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1. Introduction 

A popular estimation method for generalised linear mixed models is maximum likelihood 
(ML). With nonnormal dependent variables the likelihood function is approximated by means 
of Gauss-Hermite quadrature. Software packages implementing this method include the 
MIXOR family programs (Hedeker and Gibbons, 1996), the SAS NLMIXED procedure, and 
the STATA GLLAMM routine (Rabe-Hesketh, Pickles, and Skrondal 2001). MIXOR is 2-
level program, the other two programs can also handle other types of mixed models.  

If the mixed model of interested is a 2-level model, ML estimation can be performed 
by means of the EM algorithm, which is a natural approach to estimation problems with 
missing data (Agresti et al., 2000). The standard EM algorithm can, however, not be used for 
other types of mixed models because the number of entries in the relevant posterior 
distribution is huge, making the method impractical. This is a pity because EM is a very stable 
and quite fast algorithm, especially if one realises that NLMIXED and GLLAMM maximise 
the log-likelihood using Newton-type algorithms with numerical derivatives, which may make 
these procedures somewhat unstable and slow. Lesaffre and Spiessens (2001) reported 
difficulties with Newton-type algorithms in finding the global ML solution in non-linear 
mixed models: different routines may give different solutions given a certain number of 
quadrature points. Computation of numerical first and second derivates is computational 
intensive if a model contains more than a few parameters.  

In this paper it is shown that with nested random effects like in multilevel models, 
implementation of the EM algorithm is possible by making use of the conditional 
independence assumptions implied by a multilevel model. Although for simplicity of 
exposition we only deal with the 3-level case, the proposed method can easily be generalised 
to any number of levels.  

The next section describes the 3-level model of interest. Subsequently, attention is 
paid to parameter estimation by maximum likelihood (ML) and an application using an 
empirical data set is presented. We end with a short discussion.  

2. The generalised linear three-level model 

Let i denote a level-1 unit, j a level-2 unit, and k a level-3 unit. The total number of level-3 
units is denoted by K, the number of level-2 units within level-3 unit k by nk, and the number 
of level-1 units within level-2 unit jk by njk. Let yijk be the response of level-1 unit ijk on the 
outcome variable of interest, and let xijk, zijk(2) , and zijk(3) be the design vectors associated with 
S fixed effects, R(2) level-2 random effects, and R(3) level-3 random effects, respectively. It is 
assumed that the conditional densities of the responses given covariates and random effects 
are from the exponential family. Denoting the link function by g[..], the generalised linear 
three-level model (GLTM) can be defined as  
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Here, D is the vector of unknown fixed effects, Ejk(2) is the vector of unknown random effects 
for level-2 unit jk and Ek(3) is the vector of unknown random effects for level-3 unit k.  

As usual, we assume the distribution of the random effects Ejk(2) and Ek(3) to be 
multivariate normal with zero mean vector and covariance matrices 6(2) and 6(3). For 
parameter estimation, it is convenient to standardise and orthogonalise the random effects. For 
this, let Ejk(2) = C(2) Tjk(2), where C(2) is the Cholesky decomposition of 6(2). Similarly, we 
define  Ek(3) = C(3) Tk(3). The reparameterised GLTM is then  
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3. ML estimation 

3.1 Log-likelihood function 

 The parameters of the GLTM described in the previous section can be estimated by 
maximum likelihood (ML). The likelihood function is based on the probability densities of 
the level-3 observations, denoted by P(yk|xk,zk(2),zk(3)). To simplify notation, the conditioning 
on the design vectors is replaced by an index corresponding to the unit concerned, yielding 
the short-hand notation P(yk) for the probability density of unit k.  The log-likelihood to be 
maximised equals  
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As can be seen, the responses of the nk level-2 units within level-3 unit k are assumed to be 
independent of one another given the random effects T(3), and the responses of the njk level-1 
units within level-2 unit jk are assumed to be independent of one another given the random 
effects T(2) and T(3).  

The integrals at the right-hand side of equations (1) and (2) can be evaluated by the 
Gauss-Hermite quadrature numerical integration method (Stroud & Secrest, 1966; Bock & 
Aitkin, 1981; Hedeker and Gibbons, 1996; Rabe-Hesketh, Pickles, and Skrondal, 2001), in 



which the multivariate normal mixing distribution is approximated by a limited number 
discrete points. More precisely, the integrals are replaced by summations over M and T 
quadrature points,  
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Here, Tt(2) and Tm(3) are quadrature nodes and π(Tt(2)) and π(Tm(3)) are quadrature weights 
corresponding to the (multivariate) normal densities of interest. Because the random effect are 
orthogonalised, the nodes and weights of the separate dimensions equal to the ones of the 
univariate normal density, which can be obtained from standard tables (see, for example, 
Stroud & Secret, 1966). Suppose that each dimensions is approximated with Q quadrature 
nodes. The T = QR(2) and M = QR(3) weights are then obtained by multiplying the weights of 
the separate dimensions. The integral can be approximated to any practical degree of accuracy 
by setting Q sufficiently large.  

3.2 Implementation of the EM algorithm 

ML estimation can be performed by an EM algorithm with an E step that is especially adapted 
to the problem at hand. This adaptation is necessary because a standard implementation of the 
E step would involve computing the joint conditional expectation of nk• R(2) + R(3) random 
effects; that is, the joint posterior distribution Pk(Tt1(2),Tt’2(2),Tt’’n(k)(2),Tm(3) |yk) with M• Tn(k) 
entries. This only possible for very small nk. 

Because of the model structure, the next step after obtaining the posterior probabilities 
would be to compute the marginal posterior probabilities for each level-2 unit, Pk(Ttj(2),Tm(3) 
|yk), by collapsing over the random effects of the other level-2 units. In other words, in the E 
step we only need the nk marginal posterior probability distributions containing M• T  entries. 
This can be seen from the form of the (approximate) complete data log-likelihood, which is 
defined as  
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It turns out that it is possible to compute Pk(Ttj(2),Tm(3) |yk) without going through the full 
posterior distribution by making use of the conditional independence assumptions associated 
with the density function defined in equations (1) and (2). It that sense, our procedure is 
similar to the forward-backward algorithm for the estimation of hidden Markov models with 
large numbers of time points (Baum et al., 1970; Juang & Rabiner, 1991). Our procedure 
could be called an upward-downward algorithm. First, random-effects are integrated out 
going from the lower to the higher levels. Subsequently, the relevant marginal posterior 
probabilities are computed going from the higher to the lower levels.  

The marginal posterior probabilities Pk(Ttj(2),Tm(3) |yk) can be decomposed as follows:  
  



).,|()|()|( )3()2()3()3()2( mktjkkmkkmtjk PPP yyy, =  

 
 Our procedure makes use of the fact that in the GLTM  
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 i.e., Ttj(2) is independent of the observed and latent variables of the other level-2 units within 
the same level-3 unit given Tm(3). This is the result of the fact that level-2 observations are 
mutually independent given the level-3 random effects, as is expressed in the density function 
described in equation (1). Using this important result, we get the following slightly simplified 
decomposition  
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The computation of the marginal posterior probabilities therefore reduces to the computation 
of the two terms at the right-hand side of this equation. The term Pk(Tm(3) |yk) is obtained by  
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The other term, Pjk(Ttj(2)|yjk,Tm(3)) is computed by 
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These equations show that computer storage and time increases only linearly with the number 
of level-2 observations instead of exponentially, as would be the case with a standard EM 
algorithm. It can also be seen that the method can easily be generalised to more than three 
levels. For example, with four levels, one would have to compute the three terms Pl(To(4) |yl), 
Pkl(Tmk(3) |ykl,To(4)), and Pjkl(Ttj(2) |yjkl,Tmk(3),To(4)).  

A practical problem in the implementation of the E step is that underflows may occur 
in the computation of Pk(Tm(3) |yk). More precisely, the numerator of equation (4) may become 
equal to zero for each m because it may involve multiplication of a large number, (nk + 1)(njk 
+ 1), of probabilities. Such underflows can, however, be prevented by working on a log scale. 
Letting  
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and bk = max(amk), Pk(Tm(3) |yk) can be obtained by  
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In the M step of the EM algorithm, the (approximate) complete data log-likelihood described 
in equation (3) is improved by standard complete data algorithms for the ML estimation of 
generalised linear models.  

3.3 Standard errors 

Contrary to Newton-like methods, the EM algorithm does not provide standard errors of the 
model parameters as a by-product. Estimated asymptotic standard errors can be obtained by 
computing the observed information matrix, the matrix of second-order derivatives of the log-
likelihood function toward all model parameters. The inverse of this matrix is the estimated 
variance-covariance matrix. For the example presented in the next section, we computed the 
necessary derivatives numerically.  

The information matrix can also be used to check identifiability. A sufficient condition 
for local identification is that all the eigenvalues of this matrix are larger than zero.  

4. Application to attitudes towards abortion data 

To illustrate the GLTM, we obtained a data set from the data library of the Multilevel Models 
Project, at the Institute of Education, University of London 
(multilevel.ioe.ac.uk/intro/datasets.html). The data consist of 264 participants in 1983 to 1986 
yearly waves from the British Social Attitudes Survey (McGrath and Waterton, 1986). It is a 
three-level data set: individuals are nested within districts and time-points are nested within 
individuals.  

The dependent variable is the number of yes responses on seven yes/no questions as to 
whether it is woman’s right to have an abortion under a specific circumstance. Because this 
variable is a count with a fixed total, it is most natural to work with a logit link and binomial 
error function. Individual level predictors in the data set are religion, political preference, 
gender, age, and self-assessed social class. In accordance with the results of Goldstein (1995), 
we found no significant effects of gender, age, self-assessed social class, and political 
preference. Therefore, we did not use these predictors in the further analysis. The predictors 
that were used are the level-1 predictor year of measurement (1=1983; 2=1984; 3=1985; 
4=1986) and the level-2 predictor religion (1=Roman Catholic, 2=Protestant; 3=Other; 4=No 
religion). Because there was no evidence for a linear time effect, we included time as a set of 
dummies in the regression model.  
 

[INSERT TABLE 1 ABOUT HERE] 
   

Table 1 reports the results obtained with the three models that were estimated: a model 
without random effects (Model I), a model with a level-2 random intercept (Model II), and a 
model with level-2 and level-3 random intercepts. We approximated the integrals in the log-
likelihood function using 10 quadrature nodes per dimension. The reported fit measures show 
that the level-2 variance is clearly significant. Based on a log-likelihood difference test 
between Models II and III, one would conclude that the level-3 variance is just significant. 



The BIC, on the other hand, indicates that Model II is somewhat better than Model III.  
The lower part of Table 1 contains the parameter estimates for Models I, II, and III. As 

far as the fixed part is concerned, the substantive conclusions would be similar in all three 
models. The attitudes are most positive at the last time point (reference category) and most 
negative at the second time point. Furthermore, the effects of religion show that people 
without religion (reference category) are most in favour and Roman Catholics and Others are 
most against abortion. Protestants have a position that is close to the no-religion group. As can 
be seen, introducing a level-2 variance term increases the time effects and introducing a level-
3 variance term increases the religion effects.  

A natural manner to quantify the importance of the random intercept terms is by their 
contribution to the total variance. The level-1 variance can be set equal to the variance of the 
ORJLVWLF�GLVWULEXWLRQ�� 2/2=3.29), yielding a total variance equal to 3.29+1.212+0.472=4.98. 
Thus, after controlling for the time and religion effects, the level-2 and level-3 variances equal 
29% (1.212/4.98) and 4% (0.492/4.98) of the total variance, respectively.  

5. Discussion 

An EM algorithm was presented for the ML estimation of GLTMs. This upward-downward 
method prevents the need of processing the full posterior distribution, which becomes 
infeasible with more than a few level-2 units per level-3 unit. The relevant marginal posterior 
distributions can be obtained by making use of the conditional independence assumptions 
underlying the GLTM. As was shown, it is straightforward to generalise the method to models 
with more than 3 levels.  

A limitation of the GLTM is that the numerical integration to be performed for 
parameter estimation can involve summation over a large number of points when the number 
of random effects is increased. Despite the fact that the number of points per dimension can 
be somewhat reduced with multiple random effects, computational burden becomes enormous 
with more than 5 or 6 random coefficients. There exist other methods for computing high-
dimensional integrals, like Bayesian simulation and simulated likelihood methods, but these 
are also computationally intensive. As shown by Vermunt and Van Dijk (2001), these 
practical problems can be prevented by using a nonparametric random-effects model in which 
the mixing distribution is approximated with a small number of nodes whose locations and 
weights are unknown parameters to be estimated (Laird, 1978). The proposed EM algorithm 
can also be used for the estimation of such nonparametric GLTMs.  
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Table 1. Fit measures, parameter estimates and standard errors for the estimated models  
 
  Model I  Model II  Model III 
Fit measures     
 LL  -2188.38 -1711.76 -1708.72 
 # parameters  7 8 9 
 BIC  4425.5 3479.21 3480.09 
Fixed effects     
 Intercept   1.50 (0.07)  1.97 (0.13)  2.09 (0.18) 
 Time     
   1983  -0.13 (0.08)  -0.16 (0.08)  -0.16 (0.08) 
   1984  -0.55 (0.07)  -0.68 (0.08)  -0.68 (0.08) 
   1985  -0.22 (0.08)  -0.27 (0.08)  -0.27 (0.08) 
 Religion     
   Catholic   -1.08 (0.10)  -1.07 (0.21)  -1.59 (0.32) 
   Protestant   -0.38 (0.06)  -0.49 (0.19)  -0.71 (0.21) 
   Other   -0.82 (0.08)  -1.12 (0.17)  -1.32 (0.24) 
Random intercepts     
 Level-2 standard deviation   1.20 (0.05)  1.21 (0.07) 
 Level-3 standard deviation    0.47 (0.33) 
  
 


