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Comments on “Latent class analysis of complex sampling data” by
Jeroen K. Vermunt, Tilburg University

Patterson, Dayton, and Graubard (PDG) show how to take into account complex sampling

designs in latent class (LC) modeling. Sampling weights are dealt with by pseudo-maximum

likelihood (PML) estimation, a method that was also used by Wedel, Ter Hofstede, and

Steenkamp (1998) for mixture modeling and that is implemented in some LC software pack-

ages such as Latent GOLD (Vermunt and Magidson, 2000). Because standard asymptotic

theory is no longer valid, PDG propose estimating standard errors by means of a simple but

computationally intensive jackknife procedure that simultaneously corrects for stratification,

clustering, and weighting.

In the discussion, I focus on the question of whether to use sampling weights in LC

modeling, I advocate the linearization variance estimator, present a maximum likelihood

(ML) estimator, propose a random-effects LC model, and give an alternative analysis of the

dietary data which takes into account the longitudinal nature of the data.

Weighting – yes or no? I am not convinced that in the presented application the weighted

solution is better than the unweighted solution. In order to clarify this point, it is important

to make a distinction between the two types of parameters in the LC model; that is, the LC

proportions θl and the item conditional probabilities αljr. It is clear that the unweighted

estimates of θl will be biased if characteristics correlated with the sampling weights are

also correlated with class membership. However, it is important to note that the results

obtained with a standard LC analysis are only valid if the population is homogenous with

respect to the αljr. If this assumption holds, there is no need to use sampling weights for

the estimation of the αljr; and if it does not hold, use of sampling weights does not solve the
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problem. Heterogeneity in αljr should be dealt with by introducing the relevant grouping

variables in a multiple-group LC analysis.

Taking into account the much larger standard errors in the weighted analysis, I prefer

the unweighted α̂ljr. Possible biases in the unweighted θ̂l can be corrected by reestimating

the LC probabilities, say by PML, fixing the αljr at their unweighted ML estimates. This

two-step estimator yields an estimated LC proportion of .35, which is quite close to the

unweighted estimate of .33. Such a small upwards correction of the number of low consumers

is what could be expected from the fact that weighting increases the observed proportion of

non-consumers. A weighted analysis with the PML method, however, yields a downwards

correction of the proportion of low consumers (θ̂1=.18).

Linearization estimator Wedel, Ter Hofstede, and Steenkamp (1998) proposed using a

linearization or robust variance estimator in mixture modeling with complex samples. The

method is described in detail by Skinner et al. (1989: 83). PDG state that this approach is

less flexible in that it requires developing new software. I do not agree with this statement

as the method is easily implemented in any LC software that already computes first and

second derivatives of the pseudo-likelihood function. It should be noted that contrary to

PDG’s jackknife method, the additional computation time is negligible.

The standard errors I obtained with the linearization estimator are very close to the

jackknife standard errors. Actually, they are slightly smaller, which indicates that they are

not only easier and faster to obtain, but also somewhat better given that PDG’s simulation

study showed that the jackknife slightly overestimates the standard errors.
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ML estimation of LC models with sampling weights Clogg and Eliason (1987) and

Magidson (1987) proposed a ML estimator for log-linear models with sampling weights under

Poisson sampling. Let k denote a particular response pattern, and let δik be 1 if case i has

response pattern k and 0 otherwise. The unweighted frequency in cell k, nk, equals
∑

i δik

and the weighted frequency, n
(w)
k , is obtained by

∑
i δikwi. The inverse of the cell-specific

sampling weight, zk, equals nk/n
(w)
k . The log-linear model that is used in a weighted analysis

has the following form

mk = exp (xkβ) zk.

The term exp(xkβ) defines an expected cell entry in the population, while the corresponding

expected cell entry in the “biased population”, mk, is obtained by multiplying it by zk.

Under Poisson sampling, ML estimation of the unknown β parameters involves maxi-

mizing log L =
∑

k [nk ln (mk)−mk] . This function correctly reflects the data generating

process as far as the unequal selection (or nonresponse) probabilities are concerned. Note

that the PML method maximizes log PL =
∑

k

[
n

(w)
k (xkβ)− exp (xkβ)

]
, which is clearly not

the same.

The above method can easily be generalized to LC models if we write the LC model as

a log-linear model for an incomplete table. Using l as the index for the latent classes, the

model for mk is now

mk =

[∑
l

exp(xlkβ)

]
zk,

where the linear term xlkβ defines the LC model (see Haberman, 1979). The Newton (Haber-

man, 1988) and LEM (Vermunt, 1997) programs for log-linear modeling with incomplete

tables can be used to implement this method.

Application of this ML method to the dietary data yields results that are similar to the
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PDG’s PML results. An advantage is, however, that standard goodness of-fit measures can

be used to assess model fit. The likelihood-ratio statistic L2 equals 18.32 (df = 6 and p =

0.01), indicating that the 2-class model does not fit the data.

Random-effects latent models A standard method for dealing with clustering effects is

random-effects modeling. In the application, a cluster is a PSU within a stratum, say PSU

h in stratum s, denoted by sh. Let us assume that the LC proportions are coefficients that

vary between PSU’s. A simple random-effects two-class model is obtained by assuming that

ln(θ1(sh)/θ2(sh)) ∼ N(µ, σ2). The contribution of cluster sh to the log-likelihood function

equals

ln Lsh = ln
∫ { ∏

all i in cluster sh

(
L∑

l=1

θl(sh)P (Yi|cl)

)}
f(θ(sh)|µ, σ2)dθ(sh).

The integral can, for instance, be solved by Gauss-Hermite quadrature.

Application of this random-effects LC model to the (unweighted) dietary data revealed

that there is no evidence for variation of the LC proportions between clusters. This is in

agreement PDG’s results.

Measurement error or change? As indicated by PDG, the four dietary recalls were

obtained at six time points; that is, recalls 2-4 do not represent the same recall occasions for

all of the women. In order to be able to take the longitudinal nature of the data into account,

I reanalyzed the (unweighted) data using six occasions instead of four, where each woman

has two missing values. It should be noted that as long as the missing data can be assumed

to be missing at random, it does not cause special problems within a ML framework.

First, I estimated standard LC models with different numbers of classes. The two-class

model turned out to be the best in terms of fit (L2=52.07, df=50, and p=0.39). Equating
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all time-specific intake probabilities for the high-consumption class and the ones of the

first three time points for the low-consumption class did not cause the fit to deteriorate

(L2=55.82, df=57, and p=0.52). The estimated intake probability was 0.80 for the high-

and stable-consumption class. The low-consumption class had 0.57 at the first three time

points, dropped to 0.38 and 0.20, and increased to 0.46 at the last time point.

PDG do not pay attention to the fact that there is not only measurement error in the

reported intake, but also change in intake over time. The LC model, however, can not make

a distinction between measurement error and change. A model that is better suited for

this purpose is a hidden or latent Markov model. A simple hidden Markov with two latent

states and time-invariant measurement errors fits almost as good as the two-class LC model

(L2=54.37, df=50, p =0.31), but tells a more interesting story about the same data set. The

high-intake class has an intake probability of 0.83 at each time point and the low-intake class

of 0.36. Note that these measurement errors (0.17 and 0.36) are smaller than in the standard

LC model. Between occasions one and three there are similar numbers of moves from high

to low intake as from low to high, between time points three and five there are much more

moves from high to low, and between time points five and six there are much more moves

from low to high. This indicates that besides measurement error there is a season effect in

the consumption of vegetables: the proportion of low consumers depends on the period of

the year.
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