F ). The first five categories range from small firm (1) to large firm (5). Level 6 indicates
government employees. The most general log-rate model that will be used is of the form

log hfzw = uF
f + uZ

z + uZF
zf + uW

w ,

where W is the label of the latent variable assumed to capture the unobserved heterogeneity.
The log-likelihood values, the number of parameters, as well as the BIC values for the

estimated models are reported in Table 1.

[INSERT TABLE 1 ABOUT HERE]

We will first describe the results for the models without unobserved heterogeneity. Models
A and B serve as reference points. Model A postulates that the hazard rate does not depend on
Z and F . Model B is a saturated log-rate model: It includes the main effects of Z and F and
the ZF interaction term. The comparison of these two models shows that the log-likelihood is
305 points higher in Model B using 113 additional parameters. A Cox-like model is obtained
by omitting the two-variable interaction between Z and F (Model C). With a Cox-like model
we mean a model that contains a separate parameter for each time point and that does not
contain time-covariate interactions.This model with 90 parameters less than Model B does not
perform so badly. The much lower log-likelihood values of models D and E compared to Model
C indicate that neither the time effect nor the effect of firm size can be omitted from Model C.



13

The estimates of time parameters of Model C showed that the hazard rate rises in the first
time periods and subsequently starts decreasing slowly. Models F and G were estimated to
test whether it is possible simplify the time dependence of the hazard rate on the basis of this
information. Model F contains only time parameters for the first and second time point, which
means that the hazard rate is assumed to be constant from time point 3 to 19. Model G is
the same as Model F except for that it contains a linear term to describe the negative time
dependence after the second time point. The comparison between Models F and G shows that
this linear time dependence of the log hazard rate is extremely important: The log-likelihood
increases 97 points using only one additional parameter. Comparison of Model G with the less
restricted Model C and the more restricted Model D shows that Model G captures the most
important part of the time dependence. Although according to the likelihood-ratio statistic the
difference between Models C and G significant, Model G is the preferred model according to
the BIC criterion.

The observed negative time dependence after the second time point may be caused by the
presence of unobserved heterogeneity: Individuals with a lower rate of job changing remain
with their first employer and therefore the observed hazard rate declines. To test this expla-
nation of the negative time dependence, a model is specified with an unobserved heterogeneity
component. Model H contains a two-class latent variable which is assumed to be independent
of the observed covariate. This is, in fact, Heckman and Singer’s non-parametric model. The
other part of the specification is the same as in Model F. As can be seen from the test results,
the log-likelihood value of Model H is 72 points higher that of Model F using only 2 additional
parameters. This provides evidence that the negative time dependence is at least partially the
result of the selection mechanism resulting from unobserved heterogeneity. The comparison of
the log-likelihood values of Models G an H indicates that the two-class latent variable W does
not fully describe the observed negative time dependence. Inclusion a third latent class does,
however, not lead to an improvement of the log-likelihood.

Model I relaxes one of the main assumptions that is generally made in models with un-
observed heterogeneity: the unobserved covariate W is allowed to be related to the observed
covariate F . The relationship between W and F is modeled treating W as posterior to F ,
which implies that a logit model is specified for πw|f . From a substantive point of view, this
means that it is assumed that firm size determines the (unobserved) individual characteristics
of employees. As can be seen from the increase of the log-likelihood of 24 points using 5 addi-
tional parameters, including the direct of effect F on W improves the model a great deal. In
Model J, the direct effect of F on the hazard rate is omitted. The fact that Model J performs
almost as well as Model I with 5 fewer parameters indicates that – given the postulated causal
order between F and W – there is only and indirect effect of firm size on the hazard rate via
the latent variable W .

It should be noted that, in this case, the same fit is obtained irrespective of the assumed
causal order between W and F . The interpretation of the results is, however, quite different.
If F would be assumed to be posterior to W , the results from Model J would indicate that the
effect of F on the hazard rate is spurious.

And finally, to simplify the model even more, in Model K the log-linear parameters describ-
ing the effect of firm size on W is restricted to be linear for levels 1 to 5 of F . In fact, the
log odds of belonging to the high-risk class is assumed to linearly decrease with the size of the
firm. Because the result of Model J showed that level 6 (government) is situated between levels
4 and 5, a separate parameter is included for this category. The resulting Model K performs
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very well.
The parameter estimates of Model K indicate that class one – containing more than 60

percent of the sample – has an eleven times higher rate of an interfirm job change than class
two. The probability of belonging to class one is higher for employees of small firms than for
employees of large firms: The membership probabilities of class one for the first five levels of
the variable firm size are 0.87, 0.79, 0.67, 0.53, and 0.38, respectively. Government employees
take a position in between the two largest firm sizes (0.46).

The main substantive conclusion is that there are two types of employees: stayers and
movers. When controlling for this unobserved heterogeneity, the association between firm size
and the risk of a job change disappears. However, there is a strong association between firm size
and being a mover or a stayer. Two plausible explanations for this phenomenon are: 1] firms
of different sizes select and contract different types of employees, or 2] firms of different sizes
offer different job conditions making employees stayers or movers. These explanation assume
that the causal effect goes from firm size to type of employee. The effect could, however, also
be reversed: people belonging to the stayer type prefer working at larger firms or governement
while movers prefer working at smaller firms.

Another substantive conclusion is that the declining risk of a job change after the second
year of employment can be attributed to unobserved heterogeneity. This is a good illustration
of the well-known phenomenon of spurious negative time dependence.

Example II: first experience with relationships

The second example concerns adolescents’ first experiences with relationships. The data are
taken from a small scale two-wave panel survey of 145 cases (Vinken 1998). In this application,
we use the information on the age at which the sample members experienced for the first time
the events ”sleeping with someone”, ”having a steady friend”, ”being very much in love”, and
”going out”. A substantial part of the sample is censored, that is, did not experience one or
more of these events. The model that is used for each of the hazard rates has the form of a
Cox model:

log hzwm = uZM
zm + uWM

wm .

Here, M is the label for the type of event, Z for the time variable, and W for the latent variable.
As can be seen, both the time dependence and the effect of W is assumed to be event specific.

The purpose of the analysis is to use the dependence between the four events to construct
a latent typology. This example can either be seen as the application of LCA as a clustering
method, where the complication is that the indicators are censored survival times, or as a
method for dealing with correlated survival times. In the former case, we could use the label
LC cluster analysis and in the latter LC regression analysis (see Vermunt and Magidson 2000;
Vermunt and Magidson this volume; and Wedel and DeSarbo this volume). In a second step
of the analysis, it is checked whether it is possible to explain differences in class membership
by means of three observed covariates.

[INSERT TABLE 2 ABOUT HERE]

Table 2 reports the log-likelihood values and the number of parameters for the one, two,
three, and four class models. Although the inclusion of the second class gives the largest
improvement in log-likelihood (46 points), also the inclusion of a third and a fourth class
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improves the log-likelihood. According to the BIC criterion, the two and three class models
perform equally well.

[INSERT TABLE 3 ABOUT HERE]

The results for the three-class model are presented in Table 3. The log-linear hazard param-
eters show that the three identified latent classes differ clearly with respect to the timing of the
four events of interest. Class one has the lowest hazard rates for each of the four events while
class three has the highest hazard rates. This implies that the first class, which contains 17
percent of the sample, experiences the events later than classes two and three, while class three,
which contains 41 percent of the sample, experiences the events earlier than classes one and
two. Table 3 also reports the estimates of the median ages at which the three types experienced
the events of interest. These indicate that the largest differences between the three types occur
in the timing of events 1 (sleeping with someone) and 2 (having a steady relationship).

Finally, a three class model was estimated in which class membership was regressed on
three dichotomous covariates by means of multinomial logit model. These covariates are youth
centrism (Y ), sex (S), and educational level (E). Youth centrism is one of the central concepts
in youth studies indicating the extent to which young people perceive their peers as a positively
valued ingroup and perceive adults as a negatively valued outgroup. The dichotomous youth-
centrism scale which is use here was construct by Vinken (1998) using LCA.

The covariate part of the model is a logit model of the form

πw|yse =
exp

(
uW

w + uY W
yw + uSW

sw + uEW
ew

)
∑

w exp
(
uW

w + uY W
yw + uBW

sw + uEW
ew

) .

The other part of the model consist of the same multivariate hazard model as we used above.
The covariate effects are reported in Table 3, where the omitted level is used as reference

category. It can be seen that youth-centristic adolescents, girls, and lower educated belong less
often to the late type and more often to the early types. In addition, sex has a much stronger
effect on class membership than the other two covariates.

In this example, we showed that the information on the timing of four life events can
be summerized into an easy to interpret typology. The typology identified subgroups that
experience the relational events at different (median) ages. We also showed how the latent
typology can be related to covariates. It turns out that girls experience the events of interest
earlier than boys, low educated earlier than high educated, and youth-centristic earlier than
non-youth-centristic adolencents.

FINAL REMARKS

This paper described a general non-parametric random-effects approach for dealing with un-
observed heterogeneity in the analysis of event histories. This approach, which is based on
specifying simultaneously with the hazard model a log-linear path model for the observed and
unobserved covariates, overcomes most of the weak points of the standard random- and fixed-
effects approaches. Two application were presented to demonstrate the potentials of the new
method. Many other applications can be found in Vermunt (1996, 1997), for instance, on mod-
els for dependent competing risks, multiple-state models, models with several latent variables,
and models with spurious effects of time-varying covariates.
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It must, however, be stressed that substantive arguments must determine the specification
of the nature of the unobserved heterogeneity. In the job change example, the latent covariate
was postulated to be posterior and related to the observed covariate, while in the relationship
example, the latent variable was assumed to describe the observed correlations between four
survival times. The obtained results make only sense if these are the correct specifications.

The LCA approach described here is a special case of a more general framework for deal-
ing with missing data problems in event history analysis proposed by Vermunt (1996, 1997).
Other forms of missing data that can be dealt with are measurement error in covariate values,
measurement error in occupied states, partially missing information in covariate values, and
partially missing information in occupied states.
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Table 1: Test results for example I

Model log-likelihood # parameters BIC1

without unobserved heterogeneity
A. {} -7261 1 14530
B. {ZF} -6956 114 14665
C. {Z, F} -7012 24 14203
D. {F} -7183 6 14410
E. {Z} -7072 19 14286
F. {Z1, Z2, F} -7123 8 14306
G. {Z1, Z2, Zlin, F} -7030 9 14129
with unobserved heterogeneity
H. {Z1, Z2, F,W} -7051 10 14215
I. {Z1, Z2, F,W}+{FW} -7027 15 14166
J. {Z1, Z2, W}+{FW} -7028 10 14132
K. {Z1, Z2, W}+{FlinW, F6W} -7031 7 14114

1. Note that the BIC we use here is computed with the log-likelihood value and

the number of parameters rather than with the L2
and the degrees of freedom.
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Table 2: Test results for example II

Model log-likelihood # parameters BIC1

A. 1 class -1279 4 2995
B. 2 classes -1233 9 2929
C. 3 classes -1220 15 2929
D. 4 classes -1209 20 2930

1. Note that the BIC we use here is computed with the log-likelihood value

and the number of parameters rather than with the L2
and the degrees of

freedom.
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Table 3: Parameter estimates for example II: three-class model

Parameter class 1 class 2 class 3
class size 0.17 0.42 0.41
log-linear hazard parameters
event 1 -1.79 -0.24 2.03
event 2 -2.14 0.20 1.92
event 3 -0.87 0.24 0.63
event 4 -0.45 -0.16 0.61
median ages
event 1 23 19 16
event 2 23 18 15
event 3 19 15 14
event 4 15 14 14
log-linear covariate effects
youth centristic -0.33 0.18 0.15
boy 1.03 -0.34 -0.68
low education -0.62 0.44 0.18
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SOFTWARE

The kinds of analyses described in this chapter can quite easily be performed with the `EM pro-
gram (Vermunt, 1997). This is the only software for LCA that recognizes the special structure
of event history data.

Another option is to use the new LCA program Latent GOLD (Vermunt and Magidson,

2000), which is a fully Windows-based program that is easier to use than `EM . In Latent
GOLD, an exponential survival model with unobserved heterogeneity should be specified as a
LC regression model for a Poisson count. With Latent GOLD’s repeated observations option,
it is possible to specify piece-wise exponential models.
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SYMBOLS

T continuous time variable
t value of the time variable
δ censoring indicator
i index to denote a particular case
f(..) density function
F (..) distribution function
S(..) survival function
h(..) or h hazard rate
x covariate vector
β model parameter
j index to denote a particular parameter
Z discretized time variable
z index for discretized time variable
A, B, C categorical covariates
a, b, c indices for categorical covariates
O variable indicating the origin state
o index for the value of origin state
D variable indicating destination state
d index for the value of destination state
M variable indicating type of event
m index for the value of type of event
E variable denoting the exposure time
u log-linear parameter
θ random effect
π probability
W, X, Y latent variables
W ∗, X∗, Y ∗ number of categories of latent variables
w, x, y indices for latent variables
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FURTHER READING

For further reading on event hisory analysis in general see Kalbfleisch and Prentice (1980),
Tuma and Hannan (1984), Allison (1984), Lancaster (1990), Yamaguchi (1991), or Blossfeld
and Rohwer (1995). For futher reading on the specific topic of this chapter see Vermunt (1997).


